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Recent measurements of high energy inclusive cross sections in -Li, close to the elastic limit, allow for
experimental verification of the "coherent recoil" postulate of "quasi-two-body scalirig. " Theoretical
arguments for' the dominance of coherent recoil up to internal nucleon momenta k =1.2 QeV/c are presented,

along with a new derivation" of the relationship between quasi-two-body scaling and an "effective" ground

state momentum distribution. A possible relationship between inclusive and elastic cross sections is explored.

! NUCLEAR REACTIONS Quasi-two-body scaling, "effective" momentum
d istributions.

I. INTRODUCTION

In a recent series of pioneering papers' ' Amado
and Woloshyn have used a simple exactly soluble
one dimensional boson model with 5-function inter-
actions between particle pairs to investigate gen-
eral relationships governing the ground state mo-
mentum distribution, n(k), at high momentum, k
== 0.2 GeV/c, in nuclei. While this model is admit-
tedly only a rough approximation to the actual nu-

clear ground state, it makes a first attempt io de-
limit th. e regimes that should occur in nature and

which one can hope to distinguish experimentally.
Above the very low momentum region, k = 0.2 GeV/
c (where a Fermi gas picture can be employed,
and which does not concern us in this work),
Amado and Woloshyn predict iwo distinct regions.
In the first of these regions the internal momentum
k of a nucleon is balanced by being distributed approxi-
mately equally among the A —1 remaining nucleons.
In this region, which we term the "coherent recoil"
region, the model predicts an exponential falloff:
n(k) =—exp(-k/k ) (although a realistic value for k,
cannot be predicted from this model). Above a mo-
mentum k„which we denote as the 8 ansition mo-
mentum, and which is approximately independent
ofA. , the high momentum of a particular nucleon is
balanced by sharing the momentum k among a small
number of nucleons, n = 1,2, . . . . Finally, in the
asymptotic limit, the model reproduces the general
result that n(k) =—l/k'. In this asymptotic region n(k}
is dominated by two particle spatial correlations
alone so that the balancing momentum is carried off
by a single nucleon. In the one-dimensional model
studiedthis region sets inatk, = 3k,. Above k~, n(k)
falls off in an inverse polynomial fashion, slower than
the exponential falloff in the coherent recoil region.
The simple theory provides no estimate for k, .
Hopefully, a complete theory of the behavior of
n(k) would be expected to show the presence of

these regions and to provide suitable predictions
fo" k, and k,.

We shall not use the proposals of Amado and

Woloshyn in this work except as a general guide io
the interpretation of high momentum phenomena.
Bather we shall study the latesi data on inclusive
cross sections, in kinematic regions that are cap-
able of measuring very high momenta, in order to
determine the mechanisms that are at work. We
shall find, in fact, that the data show that, in the
final state, the recoils are indeed 'coherent" up
to momenta of 1.2 GeV/c, and we shall show, in a
simple manner, that contributions of few-body
(n = I, 2, 3) recoils are suppressed by a kinematic
mechanism that is characteristic of inclusive mea
sup ements.

To do so it is necessary to describe in some de-
tail the method of "quasi-two-body scaling" re-
cently introduced in a brief letter, ' which provides
a new organization of a large class of inclusive
cross sections which bear on the subject of high

nucleon momenta within nuclei. We concentrate
our attention on the inclusive process, p+A —p+X.

In this process we define the (momentum, en-

ergy) of the incident proton as (P, E&), that of the
detected proton as (q, E,}, that of one of the final
state nucleons (later to be identified as the scat-
tered proton) as (p', E&,), and the momentum and

energy of the remaining A —1 nucleons as
(Qk;,ZE, ). Thus we have

p=q+p'+Q k, =—q+p' —k,

E,=E,+E, , + E,. —m„-=E,+E, , -E„.

The first point to be stressed is that quasi-two-
body scaling (QTBS) is meant only to describe in-
clusive cross sections in kinematic regions not ac-
cessible in interactions of protons with free stationary
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protons. We restrict our treatment to kinematic
regions that require at least k =—0.2 GeV/c for the
process to be permitted by energy-momentum con-
servation.

