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The structure of light nuclei is considered using the a cluster model. On the basis of a clusters, the model
structures of the nuclei Be and "C are proposed as composed of three particles. The bound state problems
for these nuclei are solved using separable potentials, where the Faddeev equations are given. Three difII'erent

types of the nonlocal separable potentials are used, i.e., potentials of the Yamaguchi, Gaussian, and

Tabakin forms. The Gaussian and Tabakin potentials contain both attraction and repulsion. Solving the
Faddeev equations, numerical calculations are performed for the resulting integral equations. The present
theoretically calculated values of binding energies for these nuclei are in good agreement with the
experimental data. The very close agreement between theoretical and experimental values of the binding

energies indicates that the repulsive forces of the nuclear potential are very important and should be taken
into account.

a
NUCLEAR STRUCTURE Be, 2C; three-body model. Calculated binding

ener gies.

I. INTRODUCTION

The n cluster model" explains with some suc-
cess the structure of light nuclei. According to the
+ cluster model, the z particles will be treated as
rigid entities without internal structure. Since the
z particles are very tightly bound with an unusual
stable structure, the structures of the 'Be and "C
nuclei are described in the present work using the
jy cluster model. The structure of the bound state
of the 'Be nucleus is taken as composed of two z
particles and a neutron, while the "C nucleus is
considered as composed of three ~ particles. With
the present structure, each of the considered nu-
clei is described as constructed of three particles.
In the present work we follow the Faddeev and
Lovelace formulations. Faddeev presents an exact
solution for the three-body problem. In this solu-
tion, Faddeev has shown that a well-behaved set of
three-body equations involve the two-body T ma-
trix rather than the potential. In this approach,
the T matrix plays a central role. So, in the
three-body Faddeev equation the two-body T ma-
trix plays the part of a potential in the two-body
Lippmann-Schwinger equation.

The bound state of light nuclei with three-parti-
cle construction could be well explained as a three-
body problem. The set of coupled integral equa-
tions from the three-body theory developed by
Faddeev" and Lovelace' has been applied for
light nuclei by Harrington, ' Wong, and Osman.
Another method suggested by Mitra" and Eyges"
known as the wave function method is employed
and applied by Leung and Park. " Using separable
potentials with attraction and repulsion for the n-

cv pairs, Hebach and Henneberg" found two 0'
states in the neighborhood of the three-particles
threshold in studying the "C nucleus.

In the present calculations we solve the Faddeev
equations using nonlocal but separable (NLS) po-
tentials for the two-body interactions. The nu;
cleon-z interaction used consists of both central
and spin-orbit terms. The spin-orbit term is
small and is taken in a way to fit the correspond-
ing experimental nucleon-z phase shifts. For this,
purpose, Mitra, Bhasin, and Bhakar" introduced
a suitable separable form for the nucleon-+ inter-
action. This interaction was used by Osman" to
extract the binding energy for the bound state 'Li
nucleus. The + particles are considered as rigid
entities without any internal structure and so in-
teracting with each other via a potential determined
by n-n scattering experiments. In the present
calculations, the Faddeev equations are solved
using nonlocal separable n-n interactions obtained
by fitting the S-wave a-n scattering length and
effective range. We use three types of nonlocal
separable potentials. The different forms of the
NLS potentials considered are the Yamaguchi, "
the Gaussian, and the Tabakin" potentials. The
Yamaguchi potential is taken as . completely
attractive, while the Gaussian and Tabakin
potentials contain both attraction and'

repulsion.
In Sec. II we introduce the different forms of the

nonlocal separable potentials used. The three-
body integral equations are considered in Sec. III.
Numerical calculations and results are given in

Sec. IV. Section V is devoted to discussion and
conclusions.



II. NONLOCAL SEPARABLE POTENTIALS

Separable potentials have been widely used in
calculating the three-nucleon binding energy, ra-
dius, Coulomb energy, form factor, and also the
neutron-deuteron scattering cross section. These
potentials are widely used because their use en-
sures great simplicity in the analysis of the three-
body problem. In the present work we use nonlocal
separable potentials for the two-body interactions.

For the nucleon-n interaction we use a form
. which consists of a central term and a spin-orbit
term. The spin-orbit term in the nucleon-~ inter-
action is taken to be small and in a way that it fits
the corresponding experimental nucleon-n phase
shifts. For this purpose, in the present calcula-
tions we use a suitable form for the nucleon-a in-
teraction, which is introduced in Ref. 15. The
form of the nucleon-n interaction used together
with the values of the different parameters are
given explicitly in Refs. 10 and 15. The I'-wave
nucleon-n interaction used is of the form

v„„(q,q') = — " g, (e)g, (e')27] A.~

R

x g Y", ~(q) l1+ (L ~ /t')] Yzz(q')

range, which are determined experimentally with
Coulomb effects removed. These potentials are
suggested in a way that both attraction and repul-
sion can be given. For separable potentials be-
tween ~ particles, each of mass m, we have

V„„(p,p') = -(r'/~„)(1/2~')f(p) f(p') .

