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We study a modification of the one-body dissipation mechanism for the conversion of energy of collective
nuclear motion into internal single-particle excitation energy. One-body nuclear dissipation is a consequence
of the long mean free path of nucleons inside a nucleus, and arises from nucleons colliding with the moving

boundary of the nucleus rather than with other individual nucleons. In our modification, which attempts to
incorporate self-consistency, the dissipation rate is proportional to an integral over the nuclear surface of the

square of the normal component of the normal derivative of the velocity. The resulting properties of this

dissipation are qualitatively similar to those of ordinary two-body viscosity rather than to those of the
original one-body dissipation. In particular, for small oscillations about a sphere the dissipation rate increases
with increasing multipole degree, and in fission this dissipation leads to more elongated scission shapes and to
decreased fission-fragment kinetic energies. By adjusting the parameter that specifies the magnitude, of this

dissipation, we are able to reproduce adequately the experimental most probable fission-fragment kinetic

energies for the fission of nuclei throughout the Periodic Table.

NUCLEAB BEACTIONS, FISSION Calculated dependence of fission-fragment
kinetic energies upon modified one-body dissipation. Dynamics of large-scale
nuclear coQective motion, nuclear dissipation, hydrodynamical model, ~erner-

Wheeler method.

I. 1NTRODUCTION

Nuclear dissipation —the conversion of energy
of collective nuclear motion into internal single-
particle excitation energy —is now receiving much
attention. Following the recognition by Swiatecki
in 1969 that nuclear dissipation is possibly very
large, "' several studies were made of ordinary
two-body viscosity, in which the dissipation pro-
ceeds from collisions between individual nu-
cleons. ' " When applied to nuclear fission, two-
body viscosity leads to more elongated scission
shapes and to decreased fission-fragment kinetic

ergies 8-xx Experimental mpst probable fissipn-
fragment kinetic energies for the fission of nuclei
throughout the Periodic Table are reproduced ade-
quately by a two-body viscosity coefficient of

p, =0.03+0.01 TP=19+Gx 10 "MeVs/fm',

when account is taken of the rupture of the neck at
a finite radius. "

However, at low excitation energies of the nu-
cleus, the Pauli exclusion principle strongly in-
hibits two-nucleon scattering by limiting the phase
space into which the nucleons can scatter. The
mean free path for a nucleon near the Fermi sur-
face is therefore large, possibly many times as
large as nuclea, r dimensions. As a consequence,
the short-mean-free-path assumption implicit in
ordinary two-body viscosity is questionable, and
new dissipative, mechanisms may be important.

In particular, it has been suggested that in the
long-mean-free-path regime, the dominant dis-
sipative mechanism is the ela.stic collision of nu-
cleons with the time-dependent nuclear single-
pa, rticle potential, which is referred to as one-
body dissipation. "" The traditional microscopic
interpretation of nuclear dissipation —the excita-
tion of higher levels, primarily in the vicinity of
level crossings —involves features of both one-
body and two-body dissipation. ""

By considering classically a rigid potential wall
driven through cold nuclear matter, Swiatecki de-
rived an expression for the rate of one-body dis-
sipation associated with arbitrary changes in the
nuclear shape. "'" His result is

, dzd;, 2= qP '0 'L) dSm F n

where p is the mass density, e~ is the Fermi
velocity, and u„ is the normal velocity of the sur-
face. The integral is over the nuclear surface.
In the derivation of Eq. (1) it is assumed that ~v„~
«v~ and that there is no overall motion of the
matter inside the nucleus.

Equation (1) predicts that nuclear dissipation
shouM be extremely large and —unlike the case
for ordinary two-body viscosity —that the low-
multipole oscillations should'be damped more
strongly than high-multipole oscillations. In fis-
sion this leads to a slow descent from saddle to
scission and to a compact scission configura-
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tion. "'"'""' Without the use of any adjustable
parameters, the resulting calculated most probable
fission-fragment kinetic energies for the fission of
nuclei throughout the Periodic Table are in ap-
proximate agreement with experimental values.
In particular, the calculated energies are about 8'
larger than the experimental values, when account
is taken of the rupture of the neck at a finite ra-
dius

In dynamical calculations of fission, Eq. (I) can-
not be used past the scission point because for
the uniform translation of the fission fragments
it yields a finite dissipation rather than zero. For
a uniform translation or a uniform rotation, Eq.
(I) can be modified to remove this spurious dis-
sipation, "but there is no satisfactory way to in-
terpolate between the one-body dissipation formu-
las that are meant to apply before scission and
after scission.

