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Separable-potential three-body (anp) models of the Li ground state are examined. Different separable-

potential fits to the a-n phase shifts and the low-energy 'S,-'D, two-nucleon parameters are reviewed, after
which integral equations are derived for the spectator functions of the Li ground-state wave function

assuming S»„P»„and P3/2 components in the o.-n interaction. These equations are solved to determine

the Li binding energy and investigate its sensitivity to the D, component of the two-nucleon interaction, its

variation upon neglecting different components of the a-n interaction, and its dependence on different

analytical forms for the P-wave a-n interactions. For two wave functions derived from the same set of a-n
interactions, but with the 'Sl-'Dl two-nucleon interaction producing 0% and 4% d-wave components in the

deuteron, respectively, the spectator functions are given and the contributions to the ground-state

normalization of the various components are calculated. The latter two wave functions correspond to three-

body Li binding energies of 4.446 MeV (0%) and 4.070 MeV (4%) compared with the Coulomb-adjusted

experimental value of' 4,53 MeV.

NUCLEAR STRUCTURE GLi; binding energy, wave function, wave function
components, nor malization. Three-body, separable-potential model.

I. INTRODUCTION

The first paper (GL) of this series deals with the
'He ground state. ' In GL, a review of past work
up to 1974 on the A = 6 system as a three-body
problem is given with emphasis on the separable-
potential approach. The types of n-n separable-
potential form factors used by previous workers
are delineated and the predicted n-n phase shifts
displayed. Additional o.-n separable potentials are
generated to provide the necessary tools for a
systematic study of the A. = 6 ground states as
three-body nuclei. The procedure for obtaining
the 'He wave function and the coupled, homogene-
ous integral equations for the spectator functions
is outlined. The latter material is followed by a
presentation of results for the 'He binding energy
as various properties of the underlying two-body
interactions are changed. Furthermore, the struc-
ture of the 'He wave function is examined through
the contribution of the various components to the
normalization. Two of the wave functions are tab-
ulated for possible applications. In the present
paper, we report our results for the application of
the three-body model to the 'Li ground state.

Since GL, two papers have appeared concernirig
three-body models of the A =6 system, both based
on separable interactions. The first, written by
the present authors, concerns the n-deuteron
structure of 'Li from the three-body model. ' An
acceptable 'Li wave function for a preliminary in-

vestigation is generated from only the n P('S,-)

and n n( P,~,) inter-actions. From this wave func-
tion, the 'Li- z+d momentum distribution, the
asymptotic normalization constant of the d-n tail
in the 'Li wave function, and the percentage of d-n
component are calculated and compared with ex-
periment. The results are good and encourage
further work with the more complete wave func-
tions presented below. The second paper by
Charnomordic, Fayard, and Lamot (CFL) pertains
primarily to d-, n elastic scattering. ' CFL intro-
duce yet another set of n-N separable-potential
form factors and present some results for the
ground-state 'He and 'Li binding energies. ' Un-
fortunately, the CFL predictions for the ground-
state binding energies are poor, but their re-
sults for various o.-d elastic scattering quan-
tities are on the whole quite good. One of
CFL's major conclusions is the lack of sensitivity
to the n-P tensor force in d-n scattering results
such as polarizations. The d-+ polarizations ap-
parently arise solely from the n-X spin depen-
dence. They conclude that the description of the
ot. -N interaction is of primary importance in d-n
scattering. Moreover, they demonstrate the sensi-
tivity of d-z scattering quantities at 12 MeV to
three different at. -N separable interactions-
Shanley's, ' a set from GL, and CFL's. Though
Shanley's fits to the I'y/2 and I',~, n-Ot phase shifts
are poor, while those of GL and CFL fit the phase
shifts well, ' ' the results for the d-ot differential
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cross sections plus iT» and T» analyzing powers
are qualitatively the same. Differences in the
magnitudes of these quantities occur especially at
the minima, but it is not clear that existing data
are complete enough to distinguish these differ-
ences. Nevertheless, the study of low-energy d-
e scattering by CFL emphasizes the validity of the
three-body model as a very good first approxima-
tion in this regime. In fact, both of the above in-
vestigations give support to the viability of a three-
body model of the A =6 system within its expected
domain of validity, i.e., for excitation energies
below the 'He-'H threshold.

The purpose of this paper is to investigate the
variation of the ground-state 'Li binding energy
for different N-N and n-n interactions. Two over-
all objectives are (1) to select for future applica, -
tions two wave functions which correspond to rea-
sonable values of the binding energy and (2) to nor-
malize the selected wave functions in order to de-
termine the contributions of the various compon-
ents to the normalization. Emphasis will be placed
throughout on answering the questions raised in
GL. The paper is built around these aims.

