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Matrix elements of a general Hamiltonian 0 in a subspace spanned by collective X '' = 0 deformed

phonons are derived with the help of recursion formulas. Various approximations are discussed both in the

fermion space and in the boson space. Careful comparisons are made in the framework of a simple solvable

model.

pNUCLZAn STnVCTUaE M.tttphonon ~=O".««»nd. torched. «i.t. Exact ~
and approximate relations for matrix elements of a general Hamiltonian. Appli-

cation to a solvable model.

I. INIODUCiION

In many theories of nuclear collective motion,
the concept of the phonon is adopted in order to
describe the lowest excitation energies of an even-
even nucleus.

In spherical vibrational nuclei the first 2' state
is generally assumed to be a one-quadrupole-
phonon state and the members of the triplet 0',
2', 4' are two-phonon states. Nevertheless, an-
haxmonic effects are observed and lead to more
complex structures of these levels. A lot of work
has been devoted to tIle study of such anharmoni-
cities.

One of the most promising ways to tackle this
problem is the boson expansion method. Kith
these techniques Kishimoto and Tamura' explained
very nicely on equal footing the vibrational spheri-
cal nuclei, transitional nuclei, the rotational ex-
citation. , and the one-phonon vibrational states of
deformed nuclei. But so far very little has been
done to study multiphonon intrin. sic states of axial-
ly deformed n.uclei, where the quadrupole phonon
is split into two different phonons: Qne with K'

. = 0' often called P vibration and one with K' = 2'

(y vibration), degenerate with the K' = -2' vibra-
tion. In some deformed nuclei where one-phonon
intrinsic states appear well below the pairing gap
ther6 ls soIQe exp611Dlental evidence fox' two-
phonon intrinsic levels, showing also anharmonic
effects.

This paper is an attempt to study in a micro-
scopic way some of these effects. In the case of a,

deformed basis where the single-particle levels
are only palrwlse degenerate, boson expansions
are expected to be poorly converging. ' To avoid
these difficulties, it has been proposed4 to remain
in the fermion space and to diagonalize the Hamil-

tonian in the col.lective space sPanned bF (Q )"~0)
where gt j.s a phonon operator of collective type

The Pauli principle is then
correctly fulfilled but the calculation of the norms
of these states and the matrix elements of II be-
tween them is quite tedious. Holzwarth, Janssen,
and Jolos4 proposed an approximation to solve such
a problem and more recently Iwasaki, Sakata, and
Takada' proposed an exact recursion formula for
the norms of multiphonon states described in. a
spherical basis. It seems, however, that the ap-
plication of this relation to a realistic case is not
v61 y easy.

In the case of a deformed basis the coupling to
a good angular momentum is not needed and the
expression. s are simpler. In a recent paper' the
authors derived an exact recursion formula for
the norms of multiphonons deformed collective
states. They gave also approximations for these
calculations and pointed out the appearance of a
cutoff factor N, beyond which these approxima-
tions fail. .

In this article we are concerned with the dynami-
cal aspect of that question. Using the same tech-
niques as in Ref. 4 we derive, in Sec. II, exact
and approximate recursion, formulas for the ma-
trix elements of H. In the exact expressions the
Pauli principle is properly taken into account but

the coupling b6tween collective and noncollective
degrees of freedom is neglected. In Sec. m, we

apply the formalisIQ to the simple model of 2m

particles interacting by pure pairing forces in 2m

equidistant levels. Such a model allows an exact
numerical treatment and a caxeful analysis of the
validity of th6 val ious appx'oxlIQatlons with 1'espect
to the collectivity of the basic phonon and to the
cutoff of the basis used in the diagonalization of the
Hamiltonian.
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H = U+H„+H, o+H3, +H22

with

(2)

EpQpQp ~

Hco= ~ ~asys(anasa, as+ asa, asaa),t t t
eg y6

Hoi= 2 Has, o(aaasa, as+ asa, asae),t
+8 76

Hoo — Z ~ass. alas™.ao (Sass. =Es~ Ns).
.ng y6

'The P, R, 8 coefficients are assumed to be real,
but this is, for what follows, of no importance.
The diagonalization of the total Hamiltonian in the
space generated by all the quasiparticle states is
of course numerically impossible in most cases;
moreover, the eigenvalues refer to nuclei differ-
ing by the number of particles. When dealing with
even nuclei, one generally does the diagonaliza-
tion in the two-quasiparticle (2 qp) space; this
constitutes the Tamm-Dancoff approximation
(TDA). It appears that among all the states ob-
tained, one is collective in the sense that it is
composed with a large number of 2 qp states. So
let us introduce the TDA operators

Qtr(i) = —Q Xf„(i)a',a„'.
pv

K stands for the projection of the intrinsic angular
momentum on the axis of symmetry and i for all
other quantum numbers.