Later work within the linear-response formal-
ism has shown that even with the simplifying as-
sumptions of rigid potential walls and cold nu-
clear matter, one-body dissipation is a more
complicated phenomenon"'""' than is suggested
by Eq. (I). Because of the long mean free path
for nucleons, this type of dissipation is highly
nonlocal, coupling the velocities of points widely
separated on the nuclear surface. Equation (l) is
only the local contribution to the dissipation rate.
Important quantal corrections for the effects of
curvature and diffuseness of the nuclear surface
also exist.

Here we explore an aspect of one-body dissipa-
tion that has been overlooked by the previous per-
turbative treatments, namely, self-consistency.
In Sec. II we attempt to incorporate self-consis-
tency by means of a heuristic argument, which
leads to a modification of Eq. (I). The properties
of the resulting dissipation formula are com-
pared in Sec. III with those for ordinary two-body
viscosity and for the original one-body dissipa-
tion, for sma1. 1 oscillations about a sphere. The
large distortions encountered in fission are con-
sidered in Sec. IV, where we solve the dynamical
equations of motion for the descent from the fis-
sion saddle point and calculate most probable fis-
sion-fragment kinetic energies. Our summary
and conclusion are presented in Sec. V.

II. MODIFICATION OF DISSIPATION FORMULA

One-body dissipation is an energy exchange be-
tween collective and single-particle degrees of
freedom due to an incoherence arising between
these coordinates during the. collective motion.
But the motion of the nucleons themselves is the
ultimate source of the time dependence of the nu-

clear mean field, such as occurs, for example,
in the time-dependent Hartree-Fock approach.
Therefore, the single-particle degrees of freedom
are not totally independent of the collective co-
ordinates. In particular, the mean field at any
point is sensitive to the presence of nucleons with-
in a distance approximately that of the range of
the internucleon force. Thus, any motion of the
nuclear surface (mean-field potential wall) ines-
capably implies a corresponding collective motion
of the nucleons near the surface region.

Equation (I), which assumed the nuclear matter
to be at rest with respect to the moving surface,
must therefore be modified to take into account
the overall motion of the matter inside the wall.
In particular, z„must be replaced by the relative
normal velocity v„between the wall and the nu-
clear matter colliding with it. If the scale for the
variation of the collective velocity field v(r) is
large compared to the range of the internucleon
force, this relative normal velocity can be ap-
proximated by expanding v in a Taylor series
about the surface. This leads to

/go + o o ~

where X is the effective distance between the nu-
clear surface and the nuclear matter colliding with
it and where n is the outward-directed normal unit
vector. The normal derivative 8/8n=n V is eval-
uated on the surface. Alternatively, Eq. (2) may
be regarded as the first term in an expansion that
expresses the relative normal matter-wall velocity
as a folding of the collective velocity field with the
internucleon potential.

With this replacement, Eq. (I) becomes

In this modified formula, the dissipation rate is
proportional to an integral over the nuclear sur-
face of the square of the normal component of the
normal derivative of the velocity This le. ads
automatically to zero dissipation for a uniform
translation or a uniform rotation, as should be
the case.