The first postulate of QTBS is that the inclusive
cross sections fall off rapidly with k, the final mo-
mentum of the A —1 nucleons, so that the minimum
permissible final momentum, designated k „,
dominates the cross section. Under these circum-
stances

lk. .l

= lp —ql- lp'l (2)

the dominant conf lguratlon arlslng with k paral-
lel to p'.

The second postulate Of QTBS is that the A —1
nucleons recoil in a coherent manner, i.e. , that the
A —I nucleons recoil either as a bound nucleus in
the ground state or as a nucleus bound or unbound
in a. state of low excitation, but that no fast nu-
cleons, other than the one with p' are emitted.
Thus QTBS describes a final state that resembles
the kinematic configuration of an initial state where
a proton. shares its momentum k with the other
4 —1 nucleons. With this assumption we can write:

P'= [(E,+m, T, r —z,)'- I,']'~',

—(k,„+m„, ) -m„„
is the kinetic energy of recoil of the A —1 nucleus
and e is the mean excitation energy plus the mass
difference, (m„,+I&) —I„.

Equations (3) and (4) completely define
k,„(P,q, 8,A) where 8 is the laboratory angle of
the detected proton:

k,„=(p'+ q' —2pq cos8)'~'

[(z,+ ~, T, ~ z,)' —m, ']"'.
The third assumption of QTBS is that

dg C(P, k,„)G(k „)
d'q i p —q!

where G(k,„)/lp —ql is the "probability" of ob-
taining a recoiling A, —l nucleus of momentum k „
and C(p, k,„}describes the p and k „dependence
of the cross section for the inclusive process P+A.
-p+P'+ (recoiling A —i nucleus). C(p, k „)is as-
sumed to vary with k „much more slowly than
G(k „)iHere, do/d'q is the inclusive cross sec-
tion (d 'o/q'dqdO, ).

If the inclusive process is indeed dominated by
coherent recoil and if we assume that the recoiling
A —1 nucleus is essentially a spectator, we ean re-
phrase the preceding assumptions in an intuitively
more appealing way. (+k„+Z~) is now the virtual
momentum and energy of the target nucleon. The

incident proton of momentum p is scattered to the
momentum p' lifting the target nucleon onto the
mass shell with momentum q. Requiring that the
momentum transfer k —q [f„=(E, E,)' —(k —q)',
with E„=m —e —T,] be much smaller than the mo-k P
mentum transfer p —q clearly ensures that the de-
tected particle is the target nucleon. C(p, k „) is
now proportional to the cross section for scattering
of the incident proton by the target nucleon at the
appropriate value of f and s, [s = (E~+ E,)' —(p
+k „)'], while G(k „)/lp —ql is the probability of
finding a nucleon in the nucleus of momentum k „.
In fact, in an oversimplified view which neglects
all final state interactions, ' one can give an explicit
expression for G(k „)

I

nkkdk=G k „—G k =—G k,„(V)
~mSn

and can obtain an explicit expression' for
C(p, k,„)

s(s —4m') da(k „-q)
(5)mgn 32~ pmE d

where do/dt is the elastic P-P scattering cross
section.

Amado and Woloshyn have shown' in an elegant
fashion how final state interactions destroy this
simple dependence of der/d'q on n(k). However,
we shall return in Sec. IV to a discussion of this
picture and to a way to modify it to retain the
benefits of scaling by replacing n(k) by an "effec-
tive momentum distribution, "

n, f~(k). Meanwhile,
we treat Eq. (6) in a completely phenomenological

[»u»»«4 we plotted lp-ql««'q vs
k,„ to extract a, first estimate of G(k,„). For this
phenomenological treatment the origin 'and numer-
ical value of C(p, k „)is not important, and C was
set equal to unity. ]

At this point it is instructive to examine some of
the features of Eq. (5). Two kinematic conditions
are worthy of special comment. In the relativistic
limit, E~ »m~, and for nonrelativistic detected
particles observed at 180 we have k,„==q so that
the magnitude of the observed momentum is equal
to the magnitude of the virtual momentum of the
struck nucleon. In this case the momentum trans-
fer to the struck particle is quite small. At 90 the
relationship is quite different, i.e. , for relativistic
incident particles, k = q'/2m~. For the purposes
of this work the most important feature of Eq. (5)
is, however, contained in the dependence of k „on
the mass of the recoiling nucleus. This appears in
the kinetic energy of recoil,