Now we shall focus our interest only to K'=0'
collective states and omit indices j and K hence-
forth. [The restriction to K'=0' states is intro-
duced in order to simplify the formalism developed
in Sec. II. We note that multiphonon states with
K = 0 can be built up with couples of Q~Q ~ with
I.WO. We do not. consider those states in this
paper. ] The X matrix is assumed to be real and
antisymmetric and this is the reason of the —,

' fac-

II. THEORY

A. Situation of the problem

A'e start with an orthonormal basis of quasi-
particles; they may describe the particle-hole ex-
citations or the.more general Bogolyubov-Valatin
type of excitations. The only requirement is the
well-known anticommutation rules:

(a„a„}=0=(a'„a'„},
fa„, a'„}=n,„.

In terms of those basic operators, the Hamiltonian
of a system of identical fermions interacting
through a two body force is expressed by

(x')„„=gx„,x, , "x,
if «)

2. the "reduced norm" Z„which measures the
deviation of the fermion state ~n) from a pure
boson state ~n)=N„ (Bt)"~0)

N

n

(8)

B. Recursion formulas in fermion space

In Ref. 6 it was shown that the recursion formula
for the norm in terms of X„ is very simple:

tl 1

nK„=Z„-, ——Q Tr(X"")X„-,-, ;
l=l

the summation of the right-hand side is the ex-
change term due to the Pauli principle which makes
that Qt is not a pure boson.

It is possible to repeat exactly the same argu-
ments for the H1] part of the Hamiltonian. De-
fining formally an E matrix by (E) „=E„5„„where
E„ is the quasiparticle energy, we get

Z„&n~H„~n) = QTr(EX")X„., (8)

Once again the introduction of the reduced norm
leads to a very simple relation.

We shall prove later that this is a very general
feature; the X„are "the best tools" for our recur-
sion formulas.

In the same way as approximations for Z„were
deduced in Ref. 6 it is possible to build approxima-
tions of order p to the matrix elements of Hyy.

tor in relation (4). The states (Q')" ~0) contain 2n
quasiparticles but they are expected to appear much
lower in energy than other 2n qp levels. T' he two-
phonon states (Q~)'~0) present peculiar interest
since they may lie below the gap and hence below
the 2 qp spectrum. To avoid the tremendous eigen-
value problem in the qp space we treat here the
diagonalization of H in the "collective subspace
F," spanned by the set (Qt)" ~0), fn=0, I, . . . , N}
We introduce normalized multiphonon states ~n)
=N„(Qt)" ~0). Due to the Pauli principle the cal-
culation of the norm N„and of the matrix ele-
ments (n~H ~m) is not easy. One convenient way
to get them is to look for recursion formulas. This
was done in Ref. 6 for the norm N„; in this paper
we repeat the same kind of techniques for the more
complicated case of matrix elements (n~H ~m). Be-
fore going further it is necessary to define two
important. quantities:

1. the successive powers of the X matrix de-
fined in the usual way and which contain most of
the physical pieces of information
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They give the exact values of the quantity (n IH» In)
up to n=p and their expression is the following:

3f„&nIH„ In&&P) = —P Tr(EX")pf„, —(n —p+ 1)

R, = n~n~o. „a,,

R2P- Qt Qt I Qt I.qt 2P 1]]-t (10)

x Tr(ZX'P)of„„, .

I,et us now derive the calculation of the matrix
elements for the two body part of the Hamiltonian.
As an example of the'method the H„ term is
treated in detail. It is obvious that the only non-
vanishing elements are

&n+ 2IH„In& = &n III„In+ 2&.

Consequently we study

(n+ 2 I(2'(22(a„'n,'In) .

%e define R„operators by induction

R„„=
I [R„,q'], Q'], q', q'

and intermediate operators R„"' (i = 1, 2, 3) by

R,'P" = . . .
I [R,P, Q'], Q']. . . , Q

and

, a(&) —P n
2P+1 Lqt ' ' ' t [Qt 2Ptl]' ' ']

where there are i operators Qt and i operators Q.
It is only a matter of lengthy algebra to check the
following properties

(4) )2P 1 Qol ~ ol ot (~2P 1) (If 2P 1) (X2P 1) (X2P 1) (12)

XfI, gP

&0IR„„TI0&=0=&0IR,",,',TI0& =&0ITR„Io& =&oITR,',"Io)
for any operator T,

[R„„,q'] = o= [q, R„],
(0IqR&'), Io& = 2(4 I) P {(X P+') (& P+

) + (If'4P+ ) (If'4P4 ) (X4P+1) (~ 2+1)

(0 IR&»qt
I
P) = 2(4 ) )2P-){(~4P-)) (I& 4P-)) + (X4P-1) (X4P-1) (I(4P-)) (If4P-))

(n) (p Iqn 4P42R (Qt)tt+-4-4P
I
0)

A. ..( )=&0IQ" ""R (Q')" "Io&,
L(2)(2P+ 1 n) (P Iq&R(it) Q

P tt 4(4(2q2t-)n- P-IP&4

L(2)(2P n) (P Iq 4 tt(Pq+2t) -tt44- 4P(R2)(qo)t) Io&(

(13)

In the course of the demonstration it is convenient,
in order to avoid heavy expressions, to define the
new quantities:

of

(n) = (Q "42olt o(t(2(olt(qt)"&

(Qtl+2R (qt)ll&

= &Q""[Q, R,](Q')"&+(Q""R,Q(Q')")

=
&
Q"'"R "'(Q')"& + (Q "R"'Q (Q')"&

+ (Q"R,Q'(Q') "& .

with 0 = 1, 2, 3. An interesting property connecting
the L(2) may be proved (when no risk of misunder-
standing arises we omit the arguments of the quan-
tities I.',"):.
L (2)(2p+ 1 n) (p Iqi 1 [q R()t) ]Qtl 4P+2 tt ((Q't)n 4P

I

0&---
+ &0 lq* 'R(').Q" ""' *(Q')" "I0&.

