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Agassi, Ko, and Weidenmuller have recently developed a transport theory of deeply inelastic heavy-ion

collisions based on a random-matrix model. In this work it was assumed that the reduced form factors,
which couple the relative motion with the intrinsic excitation of either fragment, represent a Gaussian
stochastic process with zero mean and a second moment characterized by a few parameters. In the present

paper, we give a justification of the statistical assumptions of Agassi, Ko, and Weidenmuller and of the form
of the second moment assumed in their work, and calculate the input parameters of their model for two

cases: Ar on Pb and Ar on "Sn. We find values for the strength, correlation length, and angular
momentum dependence of the second moment, which are consistent with those estimated by Agassi, Ko, and

Weidenmuller. We consider only inelastic excitations (no nucleon transfer) caused by the penetration of the
single-particle potential well of the light ion into the mass distribution of the heavy one. This is combined

with a random-matrix model for the high-lying excited states Of the heavy ion. As a result we find formulas

which relate simply to those of Agassi, Ko, and Weidenmuller, and which can be evaluated numerically,

yielding the results mentioned above. Our results also indicate for which distances of closest approach the
Agassi-Ko-Weidenmuller theory breaks down.

NUCI EAR BEACTIGNS Random-matrix model and shell model used to calcu-
Iate distribution of form' factors.

I. INTRODUCTION

A transport theory of deeply inelastic heavy-ion
reactions based on a random-matrix model has
recently been developed by Agassi, Ko, and

Weidenmiiller' (hereafter referred to as AKW).
In this theory, the deeply inelastic collisions are
essentialjy viewed as a sequence of a large num-

ber of distorted-wave Born approximation (DWBA)

type excitations of either fragment. Each such
individual excitation is characterized by a form
factor, a quantity familiar from DWBA theory.
This form factor couples relative motion with
intrinsic excitation and is responsible for the
transfer. of energy and angular momentum from
relative motion to intrinsic excitation. Because of
the complexity of the highly excited states in
either fragment, AKW used a random-matrix
model to describe the statistical distribution of
the form factors. It was assumed that the form
factors are a. Gaussian stochastic process with
mean value zero and a second moment of simple
form, characterized by a few parameters. Values
for these parameters were also estimated by AKVf.

The assumptions just mentioned determine the
form of the transport equation which in turn al-
lows for a calculation of cross sections. Such
calculations seem to yield encouraging agreement
with the data. .'

In.view of these developments and results and
in view of the fact that the entire AKW theory de-

pends somewhat critically on the input, i.e. , on

the assumptions used for the statistical proper-
ties of the form factors, a microscopic deter-
mination of this input is highly desirable, and

forms the subject of the present investigation. If
a sufficiently precise statement about the statisti-
cal properties of the form factors can be attained
from a microscopic model, a comparison of the
results of the AKW theory with the data should in-
dicate whether the mechanism underlying the
theory is, indeed, mainly responsible' for the
large energy loss observed, or whether other ex-
citations of a collective type not considered in
this theory play an equally important role. In this
sense the present paper forms an integral part of
a series of investigations aimed at unravelling the
physical mechanism responsible for the deeply in-
elastic collisions.

In pursuing our goal —a microscopic calculation
of the input of the AKW theory —we naturally use
the same physical assumptions as AKW on the
nature of the deeply inelastic collisions. In par-
ticular, we neglect surface deformations and other
collective modes of excitation of either fragment.
Aside from the remarks made in the previous
paragraph, more about the underlying physical
picture may be found in the Introduction and in
Sec. 2 of Ref. I. Moreover, we focus attention
upon only one particular mode of excitation, i.e.,
creation of particle-hole pairs in one fragment by

the single-particle potential of the other. We
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thereby neglect nucleon exchange, probably the
most important mechanism for mass exchange be-
tween the two fragments, and the contribution of
genuine two-body nucleon-nucleon scattering (with
one nucleon in either fragment being excited) to
inelastic excitations. Concerning the former
mechanism, we do not believe it to be unimportant,
but rather view the present paper as a first step
which should later be followed by a similar study
of nucleon exchange processes. Concerning the
latter, we do believe it to be less important than
the mechanism studied here because of reduced
overlap.

Our microscopic model is described in Sec. II
where we also derive the expression for the form
factors coupling relative motion with intrinsic ex-
citation, and relate them to the formulas of AKW.
Section III contains a description of our calcula-
tions, and of the results. In Sec. IV we discuss
these results and compare them with the assump-
tions and estimations of AKW.

II. THEORY

A. Review of the assumptions of AKW

It is assumed that the deeply inelastic collision
happens when the tails of the density distributions
of the two fragments overlap. For this reason,
an expansion in terms of the states l sIM) is used,
which are products of the eigenstates of the two
separated fragments, coupled to total spin I with
z projection M. The form factors referred to in
the Introduction are then defined by

V„.(R) =(sIMIV„(H, t „t, )ls'I'M'). (l)

Here, V„,, (R, f„$,) is that part of the Hamiltonian
which couples the coordinate B of relative motion
(the distance between the two centers of mass)
with the intrinsic coordinates g, and f, of the two
fragments. The form of V,, will be specified be-
low. ln the definition of the states

l
sIM) as prod-

uct states and in that of the coordinate R we have
neglected antisymmetrization of nucleons in differ-
ent fragments. For the nearly grazing collisions
here considered, this should be a good approxima-

Projectile

pIG. 1. Coordinates in the collision of two heavy ions.

tion. The geometrical significance of the variables
8, f„and $, is depicted in Fig. l.

