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Using the effective Yale interaction the Lipkin-Nogami version of the spherical BCS method is applied to
study the ground-state properties of Ni, Zn, and Ge isotopes. Calcu1ations are performed using three

different conditions to determine the parameter ~, of the Lipkin-Nogami method. Neutron-pair separation

energies are compared with the experimental values.

NUCLEAR STRUCTURE Lipkin-Nogami method applied to the Ni, Zn, and Ge
isotopes. Effective Yale interaction.

It is known that the Bardeen-Cooper-Schrieffer
(BCS) theory' does not conserve the number of par-
ticles. Although Bogoliubov' has proved that the
effect of this nonconservation on the physical pro-
perties of a system consisting of a large number
(N) of particles is very small, the discrepancy is
quite large for a system of finite number of par-
ticles as is the case in nuclear physics. '

Several attempts have been made"' in the lit-
erature to improve the BCS calculations for nu-
clei. These attempts mostly made use of particle
number projection. Following Lipkin, ' a different
approach has been suggested by Nogami' "for cal-
culating the energy of the projected ground state
without actually having to perform the projection
calculation. This method involves addition of a
term X,N' in the Hamiltonian together with the
X,X term already present in the usual BCS ap-
proximation. Later on it was shown that the con-
dition used by Nogami to calculate the parameter
~, is not unique and two more equally adequate
conditions were suggested by Ng and Castel. " It
was demonstrated in Ref. 11 that the conditions are
model dependent. In all these studies by Nogami
et al. '-x and Ng and Castel" the calculations were
performed by using a phenomenological pairing
interaction with constant matrix elements.

In the present paper we have extended the meth-
ods developed in Hefs. 7 to 11 to incorporate the
pairing interaction arising from the two-body ma-
trix elements derived from realistic two-nucleon
potentials. Furthermore, unlike in the previous

applications, the formalism is applied to nuclei
having both neutrons and protons outside the closed
core. In the Lipkin-Nogami (LN) approach the
modified Hamiltonian is written as

where H is the shell-model Hamiltonian describing
the ~ particles outside the core, i.e.,

H=ge ata + —g (nP~V„~y5)at„ata, a„, (2)
1

e Ogy6

bring the single-particle energy in a state
~n&-=~j m ~ ) and (op~V„~y5) represents the
antisymmetrized matrix elements between two-
particle states. N represents the particle number
operator. The Lagrange multiplier ~, is deter-
mined by the constraint

where n is the total number of nucleons outside the
closed core. The expectation value (Ã) is cal-
culated with respect to the BCS ground-state wave
function 'which is approximated by the vacuum of
guasiparticles (Ct ) defined by

C~ =U a~ +V a-, (4)

where
~

o.) = T
~
n) is the time reversed state. The

parameter ~, was first determined" by requiring
that

(xi''-) = (x)~)
which gives the relation

Z(0 (If (4)(4 fN'[0)
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G(j i ~i.i u~T) =(1+6
g )'"(1+6&;„)'"&&.&~~T I V~ IIj.ju~T&.

An alternate condition to determine ~2 was suggested in Ref. 11 as

(xa) = (x}(a),
which leads to

Q(OIHI4)(4IHIO)

Z(0 I & I 4)(4 I & I 0)
4
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Another condition is obtained by combining (6) and (9), i.e.,

((j ( &&.(.l *(l=, (&(=T)*(().*(()(* )'"
i+4 J&

2 4 Z (2j„+1)(2jq+ 1)(U V UqVq)
&d&a

(9)

The ground-state energy of a nucleus in this for-
malism is given by r; = . g(m+1)G(j j,j,j,Z)(V;,')',

& =P (2j.+1)~.(V;„)'+P(j.+ l)1", (V,'.)'

+Q(j +2)b~ U~ Vq
I

2' +1 "&
2

g 2J +1

(lib)

(1 la)+4+&: (j„+2)(Ug VJ )',
Q

vrhere v' represents projection of isotopic spin,

X U~~ V~T
8

(llc)

G(abed J) and G(abcdOT) are relate'd through the
C lebsch-Gordan coefficients:

TABLE I. Comparison of the ground-state energies (&) and the pairing energies (Epair)
for Ni, Zn, and Ge isotopes obtained by solving the modified BCS equations using the three
expressions (6), (9), and (11) for ~2 labeled as I, II, and III, respectively, and the usual
BCS equations. All the energies are given in MeV.