Because of the uncertainties associated with the
derivation of Eq. (3), and because we approximate
the velocity field in terms of incompressible,
nearly irrotational flow, we treat the effective dis-
tance X as an adjustable parameter that specifies
the magnitude of the dissipation. Its value, which
is determined in Sec. IV from a comparison of
calculated and experimental fission-fragment kin-
etic energies for the fission of nuclei throughout
the Periodic Table, turns out to be slightly larger
than the range of the internucleon force.
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III. SMALL OSCILLATIONS ABOUT A SPHERE

We now compare the damping of small oscilla-
tions about a sphere for three types of dissipa-
tion: {1)ordina. ry two-body viscosity, (2) the, orig-
inal one-body dissipation, and (2) our modified
one-body dissipation. For this purpose we de-
scribe the small axially symmetric deformations
of the nucleus by expanding its radius vector as a
function of pola. r angle (9 and time t in a series of
Legendr e polynomials,

R(9, t) =Ro 1+ g (z„(t)P„(cos&)

where .8, i.s the radius of the spherical nucleus.
The equations of motion are then those of a

damped harmonic oscillator,

M„B„+q„A„+C„n„=0,
where M„, q„, and C„are the inertia coefficient,
damping coefficient, and stiffness coefficient,
respectively, for the nth multipole oscillation.
The qualitative behavior of the solutions of this
equation depends upon the relative magnitude of
q„compared to the critical value

zicr('. 2(/(f g )(/z

For g„&rior" the nth mode corresponds to expo-
nentia, lly da.mped sinusoidal oseillations, for q„
= g'„"' the nth mode is critically damped, and for
g„&g'„"' the nth mode is overdamped.

On the basis of the uniformly charged liquid-
drop model, the stiffness coefficient C„ is given
by"

(n 1)(n + 2) (o &
10(n —1)

{2n+ 1) ' (2n+ 1)'

where E,'"' is the surface energy of the spherical
nucleus and E~ ' is the Coulomb energy of the
spherical nucleus. %'hen account is taken of the
finite range of the nuclear force, the stiffness co-
efficient C„becomes, "for n ~ 2

((t~,—xt —+1 (
——1+ —+1 exp

(2n+1) (& a (- a a a

'o I o ~ o E(o)

10(n —1) (,)
(2n+ 1)'

where a is the ra.nge of the Yukawa effective two-
nucleon interaction and where I„„&,and K„„&,are
modified Bessel and Hankel functions, qespective-
ly. For a uniform translation, described by n= 1,
the stiff ness coeff icient is zero. As the degree n

of the rnultipole oscil. lation increases, the stiff-

ness coefficient increases. This rate of increase
is more rapid in the liquid-drop model than when
account is taken of the finite range of the nuclear
force.

In calculating the inertia and damping coeffi-
cients, we approximate the velocity field inside
the nucleus in terms of incompressible, irrota-
tional flow. The inertia coefficient M„ is then
given by"'

3
o- (2, 1) Po

where M, is the total mass of the nucleus. For a
uniform translation, the inertia coefficient is
simply M+oz. As the degree n of the multipole
oscillation increases, the inertia coefficient de-
crea, ses.

For ordinary two-body viscosity and the as-
sumed irrotational flow, the damping coefficient
q„ is given by"'

8z/(n —1)
n

where p, is the ordinary two-body viscosity coef-
ficient. The damping coefficient for this type of
dissipation is zero for a, uniform translation and
increases slowly as n increases.

For the original one-body dissipation, t:he damp-
ing coefficient q„ is given by"

1-body, orig 3r A4 gtl 1) o m z

where p is the mass density and v~ is the Fermi
velocity. (Unlike the case for the other two types
of dissipation, the original one-body dissipation
is independent of the nature of the internal velocity
.field. ) The damping coefficient for the original
one-body dissipation is spuriously finite for a uni-
form translation and decreases as n increases.
However, with the modification discussed in Ref.
17, the result for a uniform translation or a uni. —

form rotation is zero.
For our modified one-body dissipation and irro-

tational flow, we find that the damping coefficient
p„ is given by

(-boy, moo 2 (n 1) tt 2 yz
io (2n 1) o Pm~z

where the effective distance ~ specifies the mag-
nitude of the dissipation. The damping coefficient
for this type of dissipation is zero for a uniform
translation and increases as n increases.