Expanding V;,t into spherical harmonics with re-
spect to R and the intrinsic variables, and using
the Wigner-Eckart theorem, we can write V„.(R)
in terms of the reduced form factors

(sI ll v [R]v lls'I')

x (sI ll v, [R]F, lls'I').

The quantity AL signifies the angular momentum
transfer per individual excitation. The sum over
L has a natural cutoff at a maximum angular-
momentum transfer h L,„. For single-particle
transitions from the last filled to the first unfilled
shell in Pb, for example, we find L -=12.

The reduced form factors are assumed in AKW
to represent a. Gaussian stochastic process in lRl
with mean value zero (for st s') and a second mo-
ment given by

((sI ll v, [R]v, lls'I')(s'I'll v, [R']v, . Is'I"))„,

y
I'

(2I + i)1/2(-2I I + l)1/2
4m

Gas 5ll" 5I.I QI, (s~ S i I, I;R, R ),

where the ( ),„, denotes the ensemble average,
and where o.~ is parametrized as

c.l, (s, s'; I, I';R, R')

KI.[pt (s)pII (S )]

x exp[ —(&, —eg) /(26 )]

x exp[-(R -R')'/(2o')] f(-,'(R +R')) . (4)

In Eq. (4), &u~ is a strength factor with the dimen-
sion of energy, p, (s) is the joint mean level den-
sity of the two heavy ions at an excitation energy
e, and for a spin I, and f is a dimensionless
function which describes the overlap of the mass
densities of the two heavy ions.

The assumption that the reduced form factors
constitute a Gaussian ensemble is based on the
statistical properties of the states

l
sIM) which,

at sufficiently high excitation energies (~ 5 MeV
for heavy nuclei) are extremely complex. It will
be shown below that this assumption as well as
the assumption that the nondiagonal reduced form
factors have zero mean are simple consequences
of a random-matrix model for the states

l
sIM),

The critical issue is thus to justify the detailed



B. R. BARRETT, S. SHLOMO, AND H. A. WEIDENMULLER 17

form of the second moment given in Eqs. (3) and

(4). It is from this form that numerical values
for cross sections follow via the transport theory
deveIIoped by AKW. In AKW, &uL was assumed to
be independent of L and of the order of magnitude
of a few MeV, ~ was estimated to be 5 to 7 MeV,
and the correlation length o was estimated to be
1 to 2 fm in the interior region and larger at the
surface, the domain of interest for deeply in-
elastic collisions.

8. A microscopic statistical model

In order to devise a microscopic model for the
reduced form factors, we have to specify the
nature of the interaction V „and we have to intro-
duce a random-matrix model for the states lsIM).
We describe these two steps in turn. Simple level-
density arguments show that in a collision be-
tween a light ion of mass 40 or 60 and a heavy ion
of mass 200, the overwhelming fraction of the ex-
citation energy resides in the heavy ion. We there-
fore simplify the presentation by replacing the
product states lsIM) by those of the heavy ion.
Th error incurred is expected to lie in the 10 to
20%%u~ region and is roughly consistent with the esti-
mated overall accuracy of our deduction.

The interaction V. , is a sum of a one-body inter-
action (the mean field or average single-pa. rticle
potential of the light ion penetrating into the mass
distribution of the heavy one) and a two-body inter-
action (the residual two-body interaction between
nucleons in different fragments giving ri.se to si-
multaneous particle-hole excitations in both frag-
ments). Due to reduced overlap, we expect the
matrix elements of the latter to be smaller by 1 or
2 orders of magnitude than those of the former,
and we therefore consider only the one-body inter-
action. (The way in which the mutual interpreta-
tion of the single-particle potential of one heavy
ion into the mass distribution of the other gives

rise to an ever increasirg number of particle-hole
excitations in both fragments is schematically il-
lustrated in Fig. 2. )

To describe the action of the mean field of the
light ion on the heavy one, hereafter referred to
as fragment 1, we use a shell-model description
for the states of the latter. In adopting a shell-
model or single-particle model for fragment 1,
and in replacing the set of intrinsic coordinates (,
introduced above by the coordinates r;, i =1, . . . , A. ,
of the A, independent particles of fragment 1, we
run into the well-known center-of-mass problem.
Since 1/A, =—0. 5/p, we disregard this problem. The
coordinates r; refer to the center-of-mass of

fragments, as their origin, and V,, is a sum of
A, terms, each depending on the variable l R —r, l,
i =1, . . . ,A„where we use the spherical sym-
metry of the single-particle potential V'" generated
by fragment 2 and neglect the spin-orbit term,

