Energy dependence of ${}^{16}O({}^{6}Li, d){}^{20}Ne$ from 19.8–32 MeV

L. J. House and K. W. Kemper

Department of Physics, Florida State University, Tallahassee, Florida 32306 (Received 24 February 1977)

¹⁶O(⁶Li, d) excitation functions have been measured in the laboratory energy range from 19.8 to 32 MeV, in 200 keV steps, for the ²⁰Ne 0⁺ (0.0 MeV) and 2⁺ (1.62 MeV) states at 7.5° and for the 2⁺ (1.62 MeV) and 4⁺ (4.25 MeV) states at 17.5°. The fluctuations in the data are less than $\pm 25\%$ over this energy region. At 20, 24, and 28 MeV the cross sections at 165° are at least 5–10 times smaller than at 25°. Comparisons between the data and distorted-wave Born approximation calculations over this energy range show the reaction mechanism to be more complicated than a simple one-step α particle transfer.

 $\begin{bmatrix} \text{NUCLEAR REACTIONS} & {}^{16}\text{O}(^6\text{Li},d)^{20}\text{Ne}(0^+,0.0 \text{ MeV}; 2^+, 1.62 \text{ MeV}; 4^+, 4.25 \\ \text{MeV}), & E(^6\text{Li}) = 19.8 - 32 \text{ MeV}, & \Delta E = 200 \text{ keV}; \text{ measured } \sigma(E) \text{ at } \theta_{\text{lab}} = 7.5^\circ \text{ and } 17.5^\circ \end{bmatrix}$

The reaction (${}^{6}Li, d$) has been used extensively to extract α -particle spectroscopic strengths in the 1s - 0d and 0f - 1p shells^{1,2}. One anomalous reaction in this group is ${}^{16}O({}^{6}Li, d){}^{20}Ne$. At $E({}^{6}Li) =$ 20 MeV,² the ratios of spectroscopic factors extracted from distorted-wave Born-approximation (DWBA) calculations for the first 0^+ , 2^+ , and 4^+ states in ²⁰Ne were found to be 1:1:1 while at 32 MeV, 3,4 the ratios were found to be 1:0.3:0.2. Since the DWBA calculations for the 4^{*} state at both 29 and 32 MeV do a poor job of reproducing the angular distributions, 2-4 the extracted spectroscopic factor for this state is highly unreliable. However, the fits for the 0^* and 2^* state data are quite reasonable, especially in the region of the first stripping maximum, so that the energy dependence of the relative spectroscopic factor for the 2^+ state is due to more than bad "fits" to the data. This problem must be solved before reliable α -particle structure information can be obtained from $(^{6}Li, d)$ reactions in this mass region.

Previous attempts to resolve this spectroscopic factor discrepancy have involved repeating the original 20 MeV Pennsylvania² experiment at Rochester, where the 32 MeV measurements were performed.^{3,4} The results of the two 20 MeV measurements are in excellent agreement. In the present note, measurements of the energy dependence of the ¹⁶O(⁶Li, d)²⁰Ne reaction are reported. These measurements were made to determine whether resonant-cluster transfer contributions of the type proposed by Carlson and Johnson⁵ could be responsible for the apparent energy dependence of the spectroscopic factors.

The ⁶Li ions were produced in an inverted sputter source⁶ and accelerated by the Florida State University super FN tandem Van de Graaff accelerator. The targets were self-supported 50-100 μ g/cm² A1₂O₃ made by electron bombardment of sapphire crystals. The targets were about 60 keV thick to 20 MeV ⁶Li. The experimental data were taken in a standard scattering chamber with counter telescopes at the lab angles 7.5° and 17.5° . Aluminum absorbers were used in front of the detectors to stop the elastic ⁶Li particles from reaching the detectors. Elastic scattering from the Al and O in the target was measured with a fixed detector so that changes in target conditions could be monitored.

The counter telescope at 7.5° consisted of a 320 μ m Si surface barrier ΔE detector with a 4 mm Si(Li) detector and the one at 17.5° contained two Si surface barrier detectors: a 700 μ m ΔE and a 2 mm E. The signals were processed with standard electronics and sorted into linear energy spectra in an on-line computer. The absolute cross section was determined as described in Ref. 7 and its error is 11%. The most serious experimental problem in the present work was carbon buildup on the target which can interfere with the measurement of the yield of the 4⁺ state in ²⁰Ne. This potential problem is illustrated by the ${}^{12}C$, ${}^{16}O({}^{6}Li, d)$ spectra shown in Fig. 1. The carbon buildup was monitored by checking for yield from ${}^{12}C({}^{6}Li, d){}^{16}O$ (6.92 MeV). The targets were changed when the population of this state could be observed. The experimental energy resolution was 150 keV and the relative errors in the data points were 8%. Figure 2 shows spectra at 7.5° taken at 20 and 28 MeV. At 20 MeV, the 4^{*} (4.25 MeV) yield is large and easily extractable. However, above about 22 MeV the 4⁺ intensity was insufficient to extract reliably. At 17.5° the detectors were not thick enough to stop the ground state deuterons above about 22 MeV bombarding energy.

