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Lower bounds to bound state eigenvalues
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Whenever the residual potential is repulsive the introduction of Pade approximants into the Brillouin-
V(igner perturbation expansion generates lower bounds to the exact eigenvalues. The method is extended to
perturbation from a subspace and to singular repulsions.

NUCLEAB STBUCTUBE Pade approximants replace the Brillouin-Wigner (BV/)
equation by an equation whose solutions are lower bounds to the BW solutions. J

I. INTRODUCTION with

Atomic or nuclear systems with a finite number
%of degrees of freedom are usually described by
a Hamiltonian H which is semibounded from below.
Most often, the spectrum of that Hamiltonian is
made up of a discrete set of eigenvalues E„E,. . .
and a continuum above them. The ground state
energy E, is usually nondegenerate. It is relative-
ly easy to get upper bounds to E, through a syste-
matic use of the Rayleigh-Ritz variational prin-
ciple and it may be stressed that such a systematic
use provides, theoretically, convergent approxi-
mations towards E, from above. It is less easy,
however, to obtain lower bounds to E, in the same
systematic way. When H contains only. a kinetic
energy and. :a potential with finite depth, a trivial
lower bound to E, can be related to that depth.
More elaborate lower bounds have been proposed
in the literature. ' The purpose of the present
paper is to show how the introduction of Pade ap-
proximants into the Brillouin-Wigner (BW) per-
turbation theory may generate, in a special case of
broad interest, a convergent sequence of lower
bounds to E,.

The outline of our argument' is as follows. First
we split H into an easily, diagonalizable Hamiltonian
H„with at least the accurate knowledge of its
ground state

~ $0) and corresponding eigenvalue e,
which should be nondegenerate, and assume that
the residual operator V =H- Hp is semiposifive
definite. Then we introduce a coupling constant
A ~ 0 and H(h. ) =—H, + A. V with the corresponding
spectrum Eo(X), E,(X). . . . The physical situation
corresponds to ~ = 1, obviously. The well-known
BW implicit equation reads

E= e, +F(E, X),

w'here

As will be discussed below, it turns out that dia-
gonal ([M/M]) Pade approximants of F(E, A) with
respect to X may approximate Eq. (1) by

E = eo+E~(E, A), (4)

II. BASIC PROPERTIES

For the sake of simplicity, we assume in what .

follows that the spectrum of H, is made, like that
of H, of a discrete set ep, e„e, . . . , and a continu-
um above. When V is semipositive definite, it is
safe to claim that the discrete eigenvalues E,(h),
E,(A), E,(X). . . of H(A) and those 74(A) = e„q,(A),
g,(A). . . of Ho+AQVQ are larger than, and con-
verge smoothly towards Ep cz 62. . . , respective-
ly, when &-0. Furthermore, the positivity of,V
makes all those eigenvalues E„(A), q„(A) (except qo,

where F~& E. For any solution E„(&) of Eq. (1)
{for a given, fixed value of A) there exists a solu-
tion E„(A) of Rq. (4) with the property E„~(A)
& E„(X). Lower bounds will thus be obtained.

Furthermore, as will be discussed also, there
are cases in which I"~- I" when M- ~. Then E„~
-E„, or, in other words, we can expect a conver-
ging sequence of increasing lower bounds. To-
gether with the Hayleigh-Ritz principle, this opens
the way towards rigorous error bars in calcula-
tions of the binding energy.

Section II of this paper contains the proofs of
several basic properties of E(E, A) which are need-
ed for a rigorous derivation of our argument. Sec-
tion III describes a numerical application. Sec-
tion IV is a, generalization including matrix' Pade
approximants and the Bloch-Horowitz' method.
The case of singular potentials is considered in
Sec. V. A discussion and a conclusion are pro-
posed in Sec. VI.
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of course) monotonically increasing functions of A. .
Finally, the thresholds for the continuum cannot
be lower for H(A) and Ho'+AQP'Q than that for H, .
We choose the latter threshold as an origin for
the energy scale, and restrict our interest, from
now on, to negative eigenvalues and energies.
The case of positive energies has been considered

in an earlier work, ' where instead of E we actually
studied the distorted-wave K matrix.

