Lipkin-Nogami method using effective Yale interaction

T. S. Sandhu and M. L. Rustgi

Nuclear Physics Laboratory, Physics Department, State University of New York, Buffalo, New York 14260 (Received 23 May 1977)

Using the effective Yale interaction the Lipkin-Nogami version of the spherical BCS method is applied to study the ground-state properties of Ni, Zn, and Ge isotopes. Calculations are performed using three different conditions to determine the parameter λ_2 of the Lipkin-Nogami method. Neutron-pair separation energies are compared with the experimental values.

[NUCLEAR STRUCTURE Lipkin-Nogami method applied to the Ni, Zn, and Ge isotopes. Effective Yale interaction.

It is known that the Bardeen-Cooper-Schrieffer (BCS) theory¹ does not conserve the number of particles. Although Bogoliubov² has proved that the effect of this nonconservation on the physical properties of a system consisting of a large number (N) of particles is very small, the discrepancy is quite large for a system of finite number of particles as is the case in nuclear physics.³

Several attempts have been made^{4,5} in the literature to improve the BCS calculations for nuclei. These attempts mostly made use of particle number projection. Following Lipkin,⁶ a different approach has been suggested by Nogami⁷⁻¹⁰ for calculating the energy of the projected ground state without actually having to perform the projection calculation. This method involves addition of a term $\lambda_2 N^2$ in the Hamiltonian together with the $\lambda_1 N$ term already present in the usual BCS approximation. Later on it was shown that the condition used by Nogami to calculate the parameter λ_{2} is not unique and two more equally adequate conditions were suggested by Ng and Castel.¹¹ It was demonstrated in Ref. 11 that the conditions are model dependent. In all these studies by Nogami et al.⁷⁻¹⁰ and Ng and Castel¹¹ the calculations were performed by using a phenomenological pairing interaction with constant matrix elements.

In the present paper we have extended the methods developed in Refs. 7 to 11 to incorporate the pairing interaction arising from the two-body matrix elements derived from realistic two-nucleon potentials. Furthermore, unlike in the previous applications, the formalism is applied to nuclei having both neutrons and protons outside the closed core. In the Lipkin-Nogami (LN) approach the modified Hamiltonian is written as

$$\mathcal{H} = H - \lambda_1 N - \lambda_2 N^2, \tag{1}$$

where H is the shell-model Hamiltonian describing the n particles outside the core, i.e.,

$$H = \sum_{\alpha} \epsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} + \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | V_{A} | \gamma\delta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}, \qquad (2)$$

 ϵ_{α} bring the single-particle energy in a state $|\alpha\rangle \equiv |j_{\alpha}m_{\alpha}\tau_{\alpha}\rangle$ and $\langle\alpha\beta|V_{A}|\gamma\delta\rangle$ represents the antisymmetrized matrix elements between two-particle states. N represents the particle number operator. The Lagrange multiplier λ_{1} is determined by the constraint

$$\langle N \rangle = n , \tag{3}$$

where *n* is the total number of nucleons outside the closed core. The expectation value $\langle N \rangle$ is calculated with respect to the BCS ground-state wave function which is approximated by the vacuum of quasiparticles (C_n^*) defined by

$$C^{\dagger}_{\alpha} = U_{\alpha} a^{\dagger}_{\alpha} + V_{\alpha} a_{\overline{\alpha}}, \qquad (4)$$

where $|\overline{\alpha}\rangle = T |\alpha\rangle$ is the time reversed state. The parameter λ_2 was first determined¹⁰ by requiring that

$$\langle \Im C N^2 \rangle = \langle \Im C \rangle \langle N^2 \rangle, \tag{5}$$

which gives the relation

$$\lambda_{2} = \frac{\sum_{4} \langle 0 | H | 4 \rangle \langle 4 | N^{2} | 0 \rangle}{\sum_{4} \langle 0 | N^{2} | 4 \rangle \langle 4 | N^{2} | 0 \rangle} = -\frac{1}{4} \frac{\sum_{i_{\alpha} \neq j_{\beta}} (j_{\alpha} + \frac{1}{2}) [(2j_{\beta} + 1)/(2j_{\alpha} + 1)]^{1/2} G(j_{\alpha} j_{\alpha} j_{\beta} j_{\beta} J = 0 \ T = 1) U_{\alpha} V_{\alpha}^{3} U_{\beta}^{3} V_{\beta}}{\sum_{i_{\alpha} \neq j_{\beta}} (2j_{\alpha} + 1) (2j_{\beta} + 1) U_{\alpha}^{2} V_{\alpha}^{2} U_{\beta}^{2} V_{\beta}^{2}} , \qquad (6)$$

where

<u>17</u> 796

$$G(j_a j_b j_c j_d JT) = (\mathbf{1} + \delta_{j_a j_b})^{1/2} (\mathbf{1} + \delta_{j_c j_d})^{1/2} \langle j_a j_b JT | V_A | j_c j_d JT \rangle.$$
⁽⁷⁾