where m„ is the mass of the recoil. In the ease of
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coherent recoil m„=m„„whereas in the extreme
asymptotic region m„=m~. It'is in this term that
the A dependence of QTBS enters since it is the as-
sumption of QTBS that m„=m~, . However, it is
important to recognize that the relationship of Eq.
(5) between q and k with

min

is valid for any m„.
The body of this work is now contained in the fol-

lowing sections. In Sec. II we shall examine re-
cently acquired data that demonstrate conclusively
that up to 1.2 GeV/c the inclusive cross sections
are dominated by coherent recoil, thus verifying
one of the assumptions of QTBS. In Sec. III we
shall examine the kinematics of the data that have
been studied. We shall show that for most of the
data studied in Ref. 4 there is always enough energy
to observe recoils in the region where the momen-
tum k is shared by a, few (n = 2, 3, . . .) nucleons and
that the failure to do so is a consequence of the
k «(m„) relationship of Eq. (5). Indeed, we shall
show that measurement of inclusive cross sections,
which depend on this relationship, are insensitive to
the presence of two-particle spatial correlations
whose contributions are depressed relative to the con-
tributions from coherent recoils. In Sec. IV we con-
sider the description of the cross sections in terms of
an "effective momentum distribution" and show that
when coherent recoil dominates and final state in-
teractions are not neglected the observed cross
sections can be treated as the product of the mea-
sured P-p cross section and an "effective" momen-
tum distribution, which is a functional of the
ground state wave function and is only very roughly
proportional to the actual momentum distribution.
Finally, in Sec. V, we show how the dominance of
coherent recoils and QTBS suggests circumstances
under which the t dependence of the nuclear elastic
scattering cross sections can be obtained directly
from the inelastic scattering structure function
G(k,.).

II. EXPERIMENTAL VERIFICATION
OF THE COHERENT RECOIL ASSUMPTION

In the first4 study of QTBS it was observed that
the coherent recoil assumption gave a remat'kably
consistent organization of the existing data. A
straightforward application of Eq. (6) was made at
this stage, setting C =1 as a first approximation.
For a large range of incident proton momenta (0.6
to 5.9 GeV/c and angles (93' to 180') G(k „)was
found to be a universal" function of k „,
—= exp( —k, ,/k, ). Most striking was the fact that,
although the differential cross sections per nucleon
for Be, C, Cu, and Ta targets were quite different

in their q dependence and magnitude, G(k „)was
identical in both shape and magnitude provided that
the coherence assumption, m„=m~, was made.
Because of these results the study of QTBS was ex-
tended in A down to 'Li and extended in angle to
158' and 100' in a recent LAMPF experiment
Once again the validity of the coherent recoil pos-
tulate was verified with high accuracy. (Studies at
these angles highlighted the importance of using the
experimental values of C(P, k,„) i.e. C0 1 to show
the universality of G(k,„).)

In addition, two high sensitivity measurements
now provide a much more direct test of the coher-
ent recoil postulate. The first significant mea-
surement was that of Brody et al. ' in the reactions
(p, o.)+'Li-p+X. These measurements were
made for incident protons with 0.6 GeV kinetic en-
ergy and for incident o. particles with 0.72 GeV
kinetic energy, the ejected protons being observed
at 180'. These experiments were the first to show
that the empirically observed structure functions

,G(k „)followed the same exponential form up to
values of 0 close to the elastic scattering limit,
i.e. , close to the kinematic region where energy
conservation requires the recoil to be coherent.
Because of the significance of this result, in the
first experiment carried out with the high reso-
lution spectrometer (HRS) at LAMPF, a more
careful comparison' of 'Li with heavier nuclei was
made, this time studying p+A -p+X for 0.80 GeV
kinetic energy and 8 =158 and 100 .

This experiment'not only verified the quasi-two-
body hypothesis in more detail over a large range
of the variables k «(P, q, B,A) but in particular
showed that G(k „)was independent of 4 and that
for 'Li the function was identical over the whole
range from k = 0.2 GeV/c to k = 1.5 GeV/c, the lat-
ter momentum corresponding to an energy within
a few MeV of the elastic limit in 'Li. In these ex-
periments d'c/d'q varied over a range greater
than 10:1.