A. Behavior of F(E,A. ) with respect to A.

It is easy to derive from Eq. (2) that the partial
derivative

E, ~ ~~1~- 'E B ~~V

is a non-negative number, because ~ is non-nega-
tive. Besides, when E& 0, it is clear from Eq.
(2) that the only singularities of E are poles, which
occur when A. is such that an eigenvalue q„(A), n &0,
coincides with E. In particular, as long as E& e„
it is seen that E is regular, because q„(A), n &0,
remains larger than &, when A takes on all positive
values. Conversely, if 6p & «6p„and the eigen-
values e are nondegenerate, a first pole of I'
occurs when q~(A) increases as a function of A. and
reaches &, a second one occurs when gp, reaches
E, and so on, until ~ is large enough to let g, coin-
cide with ~. These properties of I" are schemati-
cally pictured in Fig. 1.

B. Behavior of F(E,X) with respect to E

One obtains trivially from Eq. (2) the partial
derivative

Q
Bo ' (o —H, —hoVQl' ') '

which is obviously a nonpositive number. When
the value of o& is kept fixed, I' is regular when F.
takes on all values between -~ and q, . Then poles
occur as E coincides with g„g„and so on. This
behavior is schematically pictured in Fig. 2.

(L. Phase shift and boundary conditions

Although a monotonically increasing function of
& and decreasing function of E, as established in
Secs. IIA and IIB, the function E(E, X) is not very
easy to handle because of its poles. It is here con-
venient to define the phase shift'

6(E, X) =—arctanE(E, A),

which is still a monotonic. increasing function
of X and decreasing function of E, because

2
~ oooo o ~ ~ ~ ~ ~ ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ot(i ~ ~ ~ ~ ~ ~ ~ ooo op

C ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~

0 '0

FIG. 1. (Qualitative). The three dashed lines show the
behavior of the ejgenvalues &~0, g, q2 of &0+&QVQ as
functions of ~. The-full line shows 1' as a function of ~
for that fixed value of E shown on the figure. The first
vertical dotted line is an asymptote for the full line and

corresponds to that value of A, for which r»=E. The
second vertical dotted line is also an asymptote and
corresponds to rj& =E.

FIG. 2. (Qualitative). The three dashed lines are the
same as in Fig. 1. The axis for P is now the same as
the A axis, and the full line shows E as a function of E.
The horizontal dotted line is the only asymptote, for only

g& exists for that value of ~ shown on the figure (gz has
vanished for a smaller value of ~).



802

E =-0.001

L I I I I I I I I

0.02 00& 006
i

O.I O.I&038

0.08 0.12 0.160.2

I I I I

6 8 1012 20

F&G, 3. 6 (fulllines) and 4& (dotted or dashed lines) as functions of ~ for E=—1.550, —1.400, and —0.001. The scale
for A, is logarithmic, that for & and && is in units of &. The full line for E = —1.4 is first hardly above that for E.=- 0.001
then jumps near ~ —-0,206 and is finally hardly below that for E= —1.55. The dotted line for E=—1.4 is always below the
full line for the same energy, and above the dotted l. ine for E =- 0.001, which is itself always below the full line for
E = —0.001.

lt 18 a ITlonotonlc incr easlQg function of E.
The advantage of ~ is obviously that poles
of E are regularized into jumps through v/2
or some odd number times v/2.

It is clear from Eq. (2) that E(E, O)=0. Thus
A(E, 0) equals 0 or any integer times v. Besides,
we have seen that F is a regular function of ~ when
F- & e, . It is thus convenient to set n. (P-, 0) = 0 when

0.4

0

A. =1

j'.
I:

j I
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FIG. 4. 4 (full lines) and && (dotted or dashed lines) as functions of E for &=1, 3, and 5. All curves become practical-
ly horizontal. when E& —2. The scale for & and &j is in units of 7I. For the sake of simplicity, the curves arctan(E —eo)
have not been plotted (&0=- 9.184). Notice how the three curves for && cI oss the E axis at E = c& =- 1.544 and are tangent
to one another at that point.
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E& e, . This definition confines 6(E, X) to an in-
crease from 0 to v/2 when A increases from 0 to
+ oo. Conversely when c~ & E & c~, y we have seen
that there are P poles for E as a function of
Accordingly, one must set h(E, 0) =-pa, and h in-
creases from -Pa to a/2 as A takes on all values
between 0 and + oo.