From the nonlocal separable z-~ potential given
by Eq. (1), the two-body n-cz binding energy
zz'X'/zzz„ is obtained from the relation

P'f'(P)
P+x (2)

Also, the S-wave phase shifts are obtained from
the well known relation

ta.5 (k) = Af*(k) (1- —P2 P f (P) (3)p2 Q2

In this work we use three types of nonlocal sep-
arable ~-~ potentials. These are the Yamaguchi"
potential, the Gaussian potential, and the Tabakin"
potential. The Gaussian and Tabakin potentials
give both attraction and repulsion. For the purpose
of comparison, the Yamaguchi potential is consid-
ered, and it gives only attraction. The Yamaguchi
potential (which implies the Yukawa-type spatial
dependence) has the form

where
fr(p) = o/(P'+&') (4)

g,(4)= ~(q'+f') '

with

'=11.312 fm, f '=1.028 fm, t'=21.6,
and m~ is the reduced mass of the nucleon-a sys-
tem given by

nzR = mm„/(m+ m„),
where m is the mass of the n particle.

Since, in the m cluster model the cy particles are
treated as rigid entities without any internal struc-
ture, they (the a particles) are interacting with
each other via a potential determined by +-n scat-
tering experiments. This simplification and
choosing the form of the potentials as separable
are of great help in solving the three-body problem
exactly. The S-wave +-n interactions used here
are chosen to fit the scattering length and effective

Also, we use S-wave nonlocal separable Gaussian
interaction, which contains both attraction and re-
pulsion, of the form

fr. (P) = oz(p,
' P')(a +bp') exp( d-p') . -(&)

The value of p, can easily be determined since the
S-wave G. -n phase shift changes sign as a function
of the bombarding energy. Thy third form for the
n-n interaction we use is the Tabakin potential.
This contains both attraction and repulsion and is
a variant of the Yamaguchi potential and probably
has a better theoretical foundation. The Tabakin
potential used has the form

f,(P) = n(P, ' P') [(P'+d')/(-P'+&')](P'+a') '

The values of the parameters for the Yamaguchi
potential are those suggested by Harrington. ' The

TABLE I. Values of the nonlocal separable cL-n potential parameters.

Gz -D
potential form b

Ground-state
energy of BBe

(Mev)

Yamaguchi
Gaussian
Tabakin

1.0 fm ~

1.9 fm

0.736 fm ~

0.05
1.3 fm

0.5 fm.
5.0 fm

2.36 fm
4.432 fm~

3.1865 fm

-2.92
-3.43
-3.62
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lomb energy for the 'Be nucleus is Ec ('Be)
—2Ec('He) =2.03 MeV. Adding this value of Cou-
lomb energy to the values of the ground-state en-
ergies for the 'Be nucleus which are listed in Tab-
le I, can lead to producing a stable 'Be bound state.
Thus, the theoretical calculations produce a stable
bound state for Be, while the observed ground
state is unstable by about 0.1 MeV. This difference
does not mean that the value of Coulomb repulsion
between the two z particles is unreasonable, but

this difference is a.little large and it may be be-
cause the wave functions resulting from the poten-
tials used are too large at small distances.

The corresponding shapes with the typical forms
of the different potential factors f(P) as given by

Eqs. (4), (5), and (6) are shown in Fig. 1.

G

p (fm )

III. THREE-BODY INTEGRAL EQUATIONS

Faddeev" obtained a well-behaved set of three-
body equations involving the two-body T matrix
rather than the potential. This set of integral equa-
tions is obtained by rearranging the Lippmann-
Schwinger equation.

Using the notations introduced by Lovelace, the
two-body T matrix is given by

FIG. 1. The potential form factors f(P). The curves

f z, f&, and f & refer to the Yainaguchi, the Gaussian,
and the Tabakin potentials, respectively.

values of the Gaussian potential and the Tabakain
potential parameters which are used to fit the S-
wave a-z nuclear scattering phase shifts are listed
in Table I. The. values of the cy-z nuclear binding
energies h'X'/m„which are obtained using the dif-
ferent sets of parameters for the different forms
of the z-oI interaction are also shown in Table I.
The energies listed in Table I are only the nuclear
binding energies. To obtain values for the actual
binding energies, Coulomb energy must be added.
The approximate value for the Coulomb energy can
be obtained from a formula" for a uniform spheri-
cal charge distribution as

E ( Z) = (0.584 MeV)Z(Z —1)A

According to this formula, the value of the Cou-

1,V, (p, k)kT, (k, q;E)
T, (p, q; E = V,, p, q +— dk'

(8)

If y„,(P;E) are eigenfunctions satisfying

„„,V, (p, u)uq„, (u;E)
~nl Pnl Pt O' —E

then these eigenfunctions form a complete ortho-
normal set for negative values of E, and can be
obtained by standard numerical methods. The two-
body T matrix is thus given by