In Sec. II, the two-nucleon and z-X interactions
used are discussed. The CFL ~-N interactions are
included and comments about amplitude singular-
ities are made. Section III contains a derivation of
the 'Li integral equations from Schrodinger's equa-
tion, The binding-energy and normalization re-
sults are presented in Secs. IV and V, respective-
ly. Finally, the major conclusions are summar-
ized in Sec. VI.

y [rg Vl (h)xP [J'j
(h r)] [0]

(1)

limited to only the significant partial waves at lab-
oratory energies ~20 MeV. ' The notation in Eq.
(1) is as follows: p is the n Nreduced mass w-hich

is set equal to 4M/5 where M is the nucleon mass;
~, is the interaction strength for partial-wave l
and total a,ngular momentum J'; Z=(2J+1)'~';
h, (h) are form factors; and

y [&1 (h) —g ([p 2 q ~
gM) y [& l(h) g: [~/~i

Equation (1) leads to the following form for the
elastic scattering amplitude with orbital and total

(2)

II. INTERACTIONS

A. n-N

The n-N separable potential in momentum space
is written as'

3/2 J+y 2

(klan' «g')=- Z Ag&(-1)"g(h) hg(h')
2& ~=~/»=J-~/2

angular rnomenta of / and J, respectively:
.~Je"& sinO', 2v'[h', (h)]'—

D (hy2p. .)
where

s [h~&(h)]'

2p P' —k' —ic (4)

Thus, the relationship between the potential (pa-
rameters) and the phase shifts is through Eqs. (3)
a,nd (4).

As discussed in GL, one of the simplest one-
parameter form factors which possesses both pro-
per threshold and acceptable asymptotic behavior
in momentum space is

(A) h„(h) =,
( ~), ,

k
(B) h 1(h) [h2 (PJ )2 ]2 t

(C) h, (h)=
[ha (P~). ]3)2

Type (B) is preferred, since the unusual asymp-
totic behavior of types (A) and (C) leads to singu-
lar behavior of the coordinate-space wave function
as r -0. Form (B) leads to the usual A, (r)

const &&r as x 0." All three forms will be con-
sidered in this work.

The u-n parameters used are presented in Table
I." Shanley's parameters are included for a com-
parative calculation even though his P,/, and P3/2
interactions produce poor fits to the n-n phase
shifts. His S,/, interaction is satisfactory. All
the other interactions, except P3/, -Pigeon, give
good fits to the phase shifts. In fact, Aless. A
and Aless. B are almost indistinguishable from the
Amdt and Roper phase shifts below 20 MeV labor-
atory energy. For the details, see GL. The set
of primary interest is S,/, —Shanley, Py/2 GL-
B, and P, /, —Aless. -B.

As mentioned in the Introduction, .CFL have in-
troduced another set of form factors. Their form
factors have more parameters, but possess proper
threshold and acceptable asymptotic behavior.
More parameters means that it is easier to obtain
good fits to the phase shifts, but with a loss of
simplicity in handling quantities derived analytical-
ly from the form factors. The CFL forms are

l( ) [h2+(pJ )2]5+1 f

where P, acts as the inverse range of the interac-
tion. This form has been adhered to for / =0 in
previous work, but for / = 1 it has not. Three
forms with proper threshold behavior, but differ-
ent asymptotic behavior, have been introduced:
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TABLE I. Parameters for o.'-n potentials.

Partial
wave

pJ
(fm )

Form
factor Reference

Shanley
GL-1

(threshold fit)
GL-2

(10—15 MeV fit)

-0.637 3 fm

—0.3

-0.2

0.7496

0.7

0.6

P g/2

P 3/2

Shanley
GL-A
GL-B
Pigeon ~

Shanley
Aless. -A b

Aless B b

Pigeon '

0.164 0
0.050 66
1.104
0.264

1.367 1
0.083 8
4.831
0.724

fm '
fm
fm '
fm 3

fm '
fm
fm '
fm

0.8505
0.68
1.177
1.00

1.1352
0.862
1.449
1.25

5
13
13
12

~ Reference 12. Reference 13.

(subscripts and superscripts suppressed on the pa-
rameters)

p
l/2

1/2 I 0
0

and

(10)

The values of their parameters are given in Table
II, since several comparison calculations are made
with the CFL interactions. The reader is referred
to Ref. 3 for a comparison of the phase shifts from
the CFL and GL (preferred set: S,~,—Shanley,
P,~,—GL-B, and P,~,—Aless. -B) interactions.

An important aspect of the n-n interactions to be
considered is the singularity structure of the am-
plitudes. For the S,/, parameters in Table I, this
is of particular interest since the GL He calcula-
tions indicate little sensitivity to the different sets,
even though the strength parameters differ by as
much as a factor of 3 while the range parameters
remain comparable. The S,/, amplitude derived
from Eq. (5) possesses three poles in the complex
0 plane":

The i p0'
' pole is common to separable potentials

with simple one-parameter form factors and it
simulates the left-hand cut of (local) Yukawa-type
potentials. The pole of interest is the one in the
fourth quadrant, since it is closest to fhe physical
region and varies with A,' '. In Table III, we give
the location of thi:s pole for the three S,/, poten-
tials of Table I. It is evident that this pole remains
relatively far away from the low-energy region
where the phase shifts are being fitted, even
though the strength parameter is changed by a fac-
tor of 3. Thus, the fits to the lou -energy phase
shifts change very little. Of course, the higher-
energy (beyond -30 MeV) phase shifts are consid-
erably different. This means the three-body model
of 'He is not sensitive to the higher-energy part of
the S,/, interaction, but is only sensitive to the
fac't that the Sy/2 interaction is repulsive and has a
given behavior at low energies. As we shall see,
this comment will apply to 'Li also.