V. , = V' R-r; (5)

4w

2L+1

This defines the coefficients V&p .
We now turn to the states l sI1VI). Because of the

simplifications introduced in the first paragraph
of this subsection, these are just the intrinsic
eigenstates of fragment 1. We use a shell model
to describe the excited states of fragment 1. We
introduce the shell-model states 0 „by coupling
all particles not in closed shells to a total spin I
and z projection M, paying proper attention to the
exclusion principle. The label o. distinguishes
states with the same (I,M). We expand the state

l
sIM) in terms of the complete set 4„,

Each term in the sum on the right hand side (rhs)
of Eq. (5) can be expanded in terms of spherical
harmonics. (Such an expansion is analytically
feasible only if V'~ is of sufficiently simple analy-
tic form. We return to this point in Sec. Ill. ) We
write

Al ~ +L

Projectile

FIQ. 2. Schematic representation of the way in which
particle-hole excitations in both fragments are pro-
duced by the overlap of the two single-particle potential
wells.

Because of time- reversal invariance, the phas es
can be chosen in such a way that the coefficients
A'„are real. They form the elements of an ortho-
gonal matrix,

The random-matrix model for the states
l sIM)
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is introduced by assuming that the coefficients
A~ are random variables with a distribution to be
specified below. Before this is done, we introduce
another set of coefficients more appropriate for
the evaluation of the form factors (1). Since by
Eq. (5) V;„, is a sum of one-body operators, it is
useful to expand the states 4 into products of
single-particle states Q„"@ characterized by radial
quantum number n, orbital angular momentum /,
and spin j, and of states X & of A, —I particles
eonstrueted just like the states 4 ™themselves.
This can be done by introducing formally general-
ized coefficients of fractional parentage (CFP)
and yields

@IN(1 A )

[CFP[»lfJ;«j]](JM ~j ~IIM)
BJnl jp

x y~„(A, )}(", -~ (1, . . . ,A, —1). {9)

Here, (JM-

pj's,

)IM) is a usualClebsch-Gordanco-
efficient. When the expansions (7) and (9)are used to
calculate the form factors (1), only the product of the
coefficii~ntsA' with the CFP appears. It is therefore
convenient to define the coefficients

Bs~.„„——A, ' ~' Q A' (C F.P [n I ( PJ; n lj ]},

where we have introduced a factor A. , ' ' in the def-
inition. This factor just absorbs an overall factor
A', which arises upon evaluation of the form factor
from the sum in Eq. (5) and antisymmetry of the
wave functions

~
sIM).

We now introduce the statistical model for the
states

~
sIM) by assuming that the coefficients B

of Eq. (10) are real random variables. From the
study of the Gaussian orthogonal ensemble, it is
known that expansion coefficients like the quanti-
ties A. ~ have a Gaussian distribution with mean
value zero and a diagonal second moment, and we
shall assume this here also:

(A.'„'),.„, = 0,

(A" A'' )„,=5„5„5 (~A" ('&„. .

The ( ),„, denotes the ensemble average. It fol-
lows from Eq. (10) and the law of large numbers
that the coefficients B also have a Gaussian distri-
bution with mean value zero, and it remains to
work out the second moment. This can be done
only approximately and forms the content of the
remainder of this. subsection.

Using Eqs. (10, 11), we find

&B'8z:

( ~sI zps IBBJ'; ntj ~s~J';n l j

~s8 ~ ~II&A 1

x g ( (A'„'('&,„,(CFP[o.I(PJ;nfl ] j
{CFP[ I)S'J'; 'f'j']]. (12)

The product states Q„"„y& are not antisymmetric,
and the CFP are therefore not the elements of an
orthogonal transformation. If they were, it would
be easy to argue that the second moment of the
B's is diagonal also in (P, P'), (JJ'), (nn'), (f l '),
(jj'). Actually, this is not necessarily true.
Being unable to evaluate the relation (12) in a
more accurate way, we shall, nevertheless, make
this assumption, relying on a cancellation of
terms with opposite signs for the nondiagonal
parts of the second moment,

sz s'S '
(B8 J'lnU BO'z n'l'j'&ave = ss'5II'588'5Jz' 5nn'' 5Ll' 5j j'

&& & IB'8'~;.i I'&... (»)
At this point the reader may wonder why we go

through the trouble of working in a scheme with
angular-momentum coupling rather than in the
m scheme, where these problems would disa.ppear.
We do this in order to connect our work with the
AKW formulas which relate to the reduced matrix
elements. Use of the latter in AKW is indispens-
able for keeping proper track of the angular-mo-
mentum transfer from relative motion into intrin-
sic excitation. This transfer affects the angular
distributions.

fn order to evaluate the rhs of Eq. (13}, we in-
troduce a model, and thereby an approximation.
We emphasize from the outset that because of
reasons to be explained below, this approximation
is accurate only to within a factor of 2 or so. We
shall see, however, that the approximation mainly
affects the strength factor of the second moment,
i.e., the quantity denoted by ~~ in Eq. (4), while
it has little influence on the other factors on the
rhs of Eq. (4) and virtually none on the radius-
dependent quantities appearing there.