Since [Q, R2(P2), ]= R2(P2, ' by definition (11) it becomes

L; '(2P+ 1, n) = L;2"'(2p+ 1,n)+ ; L(2P)+ 1,n) .

(14)

The same relation holds for the L,." (2p(, )n).

After these definitions, we start the calculation

(n) S(1) $(1) S(2) (15)

Elimination of S„"' from this recursion formula
leads to

s"'=~s
n+1

Repeating exactly the same algebraic manipula-
tions one gets

Carrying on this process till R, acts directly on
the vacuum one gets A)(n) =Z;~L,"'(l, n).

introducing S)(2) =Q,', L,(2), noting that L,"' = 0
because of relation (12) and using Eq. (14), one
gets
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and

S(2) Cl L(2)(1 n)+gg(3)

(18)

The procedure ends at the following Ak()3):

A,~„,(n}= L2(')(n/2+ 1,n)

if g is even,

where the C~ are the usual binomial coefficients.
Removing the S, expressions from relations (18),
(1V), (16), and (15) and making use of identity

A („,» & 2(n) = 8 L2(2) [(n+ 1)/2, )2] + L(3)[()2+ 1)/2, )2]

if n is odd. (21)

5=0

c~ =@~"
5+1 A+2

the result for A, (n) is

A, (n) = C2„„L2")(1,n) + O'„„I 2(3)(1, )2)+ O'„„A2(n) .

The recursion formula (20) with the "boundary"
condition (21} is sufficient to determine A, ()3)
once the L,"' and I,"' quantities are known. L,"'
is directly deduced from its definition; the calcu-
lation of Lo" is more involved: It uses the fol-
lowing lemma (analogous to the recursion formu-
lation' for the norm)

By the same techniques it is possible to show the
more general relation

l=o

(22)

+ O'„., 22A...()2) . (20) The result for L"' and L,"' is

L(2)(P s) 2(4 ) )P 1 ((X22 1) (X22 1) (X2P 1) (X22 1) (X22 1) (X22 1) ] f)t 2

L,"'(P, n) =6(4!)2 '(n+ 2 —2P)! ()2+ 1 —2P)!

F1+1 2p

x P 5f {(X"""')(X"-') +(X"-') (X"""') +(X"'"') (X"-')
(28)

+ (X22 1) (X22+1+21) (X22+1+21) (X23 1) (X22 1) (X224'(+2l) ]
At this stage the problem of the determination of A, ()2) is wholly solved but the equations are not very
tempting. One can do a little bit more by elimination of the Ak()2) quantities from the recursion formule, .
After some simplification one gets the final result:

(n/2]
(5f 5f )'I'(n+2~c((n"n e()n)= p 5!„„I(X"+') (X"+') +(X'"') (X"+') —(X"+') „(X"+l)) ].

I:(»)/23 ff-~-2r

cg ((X2l+3+22) (X21+1) ~ (X21+1) (X2l+3+2k)
l= 0 A=o

+ (X21+3+22) (X2l+1) ~ (XR(41) . (X2)+3+22)

(X2l+3+22) (X21+1) (X21+1) (X 2(+3+22) ] (24)

In the upper bound of the summation the sym-
bol [x] stands for integer m such that )21 ~x
&m+1. It is easy to check that all symme-
try properties of n~n~zn~n~~ are fulfilled in the
explicit expression of the matrix elements (24).
One sees again that the reduced norms play an
important role.

It is always possible to choose the P B„, coef-
ficient of the H«part of the Hamiltonian (8) in
such a way that it verifies all the symmetry prop-
erties of a~ aBtn~tat„ for instance,

0!Bye oy6B ~oftB6 @6'}fB

a (f, )32) =Q P 2„3(X') 2(X )„,. (25)

Then

%e assume that this choice is done once for all
with the unique aim to simplify tQe writing of
formulas. In that case we need only one physical
quantity for 0«, namely,
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f.tf/23
= p s'(2l+ I) 2l+ l)X„„

4 (n-1)/23 n-1-2l

Q (P(21+ 3+ 2k, 2l+ 1) X„,~, ~:
o=o

(26)

As was alx eady mentioned in Ref. 6 for the calcu-
lation of the norm and as is obvious from (25) what
is numerically time consuming is the evaluation
of the power X' with large l. One way to avoid
those lengthy computations would be to assume
that the operator B~ scatters only in collective
states. Within that approximation the boundary
condition (21) is replaced by

a, (n) =Iv, '(z&"&/x„., „'

The matrix element (n IH„ In -2) is still exactly
given up to g = 2P. The approximation (27) is
therefore called of order 2p and replaces Eq. (26)
by

x )i/2

P-2
=P (P(2l + 1, 2l + l)X„»

P-2 n-1-2 l

+2+ Q 6'(2l+3+20, 2f+1)X„,„~
l= o 0-0

+ C'„.„„X„„„X,-'a (2P+ 1, 2P+ 1) . (28)

To be self-consistent in this relation, it is neces-
sary to take the (2p —l)th approximation for the
norm defined in Ref. 6. Comparison between (28)
and (26) shows that the terms neglected in the
summations of (26) are partially taken into ac-
count through an extra term in (28). The violation
of the Pauli principle is caused by that replace-
ment.