The singularity of interst in the P,/, and P,/,

-TABLE II. Parameters for CFL o.'-n potentials.
TABLE III. Fourth-quadrant pole positions of &&/2

amplitudes.

Partial
wave .

~J pJ ~J
(fm ) (fm ) (fm )

gJ
(fm ) Interaction

Ez —iEI (c.m. )

(MeV)

~ f/2 8.247 fm 0.4441 0.5785 0.5792
P~/2 0.9527 fm 0.1781 1.136 1.112 p.2p61
P3/2 88973 fm 0.4002 0.8071 31.62 0.4479

8hanley
GL-1
GL-2

2.897 —i 0.7496
2.057 —i 0,7
1.814 —i 0.6

203.1—i 112.7
97.05—i 74.70
76,02- i 56.47
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TABLE 1V. Resonance-pole positions of P-w'ave amplitudes.

Partial
wave Interaction

kg- ik
(fm ~)

Expe&.ment ~

k~ —gkI

(fm )

P3/2

Shanley
. GL-A
GL-B
Pigeon

Shanley
Ales s.-A
Ales s.—.B
Pigeon

0.2610 —i0.1851
O.3OOO- iO.180 0
0,3172 —i 0,173 1
0.317 —i0.173

0.1633—i0.039 6
0.1700 —i0.034 93'

0,1667—i0.031 7
0,208 —i0.05

0.3111—i0.1404

0.1766 -i0.034 89

~ Reference 15.

amplitudes is the location of the resonance pole as
emphasized by Ahmed and Shanley. " They have
determined these quantities with high precision
from the latest Amdt and Roper phase shifts. ' Ta-
ble IV lists the resonance-pole positions for the
P-wave interactions of Table I. The P,~, interac-
tions which give the best representation of the low-
energy phase shifts also yield values for the pole
location close to the Ahmed-Shanley values. The
P,~, case is different. GL-A, GL-B, and Pigeon
possess reasonable phase shifts, but have pole lo-
cations with imaginary parts roughly the same and
consistently larger than the experimental values.
This can be understood by turning the problem
around, i.e., determining the separable-potential
strength and range parameters from the Ahmed-
Shanley resonance-pole positions and then predict-
ing the phase shifts. This has been done by
Lehman and Gibson. " They find that the P3/2

t

phase shifts agree very well with experiment, but
the P,~, ones do not. These results are interpreted
as the low-energy Py/2 amplitude not being domin-
ated by its resonance pole, unlike the P,~, ampli-
tude. There are other nearby singularities of com-
parable importance to the resonance pole in the
P,~, amplitude. In the P,~, interactions considered
here, moving the resonance-pole location away
from the real axis compensates for these other
singularities and permits a good fit to the low-en-
ergy phase shifts. "

B. n-p

For OLi (J"= 1', I= 0), the dominant parts of the
n-p interaction which enter are the trip1et-spin, s
and d waves. This potential is represented by the
rank-1 Yamaguchi- Yamaguchi form":

2

(k~V„N~k') = — ' 1 g g'(k)g1' (k')[[Y'i~(k) x Xt'j(12)]t'j&& [Y '
(k) XXf' (12)]t'~] o~

t, t'=0

(12)

and

where p =2M, ~, is the triplet coupling strength,
and the form factors g,'(k) are

1
go( ) k2 (p 1)2

tk
g2( ) [k2 ~ (pl)2]2

with t as a'parameter. %e follow Shanley' and use
Phillips's parameters" when the tensor component
of the interaction is nonzero. These parameters

TABLE V. Parameters for n-p potentials (the binding energy of the deuteron is 2.225 MeV).

Pg)
(%)

Clg

(fm)
Xp

(fm)
Q

(fm )

A, $

(fm 3)
P() P2

(fm ) (fm )

0
4
5.5
7

5.400
5.397
5.397
5.397

5.425 + 0.004

1.747
1.727
1.725
1.722

1.749 + 0.008

0.282
0.282
0.283
O.2S6 b

—0.0004
—0.0002

0.0049
0.0105

=O.O25'

0,3910 ' ' 1.418 ~ 0 ~

0.2432 1.689 1.3134 1.5283
0.1876 2.950 1.2766 1.7610
0.1430 4.495 1.2412 1.9476—Experimental values

' Reference 20.
Reference 21.

Quoted by Phillips, Ref. 19.