We assume that fragment 1 is doubly ma, gic.
This simplifies the presentation but does not af-
fect the generality of our results. We specify the
label P introduced in Eq. (9) by two new labels, N
and y. Here, N denotes the number of particles
above the Fermi surface, and y is a, further label
needed to specify the states completely. For later
use we observe that the number of holes in the
state P is (N+1). This is because the states
labeled a have equal numbers of particles and
holes.

The modelfor the rhs of Eq. (13)consists inassum
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ing that the state
~
sIM& is spread over the angular

momentum coupled product states ILP„„y8)z~
(or, conversely, that each such product state is
spread over the states

~
sIAI&) in a manner known

for isolated doorway states and given essentially
by a Lorentzian. To make this statement more
pr ecise, we introduce a few definitions. Let e» ~

be the excitation energy of the states X», and let
p„"z'(e»~) be their mean level density, D~z'
=(P„"~') ' their mean level spacing. The index

(A —1) is introduced to recall that these states
refer to the (A, —1) particle system. (To simplify
the formulas, we replaceA, byA inthe sequel. ) Sim-
i1.arly, let e„„.be the single-particle energy, which is
larger (smaller) than the Fermi energy ez for
particles (holes), and let e„» =

~
e~ —e„„(be the

excitation energy of such a state, with p,',. (e„„)
the associa. ted level density. Throughout our
work, we disregard the spin-orbit splitting and
therefore suppress the index j of e„» and p,', in
the sequel. We also assume that the densities
of particles and holes summed over l and j are
about the same near the Fermi surface. It then

6 (& r)P~i (enyo)~(~z e t)=Pcs(E)
(14a)

dani deg&g 5 (tnt + Epr& g
'—E)

x p,'(e«)p„z'e(e« —ez)= pe+&s (E) . (14b)

We denote by P„"z (e) the probability of finding a
state with E particles and holes and spin I at en-
ergy e. Obviously, we have

where Dz (e) is the mean level spacing of all the
states with spin I at excitation energy e. The
parametrization for the second moment of the B's
is written in the form

(16)

The quantity I denotes a spreading width which
we estimate to be 5 to 10 MeV, a value typical for
spreading widths of states at excitation energies
of 20 or 40 MeV. The physical interpretation of
Eq. (16) is straightforward. The last factor des-
cribes the Lorentzian spread referred to above.
The factor in square brackets distinguishes the
case e~ & e„„when the product state contains E
particles and holes, and e~& e„„when the product
state contains (N+1) particles and holes. The
factors D„"~ are necessary for dimensional rea-
sons and in order to ensure proper normalization.
To see this, we notice that the coefficients B
must obey the relations

Ny Jnlf

(17)

Equations (17) hold if we assume the CFP's to be
approximately orthogonal, as we did in Eq. (13).
To check the first of Eqs. (17), we use Eq. (16)
and sum it over the relevant indices. We change
the summations into integrations, putting in the
appropriate level densities, and use Eq. (14). Ob-

serving that+„P„"z (e) =1 for all e, we see that
the first of Eqs. (17) is fulfilled. It is instructive
to check also the second of these equations. Start-
ing again from Eq. (16) and changing the sum-
mation into an integration, we immediately find
the desired result if we replace the argument
(e „,+ e»z) of D„and D„,, by e, and use the re-
lation (16).

The substitution c „, +O'NyJ' E is justified only
if the ratio D„z (e „,+e»~)/D„J (e, ) is sufficiently
close to unity over the range of the e, integration.
Because of the exponential dependence of D„on
e„and the very slow rate of change of the Lorent-
zian, this substitution is never really justified.
We disregard this problem since an attempt to
improve on the formula (16) would involve a con-
siderable amount of analytical work. This seems
hardly worthwhile since so little is known about
the details of formulas like (16). We prefer to
view Eq. (16) as a rough approximation. Wherever
necessary, we shall stipulate that the Lorentzian
falls off more strongly than the level density
changes, although this is analytically not so. As
remarked above, this procedure will be seen to
influence mainly the strength ~~ of the second mo-
ment, but not the other factors.

In the light of these remarks, we may introduce
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the substitution e „, + e»J - e, .from the outset in

Eq. (16). Together with Eq. (15), this leads to the
simple expression

r/(2'�)
& +ttyz;ett' I )ave DI (es) v — vs t s

(&s —& nl
—

&Ny J j + 4 I

(18}

shall use throughout. We hope that this will con-
vey a better feeling for the limitations of our
estimations than a straightforward presentation
proceeding directly via Eq. (18) would have con-
veyed.