The excitation functions for the 0^* and 2^* states at 7.5° and 2^* and 4^* states at 17.5° taken in 200 keV steps, are shown in Figs. 3 and 4. To investigate the energy dependence that might be expec-

.

79

17

FIG. 1. Comparison spectra showing the possible interference of reaction products from ${}^{12}C({}^{6}Li,d)$ with those from ${}^{16}O({}^{6}Li,d)$.

ted for this reaction if it is a direct one-step α transfer process, zero-range DWBA calculations were carried out with the code DWUCK. The ⁶Li optical model parameters used in the calculations were those of Schumacher *et al.*⁸ and the deuteron parameters were those shown previously to fit ¹⁹F(³He, d)²⁰Ne data.⁹ The transfer was treated as an α cluster transfer with the four particles

transferred into 1s-0d shell orbits so that the number of nodes and orbital angular momentum of the bound particle are given by 2N+L=8. The bound state geometry used was $R=1.25(16)^{1/3}$ and a=65 and the depth of the well was varied until the proper binding energy for each state was obtained. The results of the calculations are shown in Figs. 3 and 4. The spectroscopic factors relative to the ground state for the calculations as normalized in Figs. 3 and 4 are 1:0.65:0.61.

To check for the presence of statistical compound nucleus contributions, data were taken at 15° and 25° and with the same detectors rotated back to 155° and 165° at 20, 24, and 28 MeV. The cross sections at the back angles were at least 3 times smaller for the 4^{*} state, and 5-10 times smaller for the 0^{*} and 2⁺ states than at the forward angles, indicating that the angular distributions are not symmetric about 90°. At 32 MeV, Gunn *et al.*⁴ have shown that the angular distributions for these states are also not symmetric about 90°. These back angle data indicate that statistical compound nuclear contributions are small in this reaction.

Comparison of the measured yield curves with the DWBA calculations in Figs. 3 and 4 shows the presence of structure for the 0^{*} and 2^{*} states below 26 MeV which do not appear to be explainable assuming a direct α transfer. The present data indicate a complex reaction mechanism for ¹⁶O(⁶Li, d) in the energy range studied to date. In addition to possible resonant exchange contributions around 24 MeV bombarding energy, two-step contributions could be important in this energy range. Previous measurements of the ¹⁹F(³He, d)²⁰Ne reaction⁹ showed that inelastic excitation by the outgoing deuterons was an important component in the population of both the ²⁰Ne 2^{*} and 4^{*} states. Since the outgoing deuterons in the (³He, d)

FIG. 2. Sample spectra at 20 and 28 MeV from ${}^{16}O({}^{6}Li, d)$.

FIG. 3. Excitation functions for ¹⁶O(⁶Li,d) at 7.5°. Representative error bars are shown. The dashed curves are DWBA calculations done to show the energy dependence that could be expected from a direct α transfer.

FIG. 4. Excitation functions for ${}^{16}O({}^{6}Li, d)$ at 17.5°. Representative error bars are shown. The dashed curves are DWBA calculations.

81

case have roughly the same energy as for the present (${}^{6}\text{Li}, d$) studies, two-step processes can be important in the ${}^{16}\text{O}({}^{6}\text{Li}, d){}^{20}\text{Ne}$ reaction as well, and need to be investigated further. The present study shows that measurements at much higher energies are extremely important

- ¹N. Anantaraman, C. L. Bennett, J. P. Draayer, H. W. Fulbright, H. E. Gove, and J. Toke, Phys. Rev. Lett. <u>35</u>, 1131 (1975); K. Bethge, Annu. Rev. Nucl. Sci. 20, 255 (1970).
- ²H. T. Fortune, Argonne National Laboratory, Physics Division, Informal Report No. PHY-1973B, 1973 (unpublished), pp. 287-323.
- ³N. Anantaraman, J. P. Draayer, and H. E. Gove, Bull. Am. Phys. Soc. 20, 598 (1975).
- ⁴G. D. Gunn, R. N. Boyd, N. Anantaraman, D. Shapira, J. Toke, and H. E. Gove, Nucl. Phys. <u>A275</u>, 524

for resolving the ${}^{16}O({}^{6}Li, d)$ spectroscopic problem.

The authors acknowledge the aid of J. D. Fox in this work and the support of the National Science Foundation.

(1977).

- ⁵R. R. Carlson and D. J. Johnson, Phys. Rev. Lett. <u>25</u>, 172 (1970).
- ⁶K. R. Chapman, Nucl. Instrum. Methods <u>124</u>, 299 (1975).
- ⁷G. E. Moore and K. W. Kemper, Phys. Rev. C <u>14</u>, 977 (1976).
- ⁸P. Schumacher, N. Ueta, H. H. Duhm, K. I. Kubo, and W. J. Klages, Nucl. Phys. A212, 573 (1973).
- ⁹A. W. Obst and K. W. Kemper, Phys. Rev. C <u>8</u>, 1682 (1973).