This choice of boundary conditions makes 4 a
smooth function of E and & (except of course when
A. is strictly equal to zero) It. can be checked that
the plots of b, versus ~ at fixed E, or versus E at
fixed A, fill the whole relevant domain. In other
words, there are no "holes" in the plot domain.
This situation is illustrated by the numerical ex-
ample given in Sec. III and by Figs. 3 and 4.

E. Pade approximants to F

Since &V is non-negative, there exists a unique,
semipositive-definite square root (A.V) '. Then
Eq. (2) also reads

-1
E(E A.) =A P V~ 1 —A.V' ' V' '

E-B,

(9)

More details on this result, and on the fact that
suitable Pade approximants to F can be derived
from Eq. (9), can be found for instance in the book
of Baker, ' the work of Bessis et al. , or in Ref. 5.
The point of interest is that Eq. (9) introduces the
operator

x -=v~~2 ~ v"
E —Bo

(10)

and that F is nothing but & times the diagonal ma-
trix element of the resolvent (1 —XX) ' for the vec-
tor I g = V'hl Qo). A well known result in the the-
ory of Pads approximants is that the [M —1/M]

D. Modified implicit equation

Rather than Eq. (1), we now consider the set of
equations

Arctan[E —eo]- nv= e(E, P.), n=0, 1. . . , (8)

where Arctan here means the principal determina-
tion of arctan, namely that confined between -v/2
and v/2. The value of X in Eq. (8) is kept fixed,
the left-hand side is an increasing function of E
and the right-hand side is a decreasing function of
E. For each value of n, there can thus be at most
one solution, E„(A). That solution is also, ob-
viously, a solution of Eq. (1). Therefore the pro-
cedure defined by Eq. (8) and that defined by Eq.
(1) are equivalent, with the advantage that Eq. (8)
contains only regular quantities.

Pade approximant of such a resolvent matrix ele-
ment is exactly equal to

& e, l(1 —~x.)-'I e, &,

where K& is the projection of X on the subspace
built upon

In other words, that [M —1/M] approximant to the
resolvent matrix element is the exact resolvent
matrix element of an approximant of X. In u hat
follows, we consider the [M/M] Pade approximants
Es of E with respect to A.. Since E derives from
the resolvent matrix element

&e. I(1 —~x)-'I e.&

by an additional multiplication by ~, it is correct
to choose [M/M] approximants of F in order to take
advantage of [M —1/M] approximants for that re-
solvent matrix element.

As a consequence of these considerations the
theory of Pade approximants show s that, whenever
X is positive semidefinite, then F&, & E„, if M, &

M This inequality follows because the subspace
w hich defines X„contains the subspace which de-

2
fines X&, and therefore K„&K~ . FurthermoreNgt 1 2
X is larger than its projection X~. Thus E& E„.
It is clear that the Pade approximants we have
chosen form a convergent and increasing sequence
of lower bounds to F. The only condition is that
be posi. ive semidefinite. It is seen from Eq. (10)
that this is true as long as E & e, .

When e~ = E & q„, one expects from Eq. (10) that
the spectrum of K contains P negative eigenvalues.
Because of these negative eigenvalu es, inequali-
ties such as K&, & X&, & X and F&, & F~, & F when
M & M, cannot be claimed any more. We notice
by the theory of Pade approximants, however, that
the poles of the resolvent matrix elements
&Pol(I —&X) 'IP, &, &P, l(I —&Xs) 'IP, ) occur when

is equal to the inverse of the positive eigenvalues
of K, respectively to X&, for we only consider pos-
itive values of ~ ~ Furthermore the positive eigen-
values of X are larger than those of the projection
Xs (in a suitable correspondence between eigen-
values). Accordingly, for each pole of the resol-
vent of K„ there exists a pole of the resolvent of
X at a smaller value of A. (This correspondence
does not prevent K from generating more poles
than X„, at larger values of A. ) In the same way,
if M, & Q, each of the first M, poles generated by

X~, occurs earlier than the corresponding pole
generated by X~,.