C. Distribution of form factors

This is the form of IB I' we shall use henceforth.
It obviates the necessity to introduce the quanti-
ties D», P» defined above. We have, neverthe-
less, preferred to use the apparent detour via
Eq. (16) to exhibit the type of approximation we

With the help of the formulas of Sec. IIB, we
can now determine the distribution of the form
factors (1). Using Eqs. (6), (7), (9), and (10) in

Eq. (1}, we find after some straightforward angu-
lar-momentum algebra

+l

&sIMI Vm, ls'I'M& = p Bttys;ntt Btsys;n't't'Q Q (
N y J nl j n'l'j ' I;-0

x[2l+1)(2l'+ 1)(2j+1)(2j'+1)(2I+1)(2I'+1)(2L+1)/(4tt)]t '

Here, 8„l is the radial part of the single-particle wave function Qn». Comparing this with the AKW re-
sult, Eq. (2}, we find that the reduced form factors are given by

tI t
(sI II Vz, ~i, II

s'I') = ~ Iit'tye, nt t

attrib

z, t't'n
Ny Jnlj n'ltj '

x (-)tys [(2l +1)(2l'+ 1)(2j + 1)(2j' +1)(2I+1)(2I't+1)(2I, +1)/(4tt)] ' '

S.P.

0 v fv L J I Iv ( nt I i I n t ) (20)

In view of the fact that the rhs of Eq. (20} contains a sum over many terms, each one containing the
product 8'B' of two Gaussian-distributed random variables, we conclude that the reduced form factors
also have a Gaussian distribution. From Eqs. (12) it follows immediately that for st-'s, the mean value
of the form factor is zero, and it remains to calculate the second moment, see Eq. (13}. Inserting Eq.
(20) into the left hand side of Eq. (3), and using Eqs. (12), (13), we find

&(sI II v, (It)y, lls'I")(s'I'll v; (It')F, lie" I")&,„,

~ tlt
6ssn oa &+

ytt; s&nIt&ave &itsy s;n't't' I &ave
Nqsnl jAtjt

x( )' '~ y I —(2l+-1)(2l'+1)(2j+1)(2j'+1)(2I+1)(2I'+1)[(2I +1)(2L'+1)]tI'
4m

/ I., /' l' J.'l l j —,
' l' j' -,'- L, y'j L,'g j''

0 0 0 0 0 0 j' E' I j l L' 8 I I' J I'I
x (It„,l

v' [&]II~"t )(It"t'I vi''[It'] II~.t.) ~ (21)

The radial form factors depend on 8 and A', respectively, -as indicated by the arguments of VI'" and VI', /

In order to perform the summation over N and y, we use Eq. (18). Changing the summation over y into
an integration, carrying out the summation over N and using the relation

pl (~ ) =(»+1)p.(e)

which is valid for levels not too close to the yrast line, we find

(22)
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g(fa„', „„f')...(fa,",.„,, I')„,=(u+1)(21+1)-'(2I'+1)-'Il,"(»,)D,"(»„)

[ &/(2~)]'p." '(«„)
"[(»,-»„, —«„)'+-,'I' ]f(»,, -»„', , —«,)'+-,'r'] (23)

Keeping in mind the 1"emax'ks made in the pa."a-
graph preceding Eq. (18), we can roughly evaluate
the integra, l in Eq. (23) as follows. Since pg"' in-
creases exponentially vrith e„, and since the Lor-
entzians confine e„ to values roughly given by
&, —i„,+ ~

I' Rnd &,, —i„,, + 2I', we obtain the big-
g6st contribution lf 6„& Rnd 6„,&&

dlff6x' from zero
-by less than =&I". Keeping in mind that I"= 5 to j.O
M6V, we therefore confine the summation over
(n, I,j) and (n, f,j') in Eq. (21) to the two shells
adjacent to the Fermi surface (this restricted sum-
mation will be indicated by a prime on the summa-
tion symbol), and put «„,=0=»„,, in Eq. (23). We
Qow observe that the product'of the two I orentzi-
ans is peak& at —,'(», +», .) and accordingly replace
p." '(«,) by p.

" '[-'(», +», .)] -=[p'. '(».)p". '(», .)1"'.
Using staQdRx'd I'evel-density fol mulas -we cRQ

convince oux'selves that the last formula is a good
approximation for I«, —», , f« I'«10 Mel». The
integral ever the two I.orentzians can easily be
carried out. Replacing Do~(», )[p," '(», )]'»' by
[Do (»,)]» (which xs agam a good approximation
for heavy nuclei), we find for the rhs of Eq. (23)

the value

(2Z 1){2r+1)-'{2Z' 1)-'[D"(» )Il"(»')]'»2

I /(2m)
( )

(«, —«, , )'+ —,'-I '
Using this result in Eq. (21), which carries now
the restricted summation over (nlj) and (n'l'j')
x'efex'x'ed to Rbove, we cRQ pex'form th6 summR-
tions over J, j, and j'. %6 use the facts that
{I+&+J) is integer, that we disregard the spin-

b't pl.tt g, a dth d tt

&(sf ff I», (Z)I; ffs'I')(s'I'
ff

I», , (ft') ffs "I")&.„,

x '2---- 8„) V~ ~' A R„,, E4„,, t/"~'"' 8' 8„, . 26
ntn l' (0 (l 0j

We compare this result with Eqs. (3) and (4). Recalling Eq. (22), and defining n by analogy to Eq. (3), we

fllld .