In the 100 measurements at 0.8 GeV the HHS

again had the sensitivity to study the region near
the elastic endpoint where once more energy con-
servation forces the recoil to be coherent. Since
this is just the kinematic postulate of quasi-two-
body scaling, we are, without any assumption about
the final state, actually measuring G(k) in this re-
gion. We observe that this is the same functional
form found at low 0 where the coherence is not at
all forced by energy conservation. Thus the data
suggest that the recoil is also coherent at low k. Of
course, in this low region such an assumption is
quite plausible since the incoming projectile, at
the expense of only a small energy transfer, nud-
ges the target proton of momentum +k onto the
mass shell, the recoiling nucleus acting as a "co-
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herent spectator. " Since between these two ex-
tremes G(k) is essentially unchanged, we conclude
that the inclusive cross sections are dominated by
coherent recoils at all observed k so far studied.

The fact that the shape of G(k) for both 'Li and
"'Ta are identical is another importarit factor in
this argument. At a momentum q, where the re-
coiling (A —1 = 5) nucleus carries off all the re-
maining available energy as center of mass kinetic
energy, the recoiling (A —1 =180) Ta nucleus car-
ries off negligible kinetic energy so that the for-
ward going particle of momentum P' carries off
400 MeV of kinetic energy. Thus at this q there is
unquestionably sufficient energy for 1, 2, or 3 ad-
ditional fast nucleons to be emitted in the final
state. But if this were occurring we should presum-
ablydetectadifferentformfor G(k „)in Ta, whereas
such a form would be eliminated by energy conserva-
tion in'Li. Yet G(k „)is identicalfor 'Liand Ta.

The argument can also be appreciated by noting
that if, in Ta' ', the recoil were entirely taken off
by 5 nucleons (as must be true for Li' near the el-
astic limit) the shape of the cross-sections for Li'
and Talsz would be the same. &et they are very
different, falling off very differently with q in this
high momentum region.

Thus, we conclude that coherent recoil dominates
the data up to k —= 1.2 GeV/c.
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FIQ. 1. Inhibition of few-body recoils (2.9 (wV, 93').
The left hand curve shows plot of G(k) ~ v»Dlh11&
g = ~. For each value of q the values of k for m, =nm&
are plotted to the right. Vertical distance from curve
n to curve n =~ shows inhibition of n body recoils re].a-
tive to n =~. Arrows on abscissa show the range of k
covered by the data.

III. KINEMATIC SUPPRESSION OF THE EFFECT OF
TWO-PARTICLE CORRELATIONS IN INCLUSIVE

CROSS SECTIONS

We now demonstrate that the coherence follows
from a kinematic suppression of low mass recoils
that is an immediate consequence of Eq. (5). We
see from this equation that T„ increases with de-

"n~Sn
creasing m„(and with. increasing k „)forcing k,„to
increase relative to the value at m„=rn„„very large
changes occurring for m„=nm~, n = 1, 2, 3. Figure
l shows the changes in k,„with m„ for one of
the kinematic regions (2.9 GeV, 92') covered in the
dataof Ref. 4. We have chosen to illustrate Eq. (5) in
the following graphical way. The straight line
shows a plot of G(k,„) vs k,„ for k, —= 90MeV/c for
an infinitely heavy nucleus (& is set equal to zero
for all calculations). The value of q corresponding
to k,„ is marked at selected points, To the right
of each point is plotted the value of 0 „for that q
obtained from Eq. (5) for m„=nm~, n =1,2, . . . .
Arrows on the abscissa indicate regions of k,„
covered by the data in Ref. (4). Note that up to
k „=.64 GeV/o m, = 1 recoils are kinematically
permitted while rn„= 2 recoils are permitted up to
the maximum value measured. Thus the assertion
of Amado and Woloshyn"' that coherent recoil
arises because single proton recoils are energetic-
ally forbidden is only partly correct. Recoils of

n„=2, 3. . . fragments are not described by coherent
recoil yet they are kinematically allowed. .However,
the point to be noted is that since k,„ is higher d'or

low mass recoils fox tke same q and since on any
theory G(k „)is expected to fall rapidly with k,„,
the contribution of light recoils is depressed. A
measure of this depression in the region k & k, is
the vertical distance on this plot from the curve for
m = m„ to that for rn = m„, .

This appears to be the simple kinematic reason for
the success of the coherence assumption of QTBS.