Actually in the double summation of Eq. (26) the
largest power X' to be calculated is X'"" (I = 0,
k = n —1); the same power X '"" occurs in the 2pth
approximation. So we see that the amount of dif-
ficulties is quite analogous in the approximative
expression and in the exact one; therefore the
2pth approximations are of little interest in prac-
tice. There is, however, - an important exception,
namely the second approximation; in the case, the
double summation is absent and one is left only
with the extra term whose maximum power of X
is X'. This approximation just corresponds to
that described in detail by Holzwarth et al. 4

The treatment of the collective matrix elements
of H4o has been done in great detail. %'e do not
insist upon the derivation of those of B„and H„
which is quite similar. The results are listed
below rather briefly. The only nonvanishing ele-
ments for H„are (n+ 1IH„In}=(nIH In+ 1). As-
suming again that the 8 z„, have the good prop-
erties of symmetry R &„~

= B„&~= -8», ——.. . and
defining the dynamical quantity

6I(f, m) = g Z.,„,(X').,(X )„„
the matrix element of II» look's like

r(f7+1)/23 . t.n/2] n-2r

(n+ 1 IH~~ In) = — g (R(2I —ly 2l)x„„g—g p x„g ~161(2l+ 1+ 2$, 2l) +61(2I —1, 2I+2+ 2y)) .
l=1 n=o

(30)

In that case the 2pth approximation give the exact matrix element up to (2p IH„ I2p —1) and its explicit ex-
pression is

(x x)»' 1 0 1n~2l
(s+ 1IH„ Iyz)

&»& = g 61{2) 1, 2f)X„„„-ppX„,i „16t(2I+1+ 2k, 2l}+@(2/ —1, 2f+ 2+ 20)}
&= 1 A=o

c'„„„x„„.„x,-'6t(2P —1, 2P) . (31)

Here again only the second approximation is of practical interest.
For the determination of (n IHn In) two different dynamical quantities are needed:

gt(P, q) = Q ~„ga„(X').t (X')„6,
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fn/2]n 1

X„(nIH„ In& = -Q 8, (21+ 1, 1)X„,, —g X„„(8,(2f —1, 2l+ 1)+28„(2f, 2l)}

f. (n-1)/23 n 2l q

X„„,k fS,(2l+ 1+ 2kt 2l+ 1)+ 8&(2f —1, 2l+ 3+ 2)'2)+ 482, (2l+ 2+ 2f2t 2l)} . (33)

The 2pth approximation gives the exact result up to (2p IH„ I
2p& and has the following expression:

2P-2

X„(n IH, 2
In&&2«~ = —g 82(2l+ 1, l)X„, „-+Xn» (8&(2l —1, 2l+ 1)+ 28zz(2)t 2f)}

l=o

y n-2l-1

X„„,«[8,(2l+ 1+ 2t&2t 2l+ 1)+8&(2/ —1, 2l+ 3+ 212)+ 482&(21+ 2+ 2t&, t 2l)}

-Ct„2«X„„2«8,(4 P —1, 1) —C2'„2«X„„2«X2 ' (8,(2P —1, 2&tt + 1)+ 28„(2P, 2P )]. . (34)

The relations (8), (26), (30), and (33) allow an
exact diagonalization of H in the subspace of the
collective subspace S~.

C. Recursion formulas in boson space

In Fc, -the exact treatment in a realistic case is
limited by the numerical evaluation of the powers
of the matrix X. We have shown that the 2pth ap-
proximations, which are introduced naturally in
the theory, are of no practical help except the
second approximation.

In order to avoid this difficulty it is possible to
deal with the boson representation of the Hamil-
tonian through the modified Marumori's expansion
intially studied by Kleber' and analyzed in more
detail by Lie and Holzwarth. ' The aim of the
method is to establish a one to one correspon-
dence between the fermion states In& in Pc and
the boson states In) in &sc.

The mapping operator is U=Z„In& (n
I

and the
boson Hamiltonian

H,n,
= g (nIH I&2'& [n!n'!] '~2(a~)" Io)(oIa"'

nkn =0

Expressing the collective part of I'0)(0
I

by its

value

Io)(o
I
=:exp -a'a: =g (a')'a'( 1)k

kt
k=0

we get

tt 1)k
H = v (22IH I22 ) [22!$2 &] kt 2 (at)"+ka"'+"

Col 0!
n, n', Q =0

(35)

E&luation (35) is exact in the sense that (n IH Im)
=(2«IH, ,& Im) for all In& and Im). Nevertheless,
it is of no practical use because its application
necessitates the computation of the matrix ele-
ments (nIH 122'& for all In& and In'& and hence
the problem is as, difficult as in the fermion state.