For the n= 2, 3, and 4 multipole oscillations,
we show in Table I the damping coefficients for
a '"U nucleus corresponding to each of these three
types of dissipation. For ordinary two-body vis-
cosity, the oscillations are somewhat under-
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TABLE I. Comparison of damping coefficients for the
small oscillations of 236U about a sphere. The inertia
and damping coefficients are calculated for incompress-
ible, irrotational hydrodynamical flow, and the stiffness
coefficients are calculated by taking into account the
finite range of the nuclear force, using the constants of
Ref. 35. The value of the two-body viscosity coefficient
p, is taken to be 0.03 Tp (Ref. 11), and the value of the
modified one-body dissipation coefficient & is taken to
be 3 fm (see Sec.- IV). The results are presented in
units of the critical damping coefficient q„""=2(M„C„)1~,
which is different for each multipole oscillation.

q 2-body/q crit
n n

1-body, orig /m crit q 1-body, mod/~ crit
n n

0.72
0.71
0.85

5.44
2.90
2.38

0.32
0.68
1.25

damped. The n= 3 osc'illation is damped slightly
less rapidly than the n= 2 oscillation, whereas
the n=4 oscillation is damped somewhat more
rapidly. For the original one-body dissipation,
the oscillations are highly overdamped, with the
amount of overdamping decreasing as n increases.
For our modified one-body dissipation, the n= 2

oscillation is highly underdamped, the n= 3 os-
cillation is somewhat underdamped, and the n= 4
oscillation is somewhat overdamped. This strong
dependence of the damping upon n means that the
quadrupole oscillations of nuclei in their ground
states are damped only partially, while fission,
which involves also higher multipole oscillations,
is damped somewhat more highly. (Because for
ground-state nuclei the true nuclear inertia is
substantially larger than the value for incompres-
sible, irrotational f1.ow, the actual damping of the
quadrupole oscillations is even less than that given
in Table l. )

For each of the three types of dissipation that
we are considering, the damping can also be cal-
culated exactly for pure spheroidal distortions of
arbitrarily large eccentricity, provided that we
approximate the velocity field inside the nucleus
in terms of incompressible, irrotational flow.
The relevant formulas are given in the Appendix.

IV. I.ARGF. DISTORTIONS IN FISSION

To study the effect of our modified one-body
dissipation on the dynamics of fission, we solve
numerically the classical equations of motion for
a fissioning nucleus, ""with the dissipation rate
specified by Eg. (3). Prior to scission, where the
nuclear shape is parametrized in terms of smooth-
ly joined portions of three quadratic surfaces of
revolution, ~ Eq. (3) is integrated numerically.

After scission, where the fission fragments are
described in general by two spheroids, "Eq. (3)
is integrated analytically, with the result given
in the Appendix. In calculating the nuclear macro-
scopic energy, we take into account the finite
range of the nuclear force." This permits us to
determine scission as the point where stability
against neck rupture is lost. " The Werner-Wheel-
er method is used for determining the incompres-
sible, nearly irrotational hydrodynamical flow
pattern. "" The Bayleigh dissipation function E
that enters into the modified Lagrange equations
of motion is given by E= 2dE«, /dt.

Figure 1 displays the dependence of the calcu-
lated dynamical path for the fission of '"U upon
the magnitude of our modified one-body dissipa-
tion. Relative to the path for zero dissipation,
modified one-body dissipation leads to more
elongated shapes during the descent from the
fission saddle point. This is similar to ordinary
two-body viscosity and opposite to the original
one-body dissipation, which leads to compact
shapes. After scission, the path for zero dissi-
pation corresponds to an oscillation of the fission
fragments about their own centers of mass as
they separate, whereas the path for infinite dis-
sipation corresponds to a rigid separation of the
fission fragments without change in their shape.
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FIG. 1. Calculated dynamical paths in the r-0 plane
for the fission of 236U. The moment r gives the distance
between the centers of mass of the two halves of the
system, and the moment 0 gives the sum of the root-
mean-square extensions of the matter distribution of
each half about its own center of mass. The radius Ro
of the spherical nucleus is given by Ro ——&OA 3=1.16
(236) 3 fm=7. 17 fm. The oscillating curve is calcu-
lated for zero dissipation, the upper curve is calcu-
lated for infinite modified one-body dissipation, and the
intermediate curve is calculated for a value of X~= 3 fm2.
In each case the initial conditions correspond to starting
from the fission saddle point with 1 MeV of kinetic en-
ergy in the fission direction. The short line perpendicu-
lar to each path gives the location where stability against
neck rupture is lost. The dashed horizontal line corre-
sponds to configurations of two separated spherical nu-
clei.
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FIG. 2. Dependence of the neck radius at which in-
stability occurs upon Q /A ~ 3 of the fissioning nucleus,
for three values of the magnitude of our modified one-
body dissipation. The initial conditions correspond to
starting from rest an infinitesimal distance beyond the
fissi. on saddle point in the fission direction.