An alternate condition to determine λ_2 was suggested in Ref. 11 as

$$\langle \mathfrak{K}H \rangle = \langle \mathfrak{K} \rangle \langle H \rangle,$$

which leads to

$$\lambda_{2} = \frac{\sum_{4}^{\langle 0 | H | 4 \rangle \langle 4 | H | 0 \rangle}}{\sum_{4}^{\langle 0 | H | 4 \rangle \langle 4 | N^{2} | 0 \rangle}} = \frac{\sum_{j_{\alpha} \neq j_{\beta,J}} (\langle j_{\alpha} j_{\alpha} J T = 1 | V_{A} | j_{\beta} j_{\beta} J T = 1 \rangle)^{2} (V_{\alpha}^{2} U_{\beta}^{2})^{2}}{-2 \sum_{j_{\alpha} \neq j_{\beta}} (2j_{\alpha} + 1)^{1/2} (2j_{\beta} + 1)^{1/2} G(j_{\alpha} j_{\alpha} j_{\beta} j_{\beta} J = 0 \ T = 1) U_{\alpha} V_{\alpha}^{3} U_{\beta}^{3} V_{\alpha}} .$$
(9)

Another condition is obtained by combining (6) and (9), i.e.,

$$\lambda_{2} = \frac{1}{4} \left(\frac{\sum_{j_{\alpha} \neq j_{\beta}, J} (\langle j_{\alpha} j_{\alpha} JT = 1 | V_{A} | j_{\beta} j_{\beta} JT = 1 \rangle)^{2} (V_{\alpha}^{2} U_{\alpha}^{2})^{2}}{\sum_{j_{\alpha} \neq j_{\beta}} (2j_{\alpha} + 1)(2j_{\beta} + 1)(U_{\alpha} V_{\alpha} U_{\beta} V_{\beta})^{2}} \right)^{1/2} .$$
(10)

The ground-state energy of a nucleus in this formalism is given by

where τ represents projection of isotopic spin,

$$E = \sum_{j_{\alpha}\tau} (2j_{\alpha} + 1) \epsilon_{\alpha} (V_{j_{\alpha}}^{\tau})^{2} + \sum_{j_{\alpha}\tau} (j_{\alpha} + \frac{1}{2}) \Gamma_{j_{\alpha}}^{\tau} (V_{j_{\alpha}}^{\tau})^{2}$$
$$+ \sum_{j_{\alpha}\tau} (j_{\alpha} + \frac{1}{2}) \Delta_{j_{\alpha}}^{\tau} U_{j_{\alpha}}^{\tau} V_{j_{\alpha}}^{\tau}$$
$$+ 4 \sum_{\tau} \lambda_{2}^{\tau} \sum_{j_{\alpha}} (j_{\alpha} + \frac{1}{2}) (U_{j_{\alpha}}^{\tau} V_{j_{\alpha}}^{\tau})^{2} , \qquad (11a)$$

and

$$\Delta_{j_{\alpha}}^{\tau} = \frac{1}{2} \sum_{j_{\beta}} \left(\frac{2j_{\beta} + 1}{2j_{\alpha} + 1} \right)^{1/2} G(j_{\alpha}j_{\alpha}j_{\beta}j_{\beta}J = 0T = 1)$$
$$\times U_{j_{\beta}}^{\tau} V_{j_{\beta}}^{\tau} . \tag{11c}$$

 $\Gamma_{j_{\alpha}}^{\tau} = \frac{1}{(2j+1)} \sum_{j_{\beta}\tau'} \sum_{J} (2J+1) G'(j_{\alpha}j_{\beta}j_{\alpha}j_{\beta}J) (V_{j\beta}^{\tau'})^2 ,$

797

(8)

(11b)

G(abcdJ) and G(abcdJT) are related through the Clebsch-Gordan coefficients:

TABLE I. Comparison of the ground-state energies (E) and the pairing energies (E_{pair}) for Ni, Zn, and Ge isotopes obtained by solving the modified BCS equations using the three expressions (6), (9), and (11) for λ_2 labeled as I, II, and III, respectively, and the usual BCS equations. All the energies are given in MeV.