One way to simplify the treatment was suggested
by Holzwarth et a/. 4: It consists in the truncation
of the summation in relation (35) to low values of
n and n' so that n+ n' &N ~ and consequently to the
truncation of k in a self-consistent manner. It is
possible in the boson space c to define a 2pth ap-
proximation in a very similar way as in the fer-
mion space by requiring the matrix elements to be
exact up to (2p IH Ip ) (2p ~ p )

Explicitly the 2pth approximation of the boson
Hamiltonian is

H&t&»& ~(2«IH I22& ~ (- ) (at)no«an+« ~ (2&+ !H I22& ~ [(at)n+t+kan+k+ (at)n+kan+l+k]' ~[ !(n 1)!]'~' ~ a&
n"»0 lf 0 n=O Aw

'll&+ 2 ~H ~&2/ ~ & t [(a'&)n+2+kan+k (a'&)ll+katl+2+k] (36)

The advantage of this approximation with respect to the corresponding one in the fermion space is
that it is a recursion formula on the matrix elements of the Hamiltonian (and not on the norms)
and the numerical difficulty already mentioned for the fermion matrix elements disappear in the
present case. One can also define odd order approximations but they are not useful for compari-
son with the fermion case.
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D. Summary

In the preceding subsections, general theoretical
expressions were giiren for the matrix elements of
the Hamiltonian inthe subspace S~. 'They com-
pletely fulfill the Pauli requirements. However,
in realistic situations, the numerical computation
is more and more time consuming when increas-
ing the number of phonons and hence an approxi-
mate treatment becomes necessary. If one works
in the fermion subspace P~, it was shown that
only the second approximation presents some
simplification to the problem. Higher order ap-
proxi. matioris can be obtained easily only in the
boson space die. In that case to get (n ~H~„,

~
m)

for ri» 2p one needs exact values of (0 ~H I) in
fermion space up to l & k & 2p and geometrical
factors such as (ri ~Bt~B'~m). So the computation
of (n~H~, ~m) is always tractable even if n»2p.
'The discussion and comparison of those different
approximations in a numerically solvable case is
the subject of the next section.

III. APPLICATION AND DISCUSSION

A. Choice of the model

The general formalism developed in the pre-
ceding section is applied to a simple model which
allows an exact numerical treatment and is real-
istic enough to exhibit some systematic features.
We consider 2' particles filling 2m equidistant
pairwise degenerate levels; the distance between
two consecutive ones iS 2D and all levels are as-
sumed to have different projection 0 of j on the
axis of symmetry. 'The particles interact via a
pure constant monopole pairing force G. We do
not mant to solve the exact physical problem but
our main interest is the comparison of various
approximations within the same model space. So
we perform a Bogolyubov-Valatin transformation
which keeps the average value for the number of
particles equal to 2m and our model space is
spanned by those quasiparticle operators. We
have in mind that spurious solutions appear in the
treatment and hence do not try to compare our
results to exact physical ones. What we aim to
point out is the quality of different approaches to
the same problem as a function of the collectivity
of the basic phonon.

%'ithin this schematic model the dispersion equa-
tion for the TDA solutions splits into two different
equations:

A second one whose lowest level (solution II)
lies in the vicinity of the gap 24 and which has the
symmetry property X2 y g (2 y ) X] g.

Solution II being never collective, we use solution
I in the rest of the paper.

The parameter varying the collectivity is D/G
or equivalently D/4. The smaller the ratio D/n
the stronger the collectivity. Because we con-
sider 0' states and because all levels are char-
acterized by different values of 0 the X matrix
only has "diagonal" elements X„„sothat

Q =+X„„a"„(y „.
v&0

In more realistic situations the diagonal elements
X„„areknown to be predominant and hence the
choice of our model is not unreasonable. The
simplicity of the matrix X makes the calculations
of the various quantities extremely fast and al-
lows an exact treatment.

B. Discussion of the cutoff factor W,

In Ref. 6 different approximations for the norm
X„are discussed and it is shown that there exists
a critical value of n noted N, such that all approxi-
mations, irrespective of their order of accuracy,
fails for n&N, . The N, values, and consequently
the validity of the approximations, increase with
the collectivity of the phonon Qt. In practice it is
important to have an idea of N, and it was sug-
gested' that a good criterion for this is the ratio

Tr(X') I Tr(X') I

Tr(X') 2

When the 'TDA solution is a pure two-quasipartiele
state, one X„„equals 1/~ and all others vanish,
leading to j= —,'. When the solution presents a
maximum of collectivity all the X„„are equal and
the value for q is 1/(2m). We have studied for

'Ic
10-

7

6.

A first one whose lowest level (solution I) may
be considered as collective and which has the
symmetry property X, „, &, „,&-—X, , (i
=1, . . . , m).

0.1 0.2 0.3 0.4 Q5

FIG. 1. The critical'cutoff factor +, is plotted as a
function of the parameter g defined in Sec. IIIB.



different choices of m and D/d the relationship
between Nc Rncl g. It RppeRrs thRt th18 ls R bl]ec-
tion, in the sense that two situations with the same
q give roughly the same N, . Figure 1 illustrates
the correspondence between q and N, . In more
realistic t'reatments the same kind of conclusion
ought to be valid: 'The parameter q is a good in-
dication for the determination of N, .