There is, of course, another simple way to ac-
count for the observation of predominantly coherent
recoils independent of the kinematic suppression.
As we have previously noted, there is no the-
oretical estimate at present for k, . However, from
all the. data. studied it is clear that if k, were —=1.2
GeV/o the two-body spatial correlation contribution
to n(k) itself would be small and the dependence of
n(k) on k would be exponential. Of course, both ef-
fects, the kinematic suppression and a. high tran-
sition momentum, favor coherent recoils and both
may be present.

We summarize this section with the remark that in
any inclusive measurement, where q rather than
k is observed, the relationship between them is
basically determined from Eqs. (1) and (2). Thus,
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for any composite system where the cross sections
fall off with the momentum transfer to the recoiling
system we expect a suppression of contributions
from two-body spatial correlations. Only by mea-
suring the momentum of the forward going proton,
p', in coincidence with q, can we obtain a measure
k dA ectly and avoid the kinematic suppression.

IV. RELATIONSHIP BETWEEN QTBS AND

THE NUCLEON MOMENTUM DISTRIBUTION

QTBS can be "derived" from the postulate that
the inclusive cross sections in nuclei are the av-
erage of the "p-p cross sections" over the ground
state momentum distribution. In particular Amado
and Woloshyn, ' using the Born approximation, neg-
lecting both shadowing effects and final state inter-
actions, and applying closure to evaluate the sums
over final states, have given an expression for
do/d'q which was in part the justification" of
quasi-two-body scaling. In their treatment G(k) is
related to the ground state momentum distribution
n(k) by Eq. (7).

On the other hand, they have also shown' how
final state interactions destroy the simple depen-
dence of do/d'q on n(k). They have also realized'
that the closure approximation used in their deriv-
ation fails for high values of k where the momen-
tum distribution is dominated by the high energy
low mass recoils so that this energy cannot be neg-
lected in the energy conserving 5 function.

More recently, two diverse studies of QTBS have
been carried out which make use of explicit forms
for C(P, k,„) and do not set C = 1 as was done in the
early work. ' Frankel and Woloshyn" have recently
analyzed previously unpublished data." in the reac-
tion p+A -p+ X with incident protons of kinetic en-

ergy 0.73 GeV for a large range of laboratory
angles, 90'-150', and for many nuclei, Be to Th.
They used the formula for C(P, k „)derived by

Woloshyn [Eq. (8)] and used the measured p-P on
shell cross sections at the appropriate values of
s and t. Plots of ~p

—q
~

((fa/d'q)/C gave the same
function G(k „)for the whole range of variables.
Frankel and Frati" have also applied QTBS to the
production of antiprotons in the reaction p+A -p
+X at energies far below the threshold for antipro-
ton production on stationary protons. For this
reaction k,„ is an entirely different function o q
than that appearing in Eq. (5) and C(p, k „), ob-
tained from the p production cross section above
threshold, is a very different function than that
employed in p-p scattering. Nevertheless, QTBS
gives the same universal function G(k „).

How then can we understand the success of QTBS
in view of the difficulties with the Born approxi-
mation, final state interactions, and closure? Is
it possible to retain the simple and useful picture
that the cross sections are averages of the mea, -
sured p-p cross section over some effective ground
state momentum distribution, a picture supported
by the data?

In what follows we make use of the fact that the
data, in the regions so far amenable to experimen-
tal investigation appear to be dominated by coher-
ent recoil. With this simplification, Professor
H. Primakoff and the author have examined anew

the origin of QTBS and obtained a "derivation" that,
in spite of the crude approximations, throws light
on the factorization of Eq. (6) and the physical sig-
nificance of G(k,„). In this derivation, one ap-
proximates, in view of the dominance of coherent
recoil, the initial wave function 4(,(r„.. ., r„) by

q', (r, )(j(&(r„.. . , r„) where r, is the coordinate of the

struck nucleon and similarly approximates the final
wave function by (see Ref. 13)