			E		$E_{\rm pair}$				
	I	Ш	Ш	BCS	I	Ш	III	BCS	
⁵⁸ Ni	-22.124	-22.669	-22.578	-22.001	-2.030	-2.139	-2.126	-2.005	
60 Ni	-43.357	-44.222	-44.032	-43.158	-2.728	-3.234	-3.165	-2.514	
⁶² Ni	-63.206	-64.213	-63.977	-62.988	-2.891	-3.504	-3.391	-2.676	
⁶⁴ Ni	-81.180	-82.242	-81.942	-80.971	-2.797	-3.111	-3.034	-2.691	
⁶⁶ Ni	-97.215	-97.978	-97.749	-97.062	-1.941	-2.004	-1.980	-1.917	
60 Zn	-46.769	-47.979	-47.729	-46.483	-3.550	-3.878	-3.817	-3.465	
⁶² Zn	-70.723	а	-71.975	-70.379	-3.557		-4.321	-3.307	
64 Zn	-93.520	-95.248	-94.704	-93.249	-2.863	-4.516	-4.173	-1.537	
66 Zn	-113.451	-115.578	-114.920	-112.991	-3.479	-4.221	-3.998	-3.314	
68 Zn	-131.117	-133.099	-132.452	-130.755	-3.049	-3.333	-3.245	-2.990	
⁶⁴ Ge	-97.727	а	-99.365	-97.320	-3.202		-4.216	-2.579	
66 Ge	a	-126.638	-125.510	-123.682		-3.763	-3.792	-1.253	
⁶⁸ Ge	-145.374	-148.065	-147.338	-144.739	-3.155	-4.639	-3.938	-2.925	
⁷⁰ Ge	-164.476	-166.963	-166.292	-164.016	-2.906	-3.858	-3.477	-2.738	

^a No convergence was obtained for these entries.

<u>17</u>

TABLE II. Comparison of the parameter λ_2 obtained using different approximations. The superscripts n and *p* denote neutron and proton, respectively.

		λ_2^n			λ_2^p	
	I	II	Ш	I °	П	III
⁵⁸ Ni	0,041	0.211	0.183			i
⁶⁰ Ni	0.053	0.256	0.216			
62 Ni	0.057	0.288	0.237			
⁶⁴ Ni	0.056	0.308	0.239			
66 Ni	0.052	0.315	0.233			
60 Zn	0.048	0.258	0.214	0.048	0.258	0.214
^{62}Zn	0.068		0.270	0.052		0.243
64 Zn	0.127	0.415	0.336	0.054	0.351	0.265
66 Zn	0.097	0.454	0.348	0.058	0.371	0.280
68 Zn	0.075	0.463	0.330	0.061	0.384	0.289
64 Ge	0.074		0.340	0.074		0.340
66 Ge		0.523	0.496		0.486	0.392
68 Ge	0.149	0.527	0.491	0.079	0.509	0.401
⁷⁰ Ge	0.101	0.546	0.441	0.085	0.526	0.394

$$G(ab\,cd\,J) = \sum_{T} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ \tau_{z}^{a} & \tau_{z}^{b} & T_{z} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ \tau_{z}^{c} & \tau_{z}^{d} & T_{z} \end{pmatrix} \times G(ab\,cd\,JT) .$$
(11d)

The transformation coefficients U and V and the parameters λ_1 and λ_2 are determined self-consistently by solving the gap equations

$$V_{j_{\alpha}}^{\tau} = \frac{1}{\sqrt{2}} \left(1 + \frac{e_{\alpha}^{\tau} - \lambda^{\tau}}{E_{\alpha}^{\tau}} \right)^{1/2} , \qquad (12a)$$

$$U_{j_{\alpha}}^{\tau} = (1 - (V_{j_{\alpha}}^{\tau})^2)^{1/2}, \qquad (12b)$$

where

$$\tau_{\alpha} = \epsilon_{j_{\alpha}}^{\tau} + \Gamma_{j_{\alpha}}^{\tau} + 4\lambda_{2}^{\tau} (V_{j_{\alpha}}^{\tau})^{2}$$
 (12c)

$$\lambda^{\tau} = \lambda_1^{\tau} + 2\lambda_2^{\tau}(n_{\tau} + 1) , \qquad (12d)$$

and

é

$$E_{\alpha}^{\tau} = \left[\left(e_{\alpha}^{\tau} - \lambda^{\tau} \right)^2 + \left(\Delta_{j_{\alpha}}^{\tau} \right)^2 \right]^{1/2} \cdot$$
(12e)

The above equations are solved for all the Ni, Zn, and Ge isotopes using renormalized matrix elements of the Yale potential.¹² A ⁵⁶Ni core has been assumed and the basis states are limited to $2p_{3/2}$, $2p_{1/2}$, and $1f_{5/2}$ harmonic oscillator states. The single-particle energies are taken to be -10.246, -9.466, and -9.166 MeV for the states $2p_{3/2}$, $1f_{5/2}$, and $2p_{1/2}$, respectively. The calculations have been performed using all the three expressions (6), (9), and (11) for λ_2 and the results in the tables are labeled I, II, and III respectively. The ordinary BCS solutions are also obtained selfconsistently for all the isotopes by putting $\lambda_2 = 0$.