C. Matrix elements in P,

Let us Qow come to the calculat1on of t e ferm1on
matrix elements (n IH I m) and their 2pth approxi-
mation (nIH Im) "~'. Table 1 summarizes the re-
sults in the case of 10 single particle levels (2m
= 10) for a typical value 0.2 of D/4. For these
parameters N, equals 6 Rnd the table may be
divided into two parts, one with g &N, and one with
n~ N, . We write the matrix elements for 0»,
0», 0»„=H,,+0» and II40. The symmetry prop-
erties of the phonon considered here make

tt IHst In —1) vanish identically. Concerning the
2pth approximations (p= 1, 2, 2) we apply the for-
DlulRs glveQ ln the preceding- section with the
(2P —1)th approximation X„ for the norm. With-
in this approximation X+~'~ can be found negative
for some values of n~ N, and hence the factor
(X„X„,)'~' appearing in the matrix element
(nIH«In —2) "~'.is meaningless; the correspond-
ing cases in Table I are marked with an asterisk.
The comparison between the exact results and the
various approximations shows that the accuracy .

is rather good for matrix elements with m&N, ;

for n ~ N, Rll approximations are equally wrong.
The existence qf a critical number N, which was
deduced' from the examination of the norms X„'~'

is stiffened greatly from the dynamical point of
view; in fact, the tvPO aspects are related because
the norms Rre ingredients of the recursion foxIDu
las for the matrix elements of H. However, there
is a notable exception: although (nIH»In)+' and

(tt IH22 In)"' are separately false for n)N„ their
sum (n IH»„ In)"' is remarkably good for all n.
This is true only for the second approximation.
We have no definite explanation for such a phe-
nomenon; it is probably due to the symmetry
properties of our problem. In general, for g &N„
the accuracy increases when the phonon Q~ is very
collective (low values of D/d ) and when the order
of the approximation increases.

Another important point of. discussion is the re-
sults of the diagonalization of H in F~. Figure 2

deals with the resulting spectrum when increasing
the number of basic states of F~. The lower the
excited state is, the faster the stability is reached.
At once, let us point out an important featuxe
which does not appear in the figure. When the
cI1IQenslon of the basis ls greater thRQ Ny danger-
ous" states appear in the fourth and sixth approxi-
mations; by dangerous we mean that those states
are low in energy (even they may be the "ground
state") but composed predominantly with a great
number of phonons. To be fair we must add that
in order to cRrry out the diagonalization it was
necessary to fix R determined VRlue to the im-
possible" (n IH« I

n —2) ~2~' (the boxes with * in

TABLE I. Matrix elements &n(BJ+ in MeV of different parts of the Hamiltonian in the collective suhspace Pc.
Exact values and approximate ones (2p =2, 4, 6) are listed. The parameters used are 2m =10, D = 0.2 MeV, and Q =1
MeV and lead to AT, =S. For n ~Zp one has &siH~st) "~'= &a~aim) and consequently the corresponding values are not
written in the table. As quoted in Sec. HI C, the asterisk represents quantities impossible to calculate because the ar-
gGIQent of (g,~2

'R ~ ) is negative.
j

&niH|| )a)
&.~H«~. ) &"

) (4&

(nja» n&"'
&nja» n&

(nja„n&"'
&

(4)

j~ j &
(8)

&njaTDA n&

(n a,o„n&"'
(n II~„n&"'
&n a~„n&"'
(n BTDg n —2&

(n jH40j n —2&

&aiH, (J n —2) "'
&n)H40)n —2) "'

2.390 7.471 10.198 13.066
7.526 10.530 14.469

13.446

-3.560
5.059

-3.277

0
j

0.807

4.700
4.690

1.253
1.131

1.568
1.221

9.507
9.410

10.169

1.762
1.084
1.914

—l.145 -2.065 -2.771 -3.267
2.836 3.639

16.080
22.879
6.637

-3.649
-10.630

11.521

12.431
12.248
-4.883

1.836
0.708

19.241
-29.512

15.048
11.796
-3.536
44.918
—6.835

—10.241
15.704
15.405
8.212
1.555
1.788

)fc

22.540
8.608

18.591
16.736
—3+222

10.273
—3.936
—8.604
19.318
18.881
14.655
8.131
1.614
0.403

—5.166

25.971
14.121
15.207
19.504
-2.707

8.553
—29.535
-8.833
23.264
22.675

-14.328
10.670
1.309
1.498

0.035

29.519
17.544
21.329
22.408
-2.001

9.243
-12.816
-8.913
27.518
26.788
8.513

13.495
0.858
2.730
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FIG. 2. Energy spectra for the three first excited
states versus the dimension N+1 of the fermion collec-
tive subspace F&. Exact treatment and 2nd, 4th, and
6th approximations are compared; as explained in Sec.
IIIC the "dangerous" states have been omitted. The pa-
rameters are 2m = 8, D= 0.3 MeV, and 6=1 MeV; E is
expressed in MeV. For the bvo first excited states the
6th approximation cannot be distinguished from the exact
ones.