O. R. I, EHMAÃ, MANTA RAI, AND A. GHOVAXI OU

are given in Table V along with the quantities
fitted. One can criticize the use of a rank-1 sep-
arable potential to describe the 'S~-'D, n-P inter-
action, since it does not describe well the 'j9,
phase shift and mixing parameter e,. Yet, such an
interaction can represent the low-ener gy param-
eters quite well as seen in Table V. Moreover, it
can give an indication of the role played by the n-
p tensor force in the binding of 'Li. We shall see
below that, with identical n-N interactions, the re-

suits with the rank- j. interaction are essentially
the same as those of CFL with a rank-2 m-P inter-
action.

uI. OERIVATION OF 'L' EQUATIONS

We derive the 'Li three-body bound-state equa-
tions from Schrodinger's equation in the momentum
representation with particle 3 designated as the n
particle. Equations (1) and (11}are substituted
into Schrodinger's equation to obtain

3/8 ~+ &/&

p (-1)"i g A', h', (k„)jd'k,', h', (0,',) ['(I,",,'~„(S„,2))('JJ,",,'„,(0'„,2)]"4„'"(k.'„p,)
~23 Z = Z/2 l=& - j./2

3/2 Z+ y/2

+- g (-1)"J g A', a', (a„) d'X,",a', (a,',}[yI&",„)(i,„,1)x'(I,"„'„)(i,'„1)](0)4(')(k,'„p,)
2] 3& ~=a/2

2

+ ~ i g g"(u ) fd'~ g'(u')[[F")(~ )x)("(12)]("x[y"'(~')x)("'(»)]("](0'e")(h p)
(14)

where -K'/M is the three-body binding energy, the extra argument on the vector spherical harmonic de-
notes the spin-& particle, k;; is the relative momentum between particles i and j, and p& is the relative
momentum of particle 0 with respect to the center-of-mass of particles i and j (i, j, and 0 permuted
cyclically). The 'Li(l'), isospin singlet, wave function can be written by observing the structure of Eq.
(14) and remembering that its spatial-spin part must be symmetric under exchange of particles 1 and 2,
the neutron and proton:

t:~l 4m
+N (h12& p3} + u +SP3

g'~
S, l' =0
t, l' ~x

3/2 J+ J" J + 1/3 g + j./2

+ Q Q Q Q p"' A, ]h)(k„)['g,(~I'2)(4~3, 2) JIi(,g~)(p„ l)]~ Fg, (gg)(p, )
g=y/2 g'=Iy-Z I k=J -x/a E'=I'-j./&

p.(-1)'hl(~.,)[g;,'&.,(I.„1)x ~,".„,'„(P„2)]."
~ &;(„)(o.))}, 05)

where P =2[1+(-1) ] and the isospin function goo)(12) is suppressed. The spectator function G (P) gives
the E-wave momentum distribution of the n particle relative to the two-nucleon center of ma, ss, while

IE,.(»)(p ) gives the total-angular-momentum J'-orbital-angular-momentum- f' momentum distribution of
a nucleon relative to the center of mass of an n-N pair interacting in the state E&. There are nine specta-
tor functions: two G's and seven F's. By comparing Eqs. (14) and (15), we can write integral expressions
for the spectator functions. For the G (P), we obtain initially

2 [[y"'(~).~("(»)]" y"'(p)](')G'(j)

d')"g'(a')[[y")(k}&&)(("(»)1(""[y" '(u')&& )(("(12)](i'](0)~(i'(2 p) (16)

which can be xecoupled to

G'(j)=4 Z Z~ ' ' ' &'&X (&')[[F"'(p)»" '(&')]"'x [)('"(»)x4'"(1,p)1"']").

Similarly for the E,.(~,)(P), we get
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E(luations (I'I) and (19) are the key elements in deriving the coupled e(Iuations which must he solved to find
the 'I, i binding energy and spectator functions.

The detailed form of the nine coupled, homogeneous, integral equations for the spectator functions is
ohtalned hy suhstltutlllg E(I. (15) lllto E(IS. (17) and (19)~ respectively. Agam) conslderal31e angula'r-mo-
rnentum recoupling must be caxried out. The results are

xg
r

I j. g( ) g g/21
g

Z'+ j./~

S2= S'-Z /2

~ [y Il~l($ ) ~ I I4J(p )]I&1]ID]pJ (p ) (20)

and
EP j. J()

2 2

+"(K';p)I"'j )(0) (4 )*&P( ()"=((-()' '('&,-Q Q(-()~f )
lj,-$2=0 1 1 1

2 L 1 1

(21)

L) (ff2 P) 1 ~ dsI, fxo(&)P+ [aa(&)]'
K +0+ —P

3
k23 = -5 k, 2 + 5 p~, p~ = -kj.~

—q p

(22)

(23)
(24)

(25)

Observe that the G'(p) do not couple to themselves,
so in principle the nine equations can be reduced
to seven. In practice, we simplify E(Is. (20) and

(21) further for coding and then iterate all nine
equations simultaneously. The details are given
1n Ral 8 dissertation.