The results for the ground-state energies and the pairing energies are displayed in Table I. It is clear that there is little difference between the results of the usual BCS theory and the modified version using the expression (6) for λ_2 for the total energy, but there is a considerable change in the wave function as indicated by the differences in the pairing energies obtained from the modified equations and the usual BCS equations. This is different from the conclusion reached in Ref. 8 for Ni isotopes where constant two-body matrix elements were used for the pairing interaction. The trend remains the same for the Zn and Ge isotopes. The contribution to the energy due to the fluctuation of particle number is greatest for approximation II [Eq. (9)] and least in approximation I [Eq. (6)]. This is a direct consequence of the magnitude of

TABLE III. Comparison of neutron-pair separation energies obtained from different approximations and the corresponding experimental values. All the energies are given in MeV.

(11d)

			$-\Delta E_{NP}$			
Nucleus	Ι	II	Ш	BCS	Experiment	
⁵⁸ Ni	22.124	22.669	22.578	22.001	22.452	
60 Ni	21,233	21.553	21.454	21.157	20,386	
62 Ni	19.849	19.991	19.945	19.830	18.421	
64 Ni	17.974	18.029	17.965	17.983	16.500	
⁶⁶ Ni	16.035	15.736	15.807	16.091	15.093	
62 Zn	23.954		24.246	23.896		
64 Zn	22.797		22.729	22.870	21.020	
66 Zn	19.931	20.330	20.216	19.742	19.024	
68 Zn	17.606	17.521	17.532	17.764	17.255	
⁶⁶ Ge		· · · · ·	26.145	26.362		
⁶⁸ Ge .		21.427	21.828	21.057	21.980	
⁷⁰ Ge	19.102	18.898	18.954	19.277	20,130	

the parameter λ_2 . As is clear from Table II the value of λ_2 is largest in approximation II and smallest in approximation I. For a particular set of isotopes the values of λ_2^p increase when more neutrons are added. This suggests that the Hartree-type field for protons Γ^p changes as more neutrons are added.

To check the quality of the ground-state energies obtained by different approximations, neutron-pair separation energies are compared with the corresponding experimental values. The neutron-pair separation energy is defined as

$$\Delta E_{\rm NP}(N,Z) = E(N,Z) - E(N-2,Z).$$
(13)

The results are given in Table III. The experimental energies are those of Mattauch, Thiele, and Wapstra.¹³ The agreement between the calculated values and the experimental values is surprisingly good even in the case of ordinary BCS solutions.

In general, there is no definite trend towards a better agreement when the modified version of the BCS method is used. However, for a definite conclusion the LN modification should be incorporated in a full Hartree-Fock-Bogoliubov calculation. Such calculations are in progress at present.

- ¹J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
- ²N. N. Bogoliubov, Zh. Eksp. Teor. Fiz. <u>4</u>, 58 (1957) [Sov. Phys.-JETP <u>7</u>, 41 (1958)].
- ³A. K. Kerman, R. D. Lawson, and M. H. MacFarlane, Phys. Rev. 124, 162 (1961).
- ⁴B. F. Bayman, Nucl. Phys. <u>15</u>, 33 (1960).
- ⁵F. Iwamoto and H. Onishi, Prog. Theor. Phys. (Kyoto) <u>37</u>, 682 (1967).
- ⁶H.J. Lipkin, Ann. Phys. (N.Y.) <u>31</u>, 525 (1960).
- ⁷Y. Nogami, Phys. Rev. <u>134</u>, B313 (1964).

- ⁸Y. Nogami and I. J. Zucker, Nucl. Phys. <u>60</u>, 203 (1964).
 ⁹J. F. Goodfellow and Y. Nogami, Can. J. Phys. <u>44</u>, 1321 (1966).
- ¹⁰H. C. Pradhan, Y. Nogami, and J. Law, Nucl. Phys. <u>A201</u>, 357 (1973).
- ¹¹W. Y. Ng and B. Castel, Phys. Rev. C <u>10</u>, 2643 (1974). ¹²M. L. Rustgi, H. W. Kung, R. Raj, R. A. Nisley, and
- M. H. Hull, Jr., Phys. Rev. C <u>4</u>, 854 (1971). ¹³J. H. E. Mattauch, W. W. Thiele, and A. H. Wapstra,
- Nucl. Phys. $\underline{67}$, 1 (1965).

799