Table I}. Arbitrarily we put them equal to zero
and this may explain partly the above disagree-
ment. Systematically those dangerous states have
been skipped out in the plot of Fig. 2. Neverthe-
less, it seems that N, is another source of dis-
agreement. The important thing is that those
dangerous states do not appear at alI. in the sec-
ond approximation, which again have some origin-
ality among all other ones (this fact may be related
to the above mentioned behavior of (n ~H»„~n)'"
for all n). The accuracy of the approximations
(except the dangerous states) increases with their
order 2p and with the collectivity of the basic
phonon Qt; moreover, they are quite good for the
first excited states. This is not surprising since
these approximations are built to fulfill those con-
ditions.

D. Collective noncollective coupling

'The collective subspace P~ is introduced in
order to take into account the major part of the
physical information and to avoid a diagonaliza-
tion beyond measure. This simplification obvious-
ly neglects the coupling between collective and non-

collective degrees of freedom. Our aim now is to
test the influence of this coupling. In our case,
F~, whose dimension is 2m+ 1, is a part of the
more general space F~ spanned by the state of
"zero seniority" ~v, v, ~ ~ ~ v,) =at a"„a,', at„~ ~ ~

a~ at„~0) of dimension 2 .
We only retain in the complete spectrum the

states whose overlap with the collective states
~n) is near unity; the difference in energy be-

tween the two states measures the coupling with
the noncollective phonons Table II summarizes
this effect as well as the contribution of each part
of the Hamiltonian in the two extreme cases a
very collective one and a noncollective one. From
examination of the spectrum in F~, one sees that
the influence of the 0« term of the Hamiltonian is
to lower the first excited state and to raise the
others; this feature is grosso rnodo reinforced by
addition of H». The perturbation due to H4, is
more important than that of H» for low values of
D/& but it is of the same order of magnitude for
larger values. Concerning the diagonalization in

F~, it was underlined above that fortuitously the
contribution of the H» part vanishes. Hence the
comparison with F~ must be done only for II»„
and HRv„. For D/&=0. 1 the truncation of the
basis has practically no influence upon the coll.ec-
tive states, the coupling with noncollective
branches being less than 10 '. For not very col-
lective TD phonons (D/n. =0.5) the diagonalization
in the restricted space is nevertheless quite rea-
sonable since the coupling is of order of a few
percent in that case.

The major part of the interaction is contained in

IITDA and this explains that the choice of a TDA
phonon as the starting point is rather good. It is
obvious from Table II that the spectrum is no

longer harmonic since the Pauli principle is taken
into account correctly in that treatment. It may be
noted also that the energy of the two-phonon state
is larger than twice the energy of the one-phonon
level (at least in our model dealing with a pure
monopole pairing force); this is generally not the
situation in actual nuclei. This suggests that a
correct description of realistic cases certainly
need another type of force (i.e., quadrupole quad-
rupole, quadrupole pairing, etc. . . ). 'The conclu-
sion of this section is that the diagonalization in
P~ is in most cases justified. We emphasize again
that the obtained spectrum must not be compared
with the actual physical one because of the pres-
ence of spurious states (due to the nonconservation
of the number of particles) whose removing is not
the aim of this paper. This problem was carried
out by projection techniques by Gunsteren and
Allaart' and by elimination of the "spurious space"
by Iwasaki et al."



17 M U I TII'HO%05 E' =O' STATES IN E VER -E VEX. . .II. . .

TABI E II. Energies (in MeV) of excited states in the complete 5& and collective Ff- spaces
for different parts of Hamiltonian HTDA =Hf f+H2) HRpA ='HTDA+H4() H =HRPA+H3&, and for two
extreme values of D/A. Comparison between 5'(- and F& gives the influence of the collective
noncollective coupling. For the diagonalization of the total Hamiltonian H in 7& in the case
D/4=0. 5 the mixing of states is rather large and the overlap with the corresponding collective
state is sometimes not very decisive. %e write here the most-probable candidates.

HTDA

Collective space F~
HRPA H

Complete space F&
HTDA HRPA

1 phonon
2 phonons
3 phonons
4 phonons
5 phonons
6 phonons

1 phonon
2 phonons
3 phonons
4 phonons
5 phonons
6 phonons

1.0497
2.4483
4.195
6.289
8.729

11.512

1.3505
3.3515
6.351

10.$86
14.689
19.842

0.955
2.547
4.467
6.674
9.127

11.796

1.266
3.503
6.668

10.503
15.134
20.177

D/a =-0.1

0.955
2.547
4.467
6.674
9.127

11.796

D/a = 0.5

1.266
3.503
6.668

10.503
15.134
20.177

1.0497
2.4478
4.194
6.288
8.728

11.512

1.3505
3.281
6.238
9.636

14.614
19.842

0.956
2.549
4.469
6.677
9.131

11.800

1.317
3.561
6.736

10.206
15.279
20.434

0.924
2.521
4.428
6.718
9.408

12.470

1.085
2,981
6.468

10.377
16.246
22.232

E. Matrix elements in,

It was shown in the preceding section that the
2pth approximations for matrix elements, except
the second one, are of no practical use because
they need the same amount of computational dif-
ficulties as the exact treatment. One way to re-
move this disagreement is to work in the boson
space. One must note that the 2pth boson Hamil-
tonian (which give exactly (n ~Hs ~m) up to
(2p ~Hs ~p') is of 4p order in the boson expansion,
the greatest order term being (Bt)'~B'~ In what.
follows we shall consider only EI~ ' and II~ '.