After the spectator functions are obtained nu-
merically, the unnormalized three-body 'Li weave
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function can be constructed by means of Eg. (15).
The wave function is normalized in the standaxd
manner, i.e., the normalization constant, N,
which multiplies the right-hand side of Eq. (15)
ls defined Rs

d'kd'p[4 f"(k, p ) & 0 f'l(k, p )]i". (27)

Equations (20) and (21) are solved numerically
by ltex'Rtlon. The RdvRQtRge of this method ls thRt
it yields the spectator functions Rs well as the
binding enex'gy, so that the 'I i three-body. wave
function ls easily constx'Ucted. In the cRlculRtloQS,
we use Gegenbauer quadrature fox the infinite-
I'Rnge IQomentum lntegl Rls and GRUsslRD qURdFR-

ture fox the angular integrals. Ten- and six-point
qURdI'RtUx'e formulas Rx'e Usedq respectively~ ln

the binding-energy results. Increasing the Dumber

of points to 16 Rnd Io, respectively& gives 3Q

estimate of the numerical aecurRcy. The binding-
energy results are stable to within 1% under such
changes. The wave functions used in the next Sec-
tion are obtained with 16- and 3.0-point quadrature,
respectively.

To R88Ux'e conslsteQcy with px'evlous work, we
repeat 3hanley's binding-energy calculations, i.e.,
with his Q-'Pl intel RctlGDs RQd Phllllps 8 parRIQeters
fGI' the 8-p tensox' fol ce. OUI' results ax"e 3.34
MeV (I'z& =0%), 3.15 MeV (4%), and 3.04 MeV (7%),
coxApRx'ed with Shanley 8 vRlues of 3.35, 3.25, RQd

3.j.6 MeV, respectively. These I'esults are com-
patible with Shanley's estimated errors. Further-
more, CFI. also repeated Shanley'8 calculation
for the (I' j~ ease and they obtained 3.02 MeV, in

excellent agx"cement with our 3.04 MeV. Thus, our
8tRxtlng Points Rl e equivalent.

Kith confidence in our equations and computer
codesy we cRQ DO%' Seek Rnswex'8 to the following
questions about the three-body model of 'I.i.. (1)
What differences in the 6I i binding enex'gy occur
when the S~/2 and P~/2 D-8 lnteFRctloDS RFe Qe-

glected? (2) What effects do slight changes in the
fit to the low-enexgy e-n 8, /, phase shift, brought
about by R fRctoI' of 2 or 3 chRDge ln the interaction
strength with the range essentially unchanged,
have on the binding energy'? (3) How dependent is
the binding energy on the analytical form of the
Q 'fI P-wave forQl fRctol sq wheD the form fRctoFS
give essentialj. y equivalent fits to the low-energy
phase shifts? (4) How sensitive is the binding en-

ergy to PD and the analytical form of the e-p '8, -
Dj lntex"Rctlon P The8e questions Rl 6 answered

on the basis of the results in Tables VI and VII.
The significance of the various components of

the n-N interaction to the three-body binding enex'-

gy of 6I.i is appax ent from Table VI by compax'ing

the top row of the first three co]umns fox' any P-
wRve form factoF. The dominant lnteFRctlon ls
P, /„ followed by the repulsive 8, /, and then the

P&/2. InclUdlQg the attractive P& /2 component with

the Stx'ongly resonant P, /., increases the binding

by -35%. The binding energy produced by the P„?,
Rnd P&/z lnteFRctlons ls 1educed by 40/g by lntro-
duclQg the repulsive S~/~ lnteI'action. These pe1-
centages Rx"e soDlewhRt dlffel eQt thRQ the He vR1"

ues' of -25 jg and ~50'k, respectively. This differ-
eDce ls dUe to the dlffel eQt two-nucleon lnterRc-
tlons involved: He- So RQd I.i- 8,. The two-nu-
cleon 'S, interaction is stronger than the 'So in the

sense that it supports a bound state. Therefore,
the two nucleons in I.i are expected to be closer

. together, GQ the average, thanthose ln He, Thus,
the P, /, n-n interaction is soxnewhat mox'e effec-

+3/2
only

TABLE VI, 6Li binding energies (MeV).

+3/2~ +i/2 +3/2~ +1/2 +3/2~ +l/2
only &l/2-Shanley ~g/2-GL- l

3.727 0%'
3.413 4%
3.324 5.5%
3.245 7%

4.446 0%
4.070 4%
3.955 5.5%
3.847 7%

C 4.590 6.418 3.692 0%
3.873 4/0
3.274 5.5%
8.187 7%

Percentages refer to I'D. When unspecified, ~~=0%.
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TABLE VII. Li binding energies with CFL n-n inter-
actions.

&-wave Q.'-n

interaction

CFL
CFL
Shanley
CFL

n-P'
interaction

(&D)

YY" (0%)
YY (4%)
YY (4%)

ACS-4 {4')

Binding
energy
(MeV)

3.577
3.288
3.623
3.188

Reference

' The I'-wave interactions are always CFL.
Reference 18 and the parameters of Table V.

tive in Li than He and the opposite is true for
the S,/, .

An illuminating comparison in Table VI involves
the top row of the last three columns for each P-
wave form factor. All interactions remain un-
changed, except the e-n S,~,. 'As pointed out, ,

above, the predictions for the low-energy phase
shifts for these three Sy /2 interactions are not
very different, but their higher-energy phase
shifts are markedly different. Yet, the predicted
differences in the 'Li binding energy are only a
few percent. This is similar to what QL found for
'He and it is explained by our remarks in Sec. II
above.