-iq (r+ +r )
py(r ) exp 1) 4y(r

(A —1

The matrix element for the process then becomes

x T[(j(,(r„.. . , r„)cp,.(r,)e"'],
where

T(r„.. . , r„;r) =H'" (r». . . , r„;r)+H'"'(r„.. ., r„;r) [E—H(r„. . . , r„;r)+is] 'H'"'(r„. . . , r„;r)

with

H(r„. . ., r„;r) =H'(r„. .., r„)+H'(r) +H"'(r„. . ., r„;r),
F =E]+Fp.
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Expanding T(r„.. . , r„;r) = Z'(r, —r) + T(r, —r)
+ ~ + T(r„r„r+, i.el F expanding T into sums
of (2, 3, . . . )-body operators, we retain only T(r, —r)
thereby employing the impulse approximation. '
Further, our expression for the final state wave
function of the detected proton

q) (r, ) = e"'i[1+ V(&(q ~ r, )]; N&-0 as r, -~
(10)

exhibits explicitly the effect on the outgoing (sub-

sequently detected) proton of final state interac-
tions arising from the recoiling A —1 nucleons.

We proceed to replace T(r, —r) by its Fourier
transform

exp[i& ~ (r, —r) ]T(&)d&
~

~

and carry out the integration over dr and d&. The
resulting squared matrix element summed over the
final states of the recoiling A —1 nucleus is then

(T(jT —p') f e'"' ' " ""Il & (Zt)",)I F(,) E((F(Z.. . „)emf'F( ( .~ F )l(n —())t) (F . . .,„„)(*
f

=
~
T(p —p') e'"-""ie "'i[1-+N,'(q ~ r, )](p,(r,) ~' (ll)

The most significant part of this result is that
Z'(p p') can be factored out of the matrix element
without further approximations so that +

~

M.E. ~' is
indeed proportional to the measured cross section
of an incident proton on a free stationary proton.

It is important to stress that we have used the
closure approximation, which, as Amado and
Woloshyn have point out, "' may be a poor approxi-
mation if the matrix elements are dominated by
configurations of high excitation. However, our
basic assumption of coherent recoil and its support
from the data rules out these high excitations so
that in the regime studied here the closure approxi-
mation is in fact expected to be valid and a good
approximation.

The integral over r in Eq. (11}explicitly exhibits
the Amado and Woloshyn result' that in the limit
p =p' the matrix element vanishes identically be-
cause of the orthogonality of the initial and final
state wave functions q)&(r, ) and q)&(r, ) Writin. g this
integral in terms of +k, the momentum of the
struck nucleon, we have

Am~min}, ik r -i )de y, ,'r,'r
p —q

~maxBorn(P) min} n(k)kdk
p —q

(p k) lllinG(k i,)

we obtain

min} (ezk'r[I y Nn( k. r)]J
d~q I p —ql

&& q, (r) d r Pkdk

n (k)kdk
p —q

(
' ~" [G„,(k „)—G„,(k )]

G
min

(13)

(14)
e'" '& 1+ V& p —p' —k rg pt ry dry

So that for nf —0 the square of this integral is just
~
(P, (k) ~' = n(k). We therefore see that it is the

presence of nf which destroys the simple relation-
ship between do/ ' danqd n(k). Hou)ever, if ue de
fine the square of this integral as n, &&(k) then for
momentum transfers p —p' less than k, so that q
'== k, the derivation of QTBS can be carried out as
before. Thus, instead of the Born-approximation
result

Here C(p, k „)is proportional to the measured
P-P cross section and G,«(k „)—G„,(k } is a
modified form that depends on n„z(k) in the same
way that G(k,„)—G(k ) depends on n(k) If n, i, (k.)
is also a rapidly falling function of k, G(k )
«G(k „)and the original form of QTBS is re
tained.

It is worth remarking that Eq. (14) relates the
differential cross section to the ground state suave
function and to the final state interactions both of
which must come from the solution of the approp-
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riate many-body problem with the true Hamilton-
ian. That the cross section cannot be related di-
rectly to the gz"ound s tate mom ezztum dis tz'ibution zz(k)
via the Born approximation, as shown by Amado
and Woloshyn, ' is not a real loss.