(27)

In writing Eq. (27), we have added a superscript
"theor" to 0 to distinguish it from the quantity
appearing in Eq. {3). We have also disregarded
the difference in level densities between fragment
1 and the full system, cf. the fix st paragraph of
this 86ctlon.

Comparing Eq. (27) with Eq. (4), we observe
that the Lorentzian appearing in the former is re-

placed in the lattex by a Gaussian. In view of the
stlpulRtlons introduced on the behRvlox' of the I or-
eQtzlRQ Rnd the approximations mRd6 ln del lvlng
Eq. (27)i lt I 1n8deedi meanlllgful to make such
R I'ep lRc 6m ent» wl"1 ting
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The two functions appearing in (28) have the same
value at & = 0 and, within a factor 1.6, the same
normalization. After the substitution (28) has been
made in Eq. (27), the comparison with Eq. (4)
shows that

sr~ exp[-(R -R')'/(2o')]f(, '-(R+R'))

(2l +1)(2l'+1) l I- l'

2I+1 0 0 0

III. DESCRIPTION OF THE CALCULATION

The dependence of the second moment, Eq. (26),
on R and A" is found by numerical calculation.
Let

~' (Ii +1)(2l'+1)
k~ R, R') = ~ (2 1)

x(R„, lv;~ [Rl lR„., )

x(R„, lv,' [R llR„, ).

We evalua. te the expression (30) and the radial
form factors

(R„,lv', " [R]lR„., )=- drR„, (~)v,"(R,v)R„,.(r)

for the reaction "Ar +'"Pb. Here, 9„, is.the
rad'ial part of a single-particle wave function
rp„, =r 'R„, (x)YP in '"Pb, and VP (R, r) is de-
fined by Eqs. (5) and (6) through the expansion of
the mean single-particle potential of the nucleons
in 'Ar acting on the nucleons in '"Pb.

The potential V" (lR —rl) in Eq. (5) was taken
to be of Woods-Saxon form,

-I
V'~ (l) = V, 1+exp (32)

where j = lR —rl. We have taken the values

V, =50 MeV,

c =4.5 fm,

a --0.65 fm,

x(II„, l
V~" [R] lR„,.)

x(R„, lvg" [R']lR., ).

It remains to show that the rhs of expression (29)
does, indeed, have the factorization property and
Gaussian behavior postulated by the lhs, and to
determine the values of correlation length cr and
strength ~~. This is the task of numerical calcu-
lations described in the next section. From the
derivation presented in the present section, it
should be clear that e~ cannot be determined very
ac curately.

which yield a root-mean-square (rms) radius of
4.24 fm. In order to carry out the expansion (6),
we approximate V'~ (P) by a sum of Gaussians,

v" (5) =—' V.P ~ exp(-~. &').

Each Gaussian is written in the form

exp(-~ IR —r I') =-exp(-~ [R'+x'l)
x exp(2x Rr cose),

a d the last factor is expanded' as

exp(z cos0) =g (2I. +1)F~(z)&i(cos8),

F.(z) =['/(2z)] "I.„~,(z) .

(3,6)

and the recurrence relation

F, , (z) -F„,(z) = —F, (z) .2L +I

If z & 1., numerical stability requires that we solve
Eq. (3Vb) in the direction of decreasing I.. Using
Eqs. (35) and (36) in Eq. (34) and comparing the
latter with Eq. (6), we obtain

V,"(R, r) = V, Q v. exp(-~ [R'+~ '] )(2I. +1)

xF~ (2 A.„R~). (38)

Figure 3 shows the quality of the Qaussian ap-
proximation, Eq. (34). The solid line gives the
Woods-Saxon factor, the long-dashed line the func-
tion obtained by retaining a single Gaussian in the
sum (34), and the short-dashed line the two-Gaus-
sian approximation. The parameters (A„,v,„) of the
Qaussians were obtained by minimizing the volume
integral of the square of the difference between
the potentials (32) and (34), keeping the rms radi-
us at a reasonable value. &his yields u, = I.735 and
A. =0.073 fm ' for the single-Qaussian approxima-
tion (rms radius 4.55 fm). For the two-Gaussian
approximation, we demanded A =2k, to avoid
numerical instability and obtained ~, = 0.095 fm

v, =3.486, and v, =-2.'l39 (rms radius 4.34 fm).
Figure 3 shows that the single-Gaussian approxi-
mation is fairly good in the surface, but deviates
from the Woods-Saxon form in the internal region,
while the two-Gaussian approximation is better
nearly everywhere. Deeply inelastic collisions
take place mainly in the nuclear surface region.
We therefore expect the two-Gaussian approxi-
mation to be good enough for our purposes. This

The functions I~ „,l, (z) are modified spherical
Bessel functions of the third order. The functions
F~(z) can be calculated using

F,(z)=-, F,(z) =(zcoshz —sinhz)/z',
sinhz
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particle-hole type (excitation across the Fermi
surface), for both protons and neutrons. For L
even, on the other hand, we get contributions from
the hole-hole and from the particle-particle ma-
trix elements, for both protons and neutrons. To
account for the proper occupation probability of
the hole and the particle orbits, the results for
even L were divided by 2. This yielded reasonable
agreement with the odd L values.