The intermediate path calculated for ~'= 3 fm'
corresponds to underdamped fission fragments
whose oscillations decrease less rapidly than those
for fragments with a two-body viscosity coeffi-
cient" of p = 0.03 TP.

The short line perpendicular to each path in Fig.
1 gives the location where stability against neck
rupture is lost. This occurs because the attrac-
tive nuclear force can no longer withstand the re-
pulsive Coulomb force when the neck's size is
reduced below a critical value. " As seen in Fig.
2, the neck radius at which instability occurs
for heavy actinide nuclei is roughly 2 fm for zero
dissipation and decreases somewhat with increas-
ing modified one-body dissipation. This decrease
occurs because of the reduced importance of the
disruptive Coulomb force for more elongated
shapes. Also, the neck radius at instability de-
creases for lighter nuclei, aga. in because of the
reduction in the Coulomb force.

In our calculations, we assume that the neck
ruptures instantaneously at the point of instability
and, with the exception of the case for infinite dis-
sipation, treat the subsequent motion of the sys-
tem in terms of spheroidal fission fragments.
The transition from the three-quadratic-surface
shape parametrization to spheroidal fission frag-
ments is accomplished by making continuous the
values of the moments x and 0 defined 'in Fig. 1
and their time derivatives. " The equations of
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FIG. 3. Dependence of the most probable fission-
fragment kinetic energy upon g /A ~~ of the fissioning
nucleus, for five values of the magnitude of our modi-
fied one-body dissipation. The initial conditions corre-
spond to starting from rest an infinitesimal distance
beyond the fission saddle point in the fission direction.
The dashed curves give the calculated contribution to
the translational kinetic energy acquired prior to the
rupture of the neck, and the solid curves give the ca1.—

culated total translational kinetic energy of the fragments
at infinity. The open and solid points give the experi-
mental data, whose sources can be found in Hef. 9.

motion are then integrated until the spheroids
have separated a distance of about 15R,, The
translational fission-fragment kinetic energy at
infinity is then calculated as the sum of the trans-
lational kinetic energy at this point plus the Cou-
lomb interaction energy of two spherical fragments
located at this point. For the case of infinite dis-
sipation, where the framents separate rigidly to
infinity without changing their shape, the fission-
fragment kinetic energy at infinity is calculated
exactly by taking the sum of the Coulomb and nu-
clear interaction energies at the point of insta. -
bility,

The most probable fission-fragment kinetic en-
ergies calculated in this way are shown in Fig. 3
for the fission of nuclei throughout the Periodic
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Table. As the magnitude of our modified one-body
dissipation increases, the calculated kinetic en-
ergy decreases, as a result of two different ef-
fects. First, as shown by the dashed curves, in-
creased dissipation causes the system to acquire
less translational kinetic energy prior to neck
rupture. Second, increased modified one-body
dissipation leads to more elongated shapes at
neck rupture and hence to less kinetic energy be-
ing acquired after neck rupture.

It is seen from Fig. 3 that the value

g2-3y1 fm2

for the magnitude of our modified one-body dissi-
pation adequately reproduces the experimental
fission-fragment kinetic energies for the fission
of nuclei throughout the Periodic Table. This
means that the effective distance between the nu-
clear surface and the nuclear matter colliding
with it is

1=1.7 +0.3 fm,

which is slightly larger than the range of the in-
ternucleon force.

V. SUMMARY AND CONCLUSION

In a study of the mechanism of nuclear dissipa-
tion, we have attempted to incorporate self-con-
sistency into the original formula for one-body
dissipation. We argued heuristically that the mo-
tion of the nuclear surface is caused by the motion
of the matter inside the nucleus, and that there-
fore the normal surface velocity appearing in the
original formula must be replaced by the relative
normal velocity between the matter at the surface
and the matter inside. This led to a modified
formula for one-body dissipation in which the dis-
sipation rate is proportional to an integral over
the nuclear surface of the square of the normal
component of the normal derivative of the velocity.