There is a simple way to summarize all these
ordering properties. Let us define the phase shift
approximants
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III. PRACTICAI. EXAMPLE

A. Technical details

We first show explicitly the [1/1] and [2/2] Pads
approximants of E. The Taylor series of F with
respect to ~ reads

F(E, &1) =a, A. +a,A'+a, A'+a &1'+ ~ ~ ~, (12)

where the coefficients a„a„.. . are functions of
One readily obtains

a, =&4, ]V]y,&,

a, = UZ HU~
0

(14)

n~(E, A) = arctanF+E, A),

with boundary conditions identical to those de-
scribed in Sec. IIC. Namely, 6~(E, 0) =-Pz if
&p & + & &p 1 Let us furthermore notice that
and I'~, like 4 and I, are increasing functions of
A. and decreasing functions of E. When I-'& e„we
can claim definitely that As & 6„& r&. (when M,
= M, ) and that n„- 6 when M-~. When E& e» we
again expect d„& n„, = 6 (but the numerical ex-
ample below shows that a fast convergence of A~
towards & when ~-~ may be more subtle to pre-
dict).

Eqs. (18}to (22), one needs as much as the three-
particle-three-hole diagrams implied by Eq. (18),
which is rather unwieldy. It looks difficult to go
beyond I2 at present in a full many-body problem.
Actually, we shall even restrict ourselves to I",
in the simple numerical model below.

Our model is just a one particle problem, with a
square well. . The unperturbed Hamiltonian H, con-
tains a radial kinetic energy operator d-'/dr' with
a system of units such that 5'/2 m =1, and an at-
tractive square well Vo(r) of intensity -12 and
range w/2 in that system. We consider only s
waves in ordinary three-dimensional space and
radial wave functions (|&(r) which have been multi-
plied by r, as usual. Therefore $(0) =0 when g is
regular, and the normalization is given by

Jo ]g'(r)]dr It i.s trivial to check that such a depth
and range generate only two bound states, with
eigenvalues &0 =-9.184 and e, =-1.544. It is also
trivial to express explicitly Q, (r) as a sine, then
an exponential.

The residual operator V is chosen as a repulsive
square well with intensity 1 and the same range
v/2 as V„. It follows from that choice that the
physical .values of ~ are restricted to 0 = A & 12.

It is trivial to obtain a, =0.959. For the calcula-
tion of a„Eq. (14), we consider the differential
equation

a3 = V
@

U
~

— UE- H0 F. -H0

d' 7r

[E+ +120 ——r ((&(r) =0

., = p. v(
0

and so on. The [1/1] Pads approximant is

A.a1

a —A.a1

The [2/2] Pads approximant is

Xb, +~2b,
1+A.c, + A.'c2

with

b, =a, ,

a, +a, 'a4 —2a,a,a,
2 2a, —a,a,

a,a —a,a,
1 2a2 —a1a3

2

C2
=--a3 —a,a4

a ' —a,a2 1 3

(18)

F=&y, ]~V]e&, (24)

where 8 is the usual step function, and obtain (i)
the solution u(r) which is regular at the origin,
and (ii) the solution v(r) which decreases exponen-
tially when r-~, through straightforward mani-
pulations and matchings of sines, cosines, and ex-
ponentials. It is then easy to express (E —H, )

'
by means of the traditional Green's function
u(r&)v(r&)/w, where w is the suitable Wronskian.
The calculation of (E —H, ) 'QV

l &f&, & boils down to
an integration of that Green's function with @Vip, &,

an analytical manipulation of sines, eosines, and
exponentials again. Finally one tabulates a, as a
function of E and just inserts the values of ~ into
the formula for F„Eq. (17).