In order to comps. re h~(R, R') with the AKW
ansatz (4) we write h~(R, R') in the form

hl, (R, R') = f/ (—,'(R+R')) g~(R -R')
0.40—

0.20—

PIG. 3. The ~oods-Saxon form factor (solid line),
the single-Gaussian approximation Pong dashes), and
the two-Gaussian approximation (short dashes) p]otted
versus A (in fm).

will be tested explicitly by comparing the results
obtained for the second moment from the single-
Gaussian and the two-Gaussian approximations.
For those values of R and R' where both approxi-
mations give nearly identical results, we can be
sure that the internal region is unimportant, and
that the approximation in the surface region is
sufficiently accurate.

The radial wave functions R„, needed to calcu-
late the expressions (31) were found by numeri-
cal integration of the appropriate single-particle
Schrodinger equation for '"Pb. For the potential
well, we used the Woods-Saxon form (32) with

U, =- —46.2 MeV, c =7.36 fm, a =0.66 fm

for neutrons;

U, =- —60.7 MeV, c =7.52 fm, a =0.80 fm

for protons.

For the protons, we included the Coulomb poten-
tial obtained from a uniform charge density dis-
tribution which corresponds to the experimentally
determined charge rms radius of 5.5 fm. The or-
bits involved in the restricted summation appear-
ing in Eq. (30) and the associated single-particle
separation energies are given in Table I.

The function h~ (R, R') was obtained by numerical
integration of the expressions (31), and by numer-
ical summation of the expression (30). Since in
Eq. (30) we have l+L+ l'= even, the sum in (30) is
restricted, for L odd, to matrix elements for the

TABLE I. Single-particle orbits and their calculated
separation energies (MeV) in BPb.

Neutrons Protons

Ok

1f
2P

Oi

2'
3s

13.65
9.88
8.35

6.22
2.61
1.52
1.38

Og

2s

13.58
9.69
8.23

6.78
2.64
0.79

with g~ (0) =1 (40)
l

and ask whether this ansatz can approximately
describe our numerical results. In Fig. 4, we
show the functions f~(R) =h~(R, R) versus Rfo, r
L=0 to L=6, and for R&8 fm, as obtained
from the two-Gaussian approximation. In Fig. 5

we show the function g~(R -R') =h~(R, R')/
f~(,—'(R+R')) for I, = 1, and for the following' val-
ues of —,'(R+R')=R:R =6 fm, R =12 fm, R =16 fm.
(Note that the quantity R is simply denoted by R
in Fig. 5.) Figure 6 gives a similar plot for I.=4.
Figure 7 shows g~ at a fixed value of R = 10 fm,
and for L =0 (full curve) and L= 5 (dashed-dotted
curve). For comps. rison, the dashed curve is a
Gaussian, exp[-(R -R')'/(2o')], with c=3.5 fm.

Figures 5-7 show that in the region of interest,
namely 10 fm==R. 14 fm, the approximation (40)
is quite good, gl is very close to a Gaussian, and

fairly independent of the value of R. It is, for
0 «L ~5, also fairly independent of L. This justi-
fies the Gaussian ansatz exp[-(R -R')'/(2c')J in

Eq. (4) and suggests for c a value of about 3.5 fm,
independent of L and R. Figures 5 and 6 show that
for R =16 fm, a larger value of 0 is required.
However, such large distances do not play any
role in the deeply inelastic collisions.

The function f(,'-(R+R')) introduced in Eq. (4)
i's related to the function f~( ,'(R +R')) d—efined in
Eq. (40) and displayed in Fig. 4 by the relation

ur f(-,'-(R +R ')) = 4/(vI)f ' ( ,'(R '+R ')) . —(4l)
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FIQ. 6. Same as in Fig. 5 except that I =4.

10

FIQ. 4. The functionf I of Eq. (40) in units MeV2

plotted versus R= ~(B+R') (in fm) for various I. values.

This follows from the relations (29), (30), and

(40). Figure 4 shows that for R ~10 fm, all the
functions f~ have roughly the same exponential de-
pendence on R, so that Eq. (41) is fulfilled and can
be used to determine ~~. We do this by putting .

arbitrarily f(10 fm) =1 and by choosing wI /4 =5
MeV. (It was emphasized above that this choice
of I' is a rough figure which c'ould equally well be
taken to be 10 MeV. ) This yields the values for
~~ listed in Table II.

We have, checked the accuracy of our numerical
results in two ways. We have changed the distance
between mesh points in the integration procedure
from 0.1 to 0.4 fm, and the results changed in-
significantly. We also compared the results of the
single-Gaussian approximation with those of the
two- Gaussian approximation presented above. The

results were very similar for R ~ 10 fm; signifi-
cant devlatlons appeared only for g & 9 fm.
is the domain for which the density overlap be-
tween the two fragments is very considerable; the
AKW model which is based on peripheral colli-
sions is not expected to work in this domain. We
conclude that for 8 ~ 10 fm, our numerical find-
ings are accurate, and that it is only the surface
region of the single-particle potential which is
important in this domain. For 8 & 9 fm, the func-
tion f 'I„oscillates, for I.~ 4, in the two-Gaussian
appI oximation and fails to do so in the single-
Gaussian approximation. This shows that in the
domain A'& 9 fm, the internal part of the single-
particle potential does play an important role.