We studied this modified formula for small os-
cillations about a sphere. and for the large distor-
tions encountered in fission. In both cases the
properties of our modified one-body dissipation
are qualitatively similar to those of ordinary two-
body viscosity rather than to those of the original
one-body dissipation. In particular, the dissipa-
tion rate increases with increasing multipole or-
der, which leads to more elongated scission
shapes compared to those for zero dissipation.
Experimental most probable fission-fragment kin-
etic energies for the fission of nuclei throughout
the Periodic Table are reproduced adequately
when the parameter that specifies the magnitude
of our modified one-body dissipation has the value

X'= 3 + 1 fm'.

There are some uncertainties associated with
our heuristic derivation, and we do not expect our
modified formula to be the ultimate word on nu-
clear dissipation. Nevertheless, we hope that our
present considerations will prove useful in stimu-
lating further progress on this important ques-
tion.

We are grateful to W. J. Swiatecki for his strong
criticism of this work and to R. A. Broglia and
J. W. Negele for their encouragement concerning
it. J. B. Nix thanks the W. K. Kellogg Radiation
Laboratory for its hospitality during the early
phases of this work.

APPENDIX: DAMPING FOR PURE SPHEROIDAL

DISTORTIONS

For pure spheroidal distortions, the rate of en-
ergy dissipation corresponding to each of the three
types of dissipation that we are considering can
be written in the form

dE"' = q (c)c'
dt

provided that we approximate the velocity field
inside the nucleus in terms of incompressible, ir-
rotational flow. The coordinate c is the symmetry
semiaxis of the spheroid, c is its time derivative,
and q, (c) is the damping term, which is a function
of the deformation of the spheroid.

Because of volume conservation, the transverse
semiaxis a of the spheroid is related to c by

a c=R0

where R, is the radius of the sphere. In terms of
cylindrical coordinates p and z, the equation for
the surface of the spheroid is then

2 3 2a 2 R0 Zp=a ——z = — 1-—
C2 C C2

For incompressible, irrotational flow the velocity
v at an interior point is

v= —ae, +- ce, =(-2pe, +ze, )—,

where e, and e, are unit vectors in the p and z di-
rections, respectively.

For ordinary two-body viscosity, the damping
term g,(c) is given by"'

g2 bo~ 4~ 0
R3

C

where p, is the ordinary two-body viscosity coef-
ficient.

For the original one-body dissipation, we find
from Eq. (l) that the damping term q, (c) is given
by
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can be ca,lculated conveniently by means of the
series expRnsion

where p„ is the mass density, v~ is the Fermi
velocity, and f(o) is a shape-dependent function
of

For R prolate spheroid, where oP. is positive, the
quantity ~ is simply the square of the eccentricity.
However, this is not true for an oblate spheroid,
where n is negative. The function f(o) is given by

f(n) =,', [(2V —24a+ Bn')(1 n)'~'k(n)

—2V + 33ot —6& ]/&

(sin 'n'~')/n'~', »0
( )=

JLin[(1 o),g, , ( 'o)gg2))/( o) g. c'(0
Fo»e»iy sphe»c» shapes where I~I "& f(~)

For our modified one-body di88lpRtlon, we find
from Eq. (3) that the damping term 'g, (c) is given
by

ql bodFymbd -'—So(O)p ~ 12

where ~ is R pRrRmeter that specifies the xIlagnl-
tude of the dissipation. I'he shape-dependent func-
tion g(n) is given by

g(o) =-,'- [(-2V+ 43o. —20o')(1 —o.)'~'h(o, )

+ 2V —5V o+ 34 0 —4 et ]/ot

For nearly spherical shapes, where Io.
I
«1, g(o.')

can be calculated conveniently by means of the
series expansion

g(o) 1 22o, + b ~2'+ d ~3~ 8 (y4~,
21 21 77 1287
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