A comparison between I', and I', or rather 4,
and 6, is provided by Figs. 3 and 4. For that pur-
pose, we must calculate I'. It turns out in the pre-
sent model that the calculation of I' is very analo-
gous to that of a, . This is because

When Q0 is a Slater determinant and V a two-body
interaction, Eqs. (I'I} and (14) show that the calcu-
lation of I', demands the computation of two-par-
ticle-two-hole diagrams„which is still a calcula-
tion of a reasonable size. For E„as shown by

where ]4& obeys the equation

0

ol
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(z -e, —1v)
l e) = q l y, &,

with

(26) h, ) of the term with a propagator, such as, e.g. ,

(y )XV q (Z —If, -~@V@)-'xvl4,)

p=z- e, -(ylxVle) „

I,et 4, be the solution of

(z a, - ~v)Q, &
=

l y, ) .

and finally

{2'la)

B. Dependence on the coupling constants

We have plotted on Fig. 3 the behaviors of & and
6, as functions of A. for three values of E, namely
-1.550, -1.400, and 0.001. Full lines correspond
to 6, dotted (or dashed) lines to 6,. Curves for
-~ &E& -1.550 are slightly above those for E
=-1.550, as expected from Eq. (6), but so close
by that they would have been lying on top of each
other if they had been plotted. This happens be-
cause the Born term (&j,lAVlp, ) is large, for E
& -1.550, with respect to the contribution to 4 (or

To solve Eq. (26a), namely to invert Z —H(A), we
replace in Eq. (23) the strength 12 by {12—A),
solve for the solutions u and v which are regular
at the origin and infinity, respectively, then gen-
erate again the Green's function and let it act upon

Calculations are again analytical almost all
the wRy.

for A. When E approaches 6 ~= -1.544' 6 Rnd 4~
depend much more strongly on the precise value
of E. We have checked numerically in great detail
that nothing remarkable happens when E approach-
es co= -9.184. This is not surprising, because the
Q projector indeed eliminates the influence of eo.

For E=-1.550, we are still below ~,. No pole
for either F or F, is expected nor found (actually
I', has an unphysical pole at a negative value of ~,
-0.574) and L and n. , increase smoothly between 0
and w /2. As expected again, n, , &n. , and we can
claim that further approximants 6,, 6,. . . should
pile up between 6, and 4 and converge to A. Final-
ly, both 4 and 4, do increase when A. increases.
For A, = 12, we find 6 = 0.471 and 6,=0.154 (in units
of v). If we consider the unphysical region A. &12,
the limits of 6 and 6, when A, -~ are respectively
vj2 and Arctan(-a, 'ja, ) = Arctan(0. 550), with a,
=-1.67 for that value of E.

For E=-1.400, which is above c„we set A=A,
=-g for A, =O, as specified in Sec; GC. Then 6
and 6, increase as functions of A. A pole for F(n.
= -v j2) occurs for A. =0.206, corresponding to a,

sharp rise of the corresponding curve. Then that
curve almost joins (it is actually slightly below)
the curve for 4 with E = -1.550. While the pole for
I' occurs at A. =0.206, the pole for I', occurs, as
predicted in Sec. II E, at a larger value of A (act-
ually much larger), X= 14.3. As expected, A, &n
all the way.

There is nothing abnormal in the fact that for

0.4

E

-0,0008

FIG. 5, 4 (full lines) and &j (dashed line) in. units of x near E =0 for A. =2, 96, 3.01, and 3.06.
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E= -1.400 the pole of E, at A. =14.3 is beyond the
physical range of A. (0«A. «12). When E takes on
all values bete&Ben e, and -1.400, the position of
that pole moves continuously between A = 0 and A,

= 14.3. Simultaneously, the position of the pole of
E moves continuously between A. = 0 and A. = 0.206.
If for instance E= -1.450, the pole for E, occux's
at A. =9.25, which is in the physical range, and that
for E occurs at A. =0.12.

For F = -0.001, the pole for + occurs at A = 3.01
and that for E, is completely out of the physical
range of A. . As evex, 4, &A. The fact that E Rl-
IIlost vRQ1shes shows thRt 1Q Figs. 4 Rnd 5, %'here
6 and 4, ax'e plotted Rs functions of E with- ~ as R

fixed parameter, no pole for E should be expected
when A. exceeds, say, 3.05.