By scanning down the columns of Table VI, it is
apparent. that the 'Li binding energy is sensitive
to the analytical form of the P-wave n-n
form factors. Since the different P-wave interac-
tions fit the low-energy phase shifts equally well
(except P, /, —Pigeon), the higher-energy behavior
of the form factors and off-shell effects are play-
ing a role. There is sensitivity to more than just
the asymptotic behavior of the coordinate-space,
P-wave, n- e function.

The general effects of the tensor force as PD is
increased can be seen in column three of Table
VI. Firstly, the 'Li binding energy decreases as
PD is increased —as expected. " Secondly, the
reduction of the binding energy is smaller as P~
becomes larger. Thirdly, the maximum decrease
in binding energy is -14/c for PD =7%. Finally, in
Table VII, it is apparent that the 'Li binding energy
is not very sensitive to the analytical form chosen
to represent the n-P 'S, -'D, interaction as long as
the low-energy parameters as well represented.
This is made clear by comparing the second and
fourth lines. ACS-4 is a rank-2 'Sy Dy interac-
tion. The difference in binding is only 3%.

The results in Table VII are useful for contrast-
ing the CFL interactions with the form B interac-
tions of this work. If the first two lines of Table
VII are compared with the first two entries, col-
umn 3, form B of Table VI, we see that the CFL

V. NORMALIZATION

The two wave functions normalized correspond
to the 4.446 MeV (0/0) and 4.070 MeV (4/q) binding

energies (Pa), respectively. By contrasting the
contributions to the normalization for these two

cases, it will be possible to examine the effect of
the tensor force on the components of the wave
function. Besides this, the normalization gives a
hint as to the nature of the three-body 'Li wave
functions, e.g. , as to what components are most
signif icant.

In order to make the normalization calculation
easier and for later applications, we fitted the
spectator functions to the forms

....(p = A. +Bp +Op
1+ap'+bp'+cp'+dp'+ep" ' (28)

This allows for threshold and asymptotic behavior
as extracted from Eqs. (20) and (21). The param-
eters are given in Table VIII. The quality of the
fits are excellent, especially for 0 &P & 8 fm '
where the main contributions to most integrals in

applications occur."
When the expression for the normalization inte-

gral, Eqs. (26) and (27), is worked out, there are '

49 different integrals —16 of which have two pieces.
when PDw0. There ar. e integrals containing (G )',

interactions produce -20% less binding than our
preferred set of n-N interactions. When the CFL-
S,g, interaction is replaced by Shanley's, the bind-

ing is 11% smaller. This implies that it is not

due to just a difference in one interaction, say the

S,y„but is probably traceable to all of them. As
indicated in Sec. II, the more sophisticated CFL
form factors lead to different singularity structure
of the ck-N amplitudes than that obtained from the
simpler choices. It would be of interest to con-
trast them.

The last point to be made in this section con-
cerns a comparison of the predicted 'Li binding

energy with the experimental value of 4.53 MeV
[3.697+0.834 (Coulomb)J. The preferred set of
n-N interactions are form B. The results to be
compared with experiment are in column 3 of
Table VI. The agreement with experiment be-
comes progressively worse as PD increases, be-
ginning with a 2/o discrepancy (4.446 MeV) and end-
'ing with a 15/p discrepancy (3.847 MeV). Compared
to 'He where the discrepancy is ~50k, the 'Li re-
sults are quite good. In fact, we are encouraged
enough to construct the wave functions for PD =0%
and 4 jo in order that they can be examined and
tested in processes involving 'Li. Thus, the next
section concerns the normalization of these two
wave functions.
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SP6C t'REDOX"-fUQCtlOQ PRF$L'fTl6 fel'8. [T116 fll 8 t' RQCl 86COQCl 6QtX'168 foX' 6RCh PRlRI656X" CQX'I'68PODd

aQd 4.070 M6V (4/a) e'ave fvQctioQe, resyectively. The QotafioQ ia 1.883(—8) =1.883 &10 8.]

G 2 ~ 'i/2 y 3/2 ' - 'I/2 3/2 i/2 y 3/g
2((&/2) &) ~(((/1) q 1((~/S (] ~((3/S1] g(3/S&)

1.882(-8) 3.551(-2) 6.451(-10) -9.087(-4) 2,676(-3) -2.761( 3) 4,535( 3)
-4.198(-8) 2.&5(-2) -4.000(-9) -4.883(-4) 1.911(-3) —2.033(—3) .3.028(-3)

-2.198(—4) —7.407(-1) 2-.179
-1.663(-2) —4.258(—1) 1.564

C —8,302(-1)
-6.839(—1)

-1.385(-5) 9.259(-4) 1.254(-")
—3„8M(-3) 4.377 (-4) 3.469(—3)

7.142(-2) 9.200(-2) . 1.791(-1)
1.047(-2) -6.016(-2) 1.702(-1)

2.529(-2)
1,403(+ 1)

1,095(+1)
1,M4(+1)