It is now interesting to note that for large k the
main contributions to the integral f ~ ~ dr in Eq.
(14) come from z ~ k '&ft (the nuclear radius) so
that zzz(-k z ) can be replaced by zzz(0)(l —(k r)
x [(d/d~) Inzz&(x)]„j. This yields as a crude approx-
lmatlon

ward going proton. It cannot depend on the sign of
[We can estimate S as the average ofS(v„) around

v„=0, but for simplicity, we choseS(v„) =S(0)]. What
is essential for our argument, however, is that S de-
pends only on the relative velocity v„and not on the
laboratory angle or velocity of the recoiling nu-.

cleus. Hence S is t independent.
The configuration of QTBS for v„=o is just

zz„z(k) ==
~

[1+N~(0) ]p,.(k) + ilV~(0)

x [{d/dx) I
'

( )] „k ~ V'-„cp, (k)
~

(16)

Thus, near the elastic limit, we have

(16)

Thus, if!z(k) =
~

P(k) ~' decreases exponentially
with k, zz,«(k) will also decrease roughly expon-
entially with k and, in view of Eq. (14), so will

G„,(k „)with k,.„.
In summary, by assuming that factorization of

the initial and final nuclear wave functions approxi-
mately represents the observed phenomenon of co-
herent recoil and by using the impulse approxi-
n:ation we can derive the basic expression for the
cross section as being proportional to the mea-
sured p-p cross section and a structure function
G(k,„) where now G(k,„) is a functional of
zz,«(k, „) which is vez'y roughly proportional to
zz(k, „). In the spirit of these crude approximations
it is not difficult to modify the calculation to see
that QTIBS should be valid for incident and/or ejec-
ted particles other than protons.

V, INCIAJSIVE AND ELASTIC SCATTERING

In view of the importance of "coherence" to an
understanding 'of lnelastlc structure functions and
of the fact that energy conservation forces coher-
ence just below the elastic limit, it is tempting, if
only qualitatively, to see whether the structure
function near the elastic limit is related to the el-
astic scattering cross section and if this can be
elucidated using the factorization of QT]33.

Qnce again, we turn to the kinematics of quasi-
two-body scaling; In the reaction p -p + q+ k, as
the momentum of the detected proton q increases
(approaching its value for elastic scattering from
the nucleus), the final momentum p' gets smaller
and smaller. Just at the edge of the continuum the
forward going proton of momentum p' is traveling
with zero velocity relative to the recoiling (!4 —1)
nucleus of momentum k. In this configuration,
there is a, finite probability, S, of transitions of the
proton to the vacant ground state (or excited states)
left by the ejected target nucleon. The capture
probability S(v„) can depend only on the relative
velocity, v„, of the recoiling nucleus and the for-

We now assume that the elastic scattering cross
section is proportional to the probability that the
incoming nucleon scatters from a nucleon of mo-
rnentum -k,. and to the t-independent capture prob-
ability S so that

where C is the elastic p-p scattering matrix ele-
ment at k„Eq. (8).

We hasten to point out that this exchange mech-
anism is expected to be valid only at rather high
mornenta and backward angles where again the ex-
change momentum transfer k —q is less than the
direct momentum transfer p —q. For example, for
A = ~, 8=180't(exchange) =. 2m~z —2m~E&while
t(direct) = (-2P) . For relativistic projectiles E&
» m&t(exchange)/t (direct) = m&/2p « I so'that this re-
quirement would apply. The present elastic scat-
tering data at energies below 1 QeV are still not in this
asymptotic region. Nevertheless, we expect that the
falloff of do/dt will reflect the scale of k, .

More data are needed in the inelastic (inclusive)
region to very low states in the continuum, i.e. ,
near the elastic limit and on elastic cross sections
at high momenta to explore the connections between
the structure function and the elastic form factors.

VI. CONCLUSIONS

From a study of the data describing the A depen-
dence of the structure function G(k) and especially
from that portion near the elastic limit in 'I,i we
have shown that the inclusive cross sections appear
to be dominated by almost coherent recoil of the
A —1 residual nucleus. This is accounted for by
noticing that the connection between the recoil mo-
mentum k and the observed momentum q in the in-
clusive processes provides a kinematic suppres-
sion of few-body recoils and also by the additional
possibility that the transition momentum, k„mark-
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ing the separation between the coherent recoil re-
gion and the few-body recoil region is as high as
1.2 GeV/c. Finally, we have outlined a new de-
rivation of quasi-two-body scaling in terms of an
effective momentuIn distribution that incorporates
final state interactions, and have suggested a very
high momentum connection between the structure
function and elastic scattering cross sections.
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