It can be concluded fronl Fig. 3 that the following
properties have been confirmed, namely (i) n and
6, are incx'easing functions of A, and decreasing
fullctlolls of E~ (11) Al«kq (lli) 'tilere al'e 1'eglolls
for which 6, is a good approximation of 6, or high-.
Bx' PRde RpproximRnts would even convex ge, Rnd

(iv) there are no holes in the domain paved by the
n, curves, nor in that paved by the 6, curves. (It
will be noticed, however, that those domains may
be quite different. For instance the limiting curve
for 6 at E=~, is slightly below the curve of 6 for
L = -1.550, vrhile the limit curve for 6, is just 6,
= 0.)

. %6 have plotted on Fig. 3 the dependence of 4
Rnd 6, on E, for three fixed values of A, , namely
A. =1, 3, Rnd 5. When E is smaller than -2, 4 Rnd
a, turn out to depend little on E (in particular,
nothing happens at E=a,) and thus Fig. 4 is re-
stricted to the domain -2&E&0. It must be
stressed here that the solving of Eq. (8) for n=0
[search for the ground state of H(A)j consists in
taking the intersections of the curves plotted on
Fig. 4 with the curve Arctan(E -e,). It turns out
that those intersections oeeur in the region E
& -2, where 6, i,s very close to A. Indeed, Fig. 4
shows that b, , (dotted lines) deviates from a (full
lines) only if E & -1.7. We can already conclude
that the [I/Ij Pade approximant provides, in the
px'eseQt specJal casep R vex"y sat1sfactoly resUlt 1Q

the search for E,(X). Conversely, a poor result
can be expected for E,(A), namely n= 1 in Eq. (8),
for Fig. 4 shows the intersections mill oeeur in R
region where 6, and 6 are quite different.

%'6 recall that there exists a critical value of I,;
of order 3.05, for which the operator Ho+AQVQ

4 the curves X = 1 and A = 3.00 for a reach -v/2,
and the last curve {A.= 5) does not. More details on

what happens @&hen E is near zero Rnd A. near 3.05
are found on Fig. 5.

Once RgRln the follownlg px'opex'ties al 6 coIl-
firmed, namely (i) 6 and n. , are decreasing func-
tions of E and increasing functions of A, (ii) b, ,

(iii) there are regions in which 6, is a good
approximation of 4 Rnd where one could expect
convergence of higher Pade approximants, and (lv)

and ~1 are continuous fUnctlons of 8 Rnd A.q
ex-

cept for the limiting curve for A = 0, where 6 =- 6,
= 0 1f E &~, and 6 = 4, = -m if E & ~,.

There appears on Fig. 4 a peculiar propexty of
A„which was not obvious on Fig. 3. Namely, all

cux'ves go through zero Rt E=6 RQd Rre tRngent
to one another at that point. Cancellation of +„
Eq. (17), for E=e, occurs because a„Eq. (14),
diverges Rt that VRlue of Z, %hile o„which is R con-
stant, , does not. Let a2' be the dexivative of u2 with
respect to E

(29)

and E', be the dex'1vatlve of E,
I

2 f& a, a2
{a,—Za,)' ' (30)

The undesirable cancellation of E, which happens
for Z =6~ xs .obviously px'evented for K=CO by the
projector il1 which excludes I4,). It is thus inter-
esting to exclude also

I g, ) and, more generally,
to define the projectox

where the I41,)'s are the first J + 1 eigenstates of
H o~ Rnd th 6 operator

Let IP, ) be the eigenstate of H, corresponding to
e, (we have assumed there was no degeneracy, and
indeed our model fulfills the condition). The diver-
gence of a, at E =e, goes like I (Q, IVI', ) I'(E —e,) '
and that of a,' like -(Q )VIE,)'(E -e,) '. Therefore
E', has a limit, namely -a,'(4 oI VI p, ) ', which does
not depend On X. This is why the 4, curves do not
cross one another on Fig. 4 when they all go
through zero at the same value of E.