VIVVV

8.305
6,113
2.902

—1.336 6.756
-2,696(-l) 3.581(-1)

8.169 4.421(+1) 4.416(+1)
9.308(-. 1) 2.346(+2) 4.584(+1)

4.697(+1)
2.465(+2)

5.095(+1)
6.868(+2)

2.002(-3) 8.913(-4)
4.140(-3) 2,518(-3)

2,905(-1) -4.020(—1)
5.490(+1) -5.937(—3)

g J'

G F gg(J () q (Egi(g()) ~ plus 0't)1el's. From 'these, we
ji,st the contributions ~ 1'jo to the normalization and
the normaj. ization constants in Tabj.e XK. There
are several features of the resujts which shouM be
noted. A quick glance indicates that, the dominate
components in the Pn= 0% wave function remain

dominant in the 4% one and with essentially the
same percentages~ The dominant coDlpolMnts are
the ones with the SI ectator functions Go, El[/(33/2) l3
and Eo)( ~/~) g» @be 6 and E~R 3/@) ~] components1/4)l 0 3/a

contribute -50% and 26-30% alone, respectively,
while their interference contributes another 16-

TABLK M. Nor'malizaII50Q COQtribution8 (coQhibohons ~ 1% onIy);

4.446 M6V (0%) 4.0
N =2„714 fm2

COIPOD6Qt (%)

47.8+ 3,7 = 51.5

-23.0
5.5+ 0.5 = 6.0
9.6+ 0.8 = 10.4

17 2 1,2 —16,0
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lg%%up. The interference of G' with E',((,g,~,~
sub-

tracts from the normalization due to the fact that
the Sy/2 N n interaction is repulsive. As pointed
out by GL, the same three terms dominate for
'He, "but the percentages are interestingly differ-
ent except for the G'&&E' ' interference. In 'He,
the G' and E',~' components contribute -23%%u~ and
-62%%uo alone, respectively, and "21% through their
interference. The shift from I"', ' dominating over
G' in 'He to G dominating over E',~'&, /, ),] in 'Li is
due to the fact that the 'S, two-nucleon interaction
has no bound state and the 'S, does. For 'Li, the
configuration of the pair of nucleons interacting in
the 'S, state while the n particle interacts relative
to their center of mass in an s wave is favored
over the configuration of an u-N pair interacting
in the P,/, state while the remaining N couples
relative to their center of mass in a P, /, wave.
The opposite is true for 'He with 'S, replaced by
'S,. These two configurations are not mutually ex-
clusive, however, due to their interference. Fin-
ally, we note the contribution to the normalization
in the PD=4% case from the terms due directly to
the tensor force is only 3.8%.

VI. CONCLUSIONS

The following list summarizes our major con-
clusions about the three-body separable-potential
model of the 'Li ground state:

(1) The 'Li binding energy decreases as PD is
increased, but more slowly the larger P» with
an -14%%uo decrease in binding energy for PD= 7%%uo-

independent of the z-N interaction set. Further-
more, the 'Li binding energy is not very sensitive
to the analytical form chosen to represent the 'S,-

'D, interaction as long as the low-energy n-P pa-
rameters are well represented.

(2) The P,~, component of the u Ni-nteraction is
primarily responsible for the binding. When the
P,/, component is included with the P,/„ the bind-
ing energy increases by -35'Po. The repulsive Sy/2
component reduces the latter binding energy by

40%%uo.

(3) The three-body model of 'Li is not sensitive
to the higher-energy (830 MeV) part of the S,~,
n-N interaction, but only to the fact that the S,/,
interaction is repulsive and has a given behavior
at low energies.

(4) The 'Li binding energy is sensitive to the an-
alytical form of the P-wave z-n form factors
which produce comparable fits to the low-energy
pha, se shifts.

(6) The dominant wave function components, in
decreasing significance, are those with the specta-
tor functions G' +i[( /2) ] and +0[(1/2)0]
spectively (see the previous section. )

(6) Two calculated values of the 'Li binding en-
ergy, from the preferred set of n-N interactions
with PD=O%%uo and 4% for the n-P interaction, are
4.446 MeV (0%%uo) and 4.070 MeV (4%%uo) compared with
the Coulomb-adjusted experimental value of 4.53
MeV.

ACKNOWLEDGMENTS

Part of the computer time for this work was
provided by the George Washington University
computer center. One of the authors (DHL) wishes
to thank the George Washington University Com-
mittee on Research for several summer research
grants during the course of this work.

*Supported in part by the Research Corporation.
j Present address: Computer Sciences Corporation,

Silver Spr ing, Maryland 20910.
A. Ghovanlou and D. B. Lehman, Phys. Rev. C 9, 1730
(1974); hereafter, referred to as GL.

Mamta Rai, D. B. Lehman, and A. Ghovanlou, Phys.
Lett. 59B, 327 (1975).

3B. Charnomordic, C. Fayard, and G. H. I arnot, Phys.
Bev. C 15, 864 (1977).

4CFL refer the reader to Charnomordic's thesis for
further 6Li binding-energy results. See CFL's Bef. 28

5P. E. Shanley, Phys. Bev. Lett. 21, 627 (1968); Phys.
Rev. 187, 1328 (1969).