For the special case of inelastic excitetion of
nucleons in one fragment by the mean potential of
the other, the present study provides a very strong
corroboration for the AKW model. The theoretical
deliberations of Sec. II have shown that the reduced
form fRctoIs hRve R Gaussian dlstI lbutlon with zerc

1.00—
L. ='I

g (R-
g (0)
R=8

I I

1,00
I I

0.40—

0.20—

0.40

0.20

-12 8 12
R-R (&~)

FIQ. 5. The function gi(R-R') of Eq. (40) plotted
versus R -R' (in fm) for I =1 and for various values
of R™= ~(R+R'). In the figure, R is replaced by R.

12 14
R-R (Ir )

FIQ. 7. The function gz(R —R') of Eq. (40) plotted
versus R —R' (in fm) for 1.=0 (full curve) andI. =5
(dot-long-dashed curve) for R = ~(R+R') =10 fm. The
s'hort-dashed curve shows a Qaussian with 0.= 3.5 fm.
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TABLE II. The strength factor ~L as a function of L.

~~' (MeV)

0
1
2

3
4
5

6

20.0
29.0
34.0
19.0
16.0
4.0
1.5

aAe given by Eq. (41) with f(aR+R')) =1 at a(R+R') = 10
fm and —,'(~I) =5 MeV.

mean. Moreover, the second moment has a value
consistent with the ansatz (3), (4). We have seen
how the factor involving the level densities in Eq.
(4) comes about, and we have indicated the exis-
tence of a cutoff factor in energy. It is difficult
to ascertain whether this factor is Gaussian in
shape, as assumed in Eq. (4). It is equally diffi-
cult to give a reliable estimate of the parameter
6 which must be identified with the spreading
width I", and thus has roughly the value 5 to 10
MeV. It was also pointed out in Sec. II that the
overall strength of the second moment cannot be
estimated very reliably.

Results of a more definite quantitative nature
were obtained on the ratios of the strength factors
&u~, on the form of the function f(-, (R+R')), on the
form of the correlation function in (R -R') which
turned out to be Gaussian, and on the correlation
length o. The AKW model is expected to work for
c.m. distances R = —,'(R+R')~ 10 fm. Indeed, for
Ar and Pb the "touching distance, " defined by the
sum of the two radii taken at the half densities,
is about 11 fm. For 8 ~ 10 fm, the density overlap
of the two fragments is so strong that it is no long-
er meaningful to talk about separated fragments,
and to use an expansion in terms of eigenfunctions
of the two separated fragments, as is done in the
AKW theory. The results of Fig. 4 show, on the
other hand, that for A ~ 15 fm the mutual overlap
has decreased to such a point that nuclear inter-
actions are no longer important and are completely
dominated by the Coulomb interaction.

In the domain 10 fm &R &15 fm, only a few L

values with L &6 contribute. The strengths el of
the various contributions are listed in Table II.
The ratios zl, /ul. are expected to be determined
quite accurately. Higher values of L are unim-
portant since they give ~~ & I MeV. For L &'4,

the strengths ~~ are grouped together quite
closely. The function f (-,'(R+R') is normalized
to unity at R =-, (R+R') = 10 fm and decays ex-
ponentially with increasing A, see Fig. 4. We

have also seen that the correlation function can be
approximated surprisingly well by a Gaussian,
and that; the correlation length o has approximately
the value o = (3.5+ 0.7) fm, independent of I. for
L == 5 and of 3 for 10 fm &R™& 14 fm. This value
of 0 is consistent with the original AKW estimate
which stated 0 =I to 2 fm in the nuclear interior,
and somewhat larger in the nuclear surface. Act-
ually, o has a tendency to increase with B and to
decrease with L. Both these features can be safely
neglected in the domain just indicated.

To test the dependence of our results on mass
numbers we performed a similar calculation for
Sn (rather than Pb) as the heavy fragment. Our
results are in very close agreement with those
presented above for Pb. The important L values
are restricted to L & 4 rather than L &6 but other-
wise nothing changes. This shows that the para-
metrization (4) should be applicable for all heavy-
ion reactions.

The microscope model for form factors of in-
elastic nucleon scattering developed in the present
paper thus produces results consistent with the
statistical ansatz of AKW, in the domain of A val-
ues typical of peripheral collisions, and thus
justifies this ansatz microscopically. By giving
precise estimates for the correlation length 0,
the form of the function f( —,'(R+R')), and the rela-
tive importance of various L contributions, the
present study narrows down some of the ambigui-
ties of the AKW parametrization. This should
help in testing the AKW model by comparing its
predictions with the da~a. Aside from inelastic
nucleon scattering, the AKW model also includes
nucleon exchange as a mechanism to produce
deeply inelastic collisions. An extension of the
present study to nucleon transfer processes would
therefore be highly desirable.
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