Table III is analog to Table I for the matrix ele-
ments (n~Hs~m) in the boson space Sc. The pa-
rameters are identical with those of Table I. The

first point is that no discontinuity occurs for n
=N, . This does not prove that N, has no influence
as we shall see later.

Furthermore, (nlHrsn„ln)"' is rigorously etlual
to (n~H»„~n)"' for reasons which are up to now
not very clear to us and as already mentioned
above this is a good approximation. As is easily
seen from Table III the fourth boson approxima-
tion is even a better one since (n ~Hs ~n)"' are
accurate by nearly 10 ' and (n ~Hs ~n —2)"' by less
than 0.2. In particular, the maximum of the exact
value of (n ~He ~n —2) at n= 6 is very nicely repro-
duced in the fourth order calculation. This is not
the case for the second approximation. In that
sense the boson expansion is rapidly converging
and is much more suited for calculations which

TABLE III. Matrix elements (n)H~oq&(m) in Mev of Hrz, „and H4o in the boson collective space (Bc. Comparison between
,exact and approximate (2P =2, 4) values. The parameters used are identical to those of Table I.

10

&n t&pe ln)

{n (HTz)A )n)

~nlHTDAln)

(a IH4'Ol. —»
(n)H4~0[n —2) "'
(a[Hs [n 2'4'—

1.245 2.808 4.700 6.931 9.507 12.431 15.704 19.318 23.264 27.518

1.245 2.808 4.691 6.891 9.410 12.248 15.405 18.881 22.675 26.788

0

0.807 1.252

0.807 1.397

1.568 1.762

l.976 2.551

0.807 l.252 1.568 1.764

1.836

3.124

1.814

1.788

3.697

1.804

1.614

4.269

1.652

1.309

4.841

1.387

0.858

5.412

1.010

1.245 2.808 4.700 6.931 9.506 12.431 15.711 . 19.347 23.339 27.686
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justifies the interpretation of N, as the cutoff fac-
tor of a SU(3) scheme"]: it is meaningless to con-
sider boson space including more than N, phonons.
'The fourth order approximation in boson space
is definitively superior to any approximation in
fermion space; the modified Marumori boson ex-
pansion is converging very rapidly in the collec-
tive subspace. 'This suggests that the third order
boson approximation which was not considered
here because it has no counterpart in fermion
space, is probably4 accurate enough to give a good
description of the collective properties.

3-
Og 1

I
1
1

1

I

2.

0)

FIG. 3. Energy spectra of H~A for the three first
excited states in different approximations: A, Diagonal-
ization in the complete fermion space Fz, B, Exact
diagonalization in the collective subspace Fz, C, Second
approximation in 0'z, D, Diagonalization in Sc with
dimension 2m+1: second approximation; E, Same as D
with dimension N~; F, Same as D for fourth approxima-
tion; and 6, Same as E for fourth approximation. E is
expressed in MeV and the parameters 2m = 6, D =0.3
MeV, and d=l MeV.

require going further than the second approxima-
tion.

All kinds of approximations done in this work are
summarized in the spectra described by Fig. 3.
Several interesting conclusions may be drawn.
The second approximati;on is much better in the
fermion space F~ than in the boson space ~. An
important point to emphasize is that to obtain a
correct spectrum with the second approximation
in boson space it is necessary to perform the di-
agonalization in a space including less than N,
phonons [compare spectra D and E to A. This fact

IV. CONCLUSIONS

In order to describe the anharmonicities in the
spectrum of K' = 0' vibrations in deformed nuclei
(the so called P, PP, PPP, . . . vibrations) we have
developed the necessary tools for such a program.
The matrix elements of the Hamiltonian in a
subspace spanned by the collective Q~ TD phonon
operator are derived as well as approximations
for them. 'The role of the cutoff factor N, and the
reduced norm X„ is emphasized all along the paper.
With the help of a simple model several interest-
ing features have emerged. In the fermion space
the coupling between collective and noncollective
degrees of freedom is in general weak (however,
a peculiar care must be taken when transposing
this formalism to realistic eases) To av. oid
tremendous computational work a second approxi-
mation in the fermion space has been suggested
(in fact, it is Holzwarth's approximation) which is
rather good especially if Qo~ is very collective. If
a further accuracy in the method is needed it would

be more convenient to deal with the modified Ma-
rumori boson expansion; in this case the dimen-
sion of the basis must not include states with
more than N, phonons.

Further developments may be expected within
this formalism:

1. Introduction of two kinds of particles in an
average deformed field interacting by more real-
istic forces (pairing and quadrupole quadrupole
forces for instance).

2. Coupling between collective vibrations K' = 0'
and K'= 2'. A priori the same techniques are
available but we are faced with the difficulty that
the states Qt» Qt» ~ Q~» ~0) do not form an ortho-
gonal basis.
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