6It should be emphasized that CFL fit to the phase
shifts obtained from a real optical-model potential of
Woods-Saxon. form which was generated from n-. +
experimental phase-shift data accumulated up to 1968.
For details of the optical-model potential. , see Ref; 7.
The optical-model generated phase shifts and the
phase shifts from the recent analysis of Amdt and

Roper, Bef. 8, agree very well for laboratory energies
between 0 and 12 MeV. Beyond 12 MeV, they begin to
deviate from each other.

VG. R. Satchler, L. W. Owen, A. J. Elwyn, G. L. Morgan,
and R. L. Walter, Nucl. Phys. A112, 1 (1968).

B. A. Amdt and L. D. Roper, Nucl. Phys. A209, 447
(1973).

See Bef. 27 of GL concerning the angular-momentum
conventions.

~ If the denominator power of &&(@) is —2, the coordin-
ate-space wave function goes to zero as r 0. The
preferred choice of l+1 (which is 2 for p waves) is
based on the analysis of Alessandrini and Omnes for
Yukawa interactions. See V. A. Alessandrini and B. L.
Omnes, Phys. Rev. 139, B167 (1965).

~ We neglect the Coulomb interaction so the e-& and
~-p interactions are identical. Experimentally, the
a-n and e-p phase shifts are essentially identical be-
tween 0 and 15 MeV nucleon laboratory energy, if the
e-+ threshold is shifted up 1.29 MeV in order that the



D. R. LEHMAN, MAMTA RAI, AND A. GHOVANLOU

c.m. is the same in both cases. See B. A. Amdt and

L. D. Roper, Phys. Bev. C 1, 903 (1970); R. A. Amdt,
L. D. Roper, and B. L. Shotwell, ibid. 3, 2100 (1971).
J. Pigeon, J. Barguil, C. Fayard, G. H. Lamot, and

E. El Baz, Phys. Rev. C 4, 704 (1971).
~3V. A. Alessandrini, D. Avalos, L. Epele, H. Fanchiotti,

C. A, Garcia Canal, and M. A. Gregorio, Phys. Lett.
29B, 83 (1969).

' Only repulsive s-wave separable potentials of the type
considered yield amplitudes with poles in the third
and fourth quadrants. Attractive potentials of this
type give amplitudes with purely imaginary poles. In

fact, one can fit the &-e S&&2 phase shift with an
attractive potential, but it will possess a bound state,
whereas the. &-a system is unbound. Nevertheless, one
can project this bound state out of the two-body ampli-
tude in three-body calculations, but the projected
amplitude will not reproduce the experimental phase
shift. This is not in the spirit of our approach. Fur-
thermore, the S&&2 X-n interaction taken as repulsive
has the physical. interpretation of being due to the Pauli
exclusion pr inc iple.
M. U. Ahmed and P. E. Shanley, Phys. Bev. Lett. 36,
25 (1976).

~~D. B. Lehman and B. F. Gibson, Phys. Rev. C 16,
1275 (1977).

"The approach can be taken that acceptable interactions
should possess the proper resonance-pole locations.
Then the P&&2 form factors would have to be generalized
to include more parameters or perhaps a rank-2 po-
tential considered. The CFL interactions are of the
first type, but we did not check their analytical struc-
ture due to the complexity involved. Nevertheless, it

would be valuable to study the CFL interactions in this
manner.

' Y. Yamaguchi and Y. Yamaguchi, Phys. Bev. 95, 1635
(1954).

'~A. C. Phillips, Nucl. Phys. A107, 209 (1968).
B. Wilson, Comments on Nucl. Part. Phys. 2, 141
(1968); H. P. Noyes, Annu. Bev. Nucl. Sci. 22, 465.
(1972).

'B. V. Reid, Jr. and M. L. Vaida, Phys. Rev. Lett. 29,
494 (1972); ibid. 34, 1064 (1975).
Mamta Bai, Ph. D. dissertation, The George Washing-
ton University, 1976 (unpublished).

3We make this point because of the results of Bef. 13.
Shanley and CFL agree with our conclusion. Inclusion
of the tensor force in the n- p interaction introduces a
centrifugal barrier between the neutron and proton
which keeps them further apart on the average. There-
fore, the three-body binding is reduced. It is also
interesting to note that the reduction is similar to that
for H when the same S&- D& interaction is used. For
3H, the reader is referred to Bef. 19.

4Two calculations of the He binding energy were made
with the CFL interactions and the 'S0 n-P best fit in-
teraction of GL. The first used the complete set of
CFL e-W interactions and no bound state was found.
The second replaced their Sfg2 with Shanley's and the
binding energy is 0.0569 MeV. Our result with the
complete set is interesting, since CFL quote a result
of 0.008 MeV with the complete set and a S0 interaction
which has the same low-energy parameters as our s,
but also includes repulsion, i.e. , it is rank 2.
Since ~He is 0+, there is only one Q', i.e. , 1=0, and

three E& (q~) with &= &' and l= 1'.