As suggested by the ease A. = 1 on Fig. 4 when E
& -0.8, there are still cases %'here the first Pade
approximant still gives a good result in part of that
reg1on E + 61. It would be 1ntex'estlng 'to f1nd wheth-
er A2 is a much better approximati. on than 6, and
hove fRst A~ vlould converge.
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w1th +g, =: 1 —QI . As loQg as F & 6g+ «, Qo pole ean
make r singular, for X@~I/QI, is a non-negative
opera, tor.

Let lX) be the projection'of an eigenstate of H(A)
into the subspace spanned by l p, &, lp, &

~ ~ ~ lpga&.
Let E be the corresponding eigenvalue of H(A) It.
is well known' that X obeys the equation

where actually PI commutes with IIo and could
have been omitted. The point is, E is an eigenval-
ue of the matrix of dimension (I +1) which repre-
sents IIO+0(Z, A) (on the basis lQ~), lQ, &, . . .~lQ~&

for instance). When I = 0, that matrix reduces to
the plain number e, + F(E, A), and we recover Eq.
(1)

The Taylor expansion of P with xespect to A, is

mension (I, + 1) under consideration, is thus the
generalization of Eq. (4). Those out of its solutions
which are sma, lier than e~„provide lower bounds
to the corresponding eigenvalues of H(A).

V. REGULARIZATION OF SINGULAR REPULSIVE
POTENTIALS

It happens many times in molecular ox' nuclear
physics that II contains a repulsive two-body in-
teraction which is singular' at short distances.
Let that singular repulsion be included in t/". As
in earlier works, "6' let us eut off V into a regular
opelR'tox' t/(„depending upon R regularlzatlon pax'R-
meter ~& 0 in such a way that (i) V„-V when
&u-+~ and (ii) dV /d&u& 0. Just to give an ex-
ample, if I/' is a local operator, one might take
V =8(a&- V) or, in other words, chop away all
parts of ~ larger than v. This regularization now
d6f1nes

F(E, A., &v)

8,= I'1.VPI, , whose der1vat1ve w1th respect to»s

and more generally

g, p y«/2 yl/2 „@L y«/2 y«/3@
n I I

Let S„be the matrix, of dimension (6 + 1), which
r presents S„. The [1/1] matrix I'ade aPProxi-
mant' we want to consider is the matrix, again of
dimension (I +1),

J,= AS,(8, —A.S,) S, ,

which is clearly a generalization of I"„Eq.(17).
lt is as well possible to generalize Eqs. (18) to (22)
and define 0'2, the [2/2] matrix Pade approxi-
mant to 7, the matrix which represents exactly 7,
Rnd so on fol

For the sake of simplicity, we consider only the
1eg1OQ L' & cg+ «~ where no pole for 5 ox' Sg occul 8
It can be shown' that the properties of I' and I„
studied in See. II ca,n be generalized to 5 and 5'„.
In particular, if M, & M„ then 5„,& h~, & S. Also
5„-0when M-~. (Actually, when E&cl,„, one
could also attempt to generalize the use of a phase
shift in Sec. II in order to regularize poles, but we
do not need this extension here. ) The equation

det[(E-e;)5;, -5„;;]=0, (39)

where det means determinant andi, j =0, 1, . . .I.re-
fer to the matrix elements of the matrices of di-

(41)

obviously a non-negative operator since dV /d&u

is a, positive operator. Therefore the regularized
(~ finite) F, or the phase shift derived from it, is
smaller than its physical limit obtained when

Again we generate lmver bounds, which
can be maximized with respect to ~.

Throughout Secs. II, IV, and V and with the illu-
stration of Sec. III, we have definitely established
an algorithm which provides lower bounds to bind-
ing energies. The question is, how practical is
that algorithms Three main difficulties must be
faced, namely (i) the complications, and lack of
fast convergence, which occur in the "pole region",
(ii) the difficulties in obtaining coefficients of the
Taylor series of higher order than 2 or 3, Rt most
4, and (iii) the necessity that the residual Hamil-
ton1RQ + be non-negRtlve.