BCS
&pair

BCS

~8Ni

"Ni¹i
64Ni

Ni

—22.124
—43.357
—63.206
—81.180
—97.215

—22.669
-44.222
—64.213
—82.242
-97.978

—22.578
-44.032
—63.977
—8 1.942
—97.749

—22.001
—43.158
—62.988
—80.971
—97.062

—2.030
—2.728
—2.891
—2.797
-l.941

-2.139
—3.234
—3.504
-3.111
—2.004

—2.126
—3.165
—3.391
-3.034
—1.980

—2.005
—2.514
—2.676
—2.691
—1.917

6OZn —46.769 —47.979
Zn —70.723 a

64Zn —93.520 -95.248
Zn —113.4 51 —115.578

88Zn 131 117 —133 099

—47.729
-71..975
—94.704

—114.920
—132.452

—46.483
—70.379
-93.249

-112.991
—130.755

—3.550
-3.557
—2;863
—3.479
—3.049

-3.878

—4.516
—4.221
—3.333

—3.817
—4,321
=4.173
—3.998
-3.245

—3.465
—3.307
—1.537
—3.314
—2.990

Ge
"Ge

Ge
"Ge

—97.727 a —99.365 —97.320
a —126.638 —125.510 —123.682

—145.374 —148.06 5 —147,338 —144.739
—164.476 —166 .963 —166.292 —164.016

-3.202

—3.155
—2.906

—3.763
—4.639
—3.858

-4.216
—3.792
—3.938
—3.477

—2.579
—1,253
—2.925
-2.738

~ No convergence was obtained for these entries.
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TABLE II, Comparison of the parameter ~ 2 obtained
using different approximations. The superscripts n and

p denote neutron and proton, respectively.

g Tl

2 2

e' =e'. +I". +4V(V.')'
~N 2 ~a

&' = V, + 2&', (n, + 1),
(12c)

(12d)

"Ni
62Ni

"Ni

6Qzn

62zn
64zn
66zn
68zn

0.041
0.053
0.057
0.056
0.052

0.048
0.068
0,127
0.097
0.075

0.211
0.256
0.288
0.308
0.315

0.258

0.415
0.454
0.463

0.183
0.216
0.237
0.239
0.233

0.214
0.270
0.336
0.348
0.330

0.048
0.052
0.054
0.058
0.061

0.258

0.351
0.371
0.384

0.214
0.243
0.265
0.280
0.289

0.074

0.149
0.101

0.523
0.527
0.546

0.340
0.496
0.491
0.441

0.340
0.486 0.392

0.079 0.509 0.401
0.085 0.526 0.394

x G(abed JT) . '

(11d)

(12a)

U;. =(1-(V,.')')
where

(12b)

The transformation coefficients U and V and the
parameters X, and X, are determined self-consis-
tently by solving the gap equations

E

E' = [(e' —x')'+ (a.')'] (12e)

The above equations a.re solved for all the Ni,
Zn, and Ge isotopes using renormalized matrix
elements of the Yale potential. " A "Ni core has
been assumed and the basis states are limited to
2P, &2, 2P»~, and 1f5(2 harmonic oscillator states.
The single-particle energies are taken to be
-10.246, -9.466, and -9.166 MeV for the states
2p»„ lf, &„and 2p, &„ respectively. The calcula-
tions have been performed using all the three ex-
pressions (6), (9), and (11)for X, and the results
in the tables are labeled I, II, and III respectively.
The ordinary BCS solutions are also obta. ined self-
consistently for all the isotopes by putting X,.=O.

The results for the ground-state energies and the
pairing energies are displayed ln Table I. It ls
clea, r that there is little difference between the re-
sults of the usual BCS theory and the modified
version using the expression (6) for X, for the total
energy, but there. is a considerable change in the
wave function as indicated by the differences in the
pairing energies obtained from the modified equa-
tions and the usual BCS equations. This is differ-
ent from the conclusion reached in Ref. 8 for Ni
isotopes where constant two-body matrix elements
were used for the pairing interaction. The trend
remains the same for the Zn and Ge isotopes. The
contribution to the energy due to the fluctuation of
.particle number is greatest for approximation II
[Eq. (9)j and least in approximation 1 [Eq. (6)j.
This is a direct consequence of the magr. .itude of

TABLE III. Comparison of neutron-pair separation energies obtained from different ap-
proximations and the corresponding experimental values. All the energies are given in MeV.

—DE~I,
HI BCS

¹i
6 ¹i
62¹i

"Ni

"zn
'4Zn
"zn
"zn
660
"Ge
"Ge

22.124
21.233
19.849
17.974
16.035

23.954
22.797
19.931
17.606

19.102

22.669
21.553
19.991
18.029
15.736

20.330
17.521

21.427
18.898

22.578
21.454
19.945
17.965
15.807

24.246
22.729
20.216
17.532

26.145
21.828
18.954

22.001
21.157
19.830
17.983
16.091

23.896
22.870
19.742
17.764

26.362
21.057
19.277

22.452
20.386
18.421
16.500
15.093

21.020
19.024
17.255

21.980
20.130
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the parameter X, . As is clear from Table II the
value of ~, is largest in approximation II and small-
est in approximation I. For a particular set of iso-
topes the values of X, increase when more neutrons
are added. This suggests that the Hartree-type
field for protons I'~ changes as more neutrons are
added.

To cheek the quality of the ground-state energies
obtained by different approximations, neutron-pair
separatio. i energies are compared with the cor-
responding experimental values. The neutron-pair
separation energy is defined as

&E„~(K,Z) =E(N, Z) —E(N —2) Z). (13)
The results are given in Table III. The experi-
mental energies are those of Mattauch, Thiele, and
%apstra. " The agreement between the ealeulated
values and the experimental values is surprisingly
good even in the case of ordinary BCS solutions.

In general, there is no definite trend towards a
better agreement when the modified version of
the BCS- method is used. However, for a definite
conclusion the LN modification should be incor-
porated in a full Hartree-Pock-Bogoliubov calcu-
lation. Such calculations are in progress at present.
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