The first two difficulties are of a technical nature
only. Indeed, as regards the problem of poles, it
must be remembered that an uPP&~ bound Eo* to &0
can in principle be obtained through the Rayleigh-
Ritz variational principle. It is therefore sufficient
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to use the matrix Pade technique with I large
enough to ensure Eo*& e~„. Then a foytjgyj, Eo
& eI,„,which guarantees that at least the ground
state energy is in the no-pole region, where Pade
approximants do converge fast to the exact value.
As rega rds the problem of high orders in Taylor
coefficients, it must be stressed that the [1/1]
matrix Pade approximation becomes exact when
I'I. - l. There should be therefore some help in
letting I become as large as possible, even larger
than needed for the condition Eo*«L,„. IQ ease the
[1/1] matrix Pade is felt to be insufficient, it is
an open problem whether recent methods' for the
estimation of large orders of the perturbation ex-
pansion CRQ be trusted to px'ovlde x'lgorous lower
bounds.

The third difficulty is of a physical nature.
Thel 6 cRQ be 0 p'Psoxs Qo eRsy wRy to .split Rrl arbi-
trary H into an "easy'" B, and a positive V. For-
tunately, such a way exists for an atom, where it
is trivial to take for V the repulsion. between elec-
trons and for H, the sum of the kinetic energy and
central attraction. Atomic physics thus appears
like a. favorable domain fox' our algorithm.

In nuclear physics, however, it is customary to
consider IJO as the sum of the nucleonic kinetic
energy and average Brueckner-Hartree-Fock po-
tential, and V as a residual interaction which con-
tains at least partly attractive two-body forces.
The problem is, that sort of nuclea, r IIO does not
necessarily overbind the nucleus enough to make
the residual V a pure repulsion. It can even be

noticed that the bare nucleonic two-body interaction
ha, s attractive parts, which cannot be overcounted
by a centered one-body field when a pair of nucle-
ons cluster far enough from the rest of the nucle-
us. To avoid this "remote-pair effect" one should
restrict all operators to a tricky subspace of
many-body wave functions confined near the origin
of the centered, one-body average field. This con-
finement problem might be an interesting line of
research. Another would be, in a way completely
opposed to tradition, to take as much as possible
the nucleonic interaction Rs FED Rnd the kinetic en-
ergy as V. Since the nucleonic interaction is be-
lieved to be fairly local, short ranged, highly re-
pulsive at short distances, and only attractive at
intermediate distances, the structure of (p0) would
be glass- or crystal-like. Indeed the n-cluster
model has found some success in nuclear physics,
at least for light nuclei. 'o Then to use the kinetic
energy as a perturbation would be to use 0 as a
coupling constant. Our algorithm would then be
related to semiclassical limits.

In a completely different way, one might notice
that if V is negative rather than positive, E, then
becomes smaller than e0. Thus (H, —E0) is posi-
tive, and one can investigate the region «c„
where (H, —E) is positive. The function

Q
II -E+QVQ

.F:= + V —V&M -F.) 'i' —---
0 0 ' 1 +(H H)-1/0qyg(H ~)-112 ( 0 ~) 40

—(JI gl-~ ~2V

a. form which is suitable for Pade approximants.
It is ea.sy to check, unfortunately, that one obta, ins
easily upper rather than lower bounds..A last, but not least, open problem is whether
the lower bounds which can be extracted from the
present application of Pade approximants are
saturating bounds, namely proportional to the num-
ber .V of particles rather than its square or any
other power. If those lower bounds turn out to be
saturating, it is hoped that the exact eigenvalue
carries the same property. It is interesting to
note that if one can handle the mathematical diffi-
culties to be expected when using nuclear attrac'-
tion as Ho and kinetic energy as V; a glass- or
cx'y stRl-like structure of (j3 1Qdlcates thRt 6 ls
saturating with short range forces (finite number
of neighborS involved), provided short range re-
pulsions due to the interaction itself or the Pauli

principle prevent that glass or crystal from col-
lapse when N increases. With a (quasi?) local H0

and a repulsive V, the search of a proof of satura-.
tion of nuclear matter is thus (almost?) reduced to
a problem of. classical mechanics.

It can be concluded that, whether in atomic phy-
sics or in nuclear physics, quite R few problems
CRQ be lnvestlgRted fl om the point of view of the
Pade lower bounds to binding energy described in
this paper.
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