T, (p, q; E) = Q 1
"1~

E) (p„,(p; E)P„,(q'; E). (10)
~„,(E)

nl

Iri the ease of the three-body problem the two-

body T matrix in the three-body Faddeev equations

plays the part of the potential in the two-body
Lippmann-Schwinger equation. In this case, the set
of Faddeev coupled integral equations is given as

„[(21+1)(2I'+I)]"I',(x)p, (x')T, (p, I';Z q'), , —, Z,
g

I v 3&q(P + q

In these equations, 4, (P, q;Z) is the three-body T matrix element for a. final state of two particles in a
relative l state and the third particle in an / state relative to the center of mass of the first two. The in-
homogeneous term 4, (p, q;Z) is the symmetrized T matrix with one noninteracting particle. Z is the total

energy of the three particles. T, (p, P;Z —q') is the two-body T matrix. Also,



AHMEO OSMAN

&=P' + 9''

x = [(q" —q')+ 3(q' -p")]/(2&3Pq),
x' = (-4q'+3p" + q")/(2v 3 p'q') . (14)

Introducing the separable expansion of Z', as given by Kq. (10) into the Faddeev equation given by &q. (11),
one obtains the following expression for 4', :

4, (p, q;z)=4i(p, q;z)+g
1

"x (z ~) v.&(p;z-&')x.~(&;z),

with the function X„,(q;Z) satisfying the integral equations

x.i (q; z) = c.~ ( q; z) + 2
n', &'

dq' &ni n ~ (&~&'iz)xn ~ (9'iz) ~

If the sum over n' and /' is kept as a finite number
of terms, then Eq. (18) becomes an ordinary Fred-
holm equation. In this case it can be solved by nu-
merical methods. So, one can find the energy Z
for mhich the eigenvalue of the kernel is unity.
Therefore the homogeneous equation possesses R
solution. This value of energy mould then coxres-
pond to a bound state of the three-body system.

IV. NUMERICAL CALCULATIONS AND RESULTS

The three-body binding energies are obtained
from the numerical solution of the integral equa-
tions (15)-(18). These equations have certain fea-
tures which simplify their solution. %ith the
above-mentioned two-body potentials for both the
nucleon-a and z-z interactions, the three-body
grouncl-state energies Rx'6 calculated to R vex'y high
accuracy, using only a very limited number of
summation terms. Due to these features of the
potentials used, the well-behaved Schmidt-Hilbert
theory' of integral equations is a.pplied. Kith
these general features, the integral equations
(15)-(18) are solved numerically. In these numer-
ical calculations a-24-point Gaussian integxation
ls Used. Appx'oprlRte weights RncI RbsclssRs Rx'6

chosen for the rapid convergence at infinity, such
as to convert the integral equation into a matrix
eigenvalue equation. The eigqnvalues of the matrix
are given as a function of Z. These values of Z
for which a matrix eigenvalue takes the value 1,
are the three-body bound-state energies. In the

I

present calculations, contributions to the eigen-
values A.„, for higher values of n (i.e., n ~ 4) are
very small. Also, the contributions to A.„, fox L ~ 5
are neglected.

Using this method, the Faddeev-I ovelace fox-
malism is applied to the cases of the nuclei 'Be
and "C. The 'Be nucleus is taken as composed of
two ~ pa.rticles and a, neutron. The ' C nucleus is
considered as a three-z-particle system. By the
above-mentioned method, numerical calculations
are pex formed to obta, in the nuclear binding ener-
gies. The results obtained for the three-body
ground-state energies of the 'Be and "C nuclei
Using the diffex'ent n-~ potentlRI folms Rl6 sum-
marized in Ta,Me II.

Our present theoretically calculated values of the
binding energies can be compared with the experi-
mental values. " The expeximental values" of the
ground-state energies are -1.57 and -7.28 MeV
for the 'Be and "C nuclei, respectively. Our the-
oretical values for energies listed in Table II are
only the nucJ. ear ground-state energies. Thus to
obtain the actual values of the binding energies,
we must remember to add the Couloxnb energy re-
sulting from Coulomb repulsion among the a par-
ticles. These Coulomb energies are approximately
calculated using the formula given by Eq. (7). Ac-
cording to this formula, the Coulomb energy for
the Be nucleus is Ec('Be) —2Ec('He) =2.59 MeV.
For the ca.se of "C nucleus, the Coulomb energy
is Ec("'C)—3Ec('He) = 5.44 MeV. Thus adding these
values for the Coulomb enexgies to the values
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TABLE II. Calculated nuclear binding energies.

potential form

Ground-state Groug. d-state
energy of SBe energy of ~2C

(MeV) (MeV)

Yamaguchi

Gaussian

Tabakin

-4.52

-4.01

-4.28

-12.93

-11.16

-12.78

1

listed in Table II means that our theoretically cal-
culated values for the ground-state enexgies for
both the 'Be and "C nuclei are quite reasonable
and in good agreement with the experimentally ob-
sex'ved VRlues.

V. DISCUSSION AND CONCLUSIONS

In the present calculations, we have used single
separable potentials which can give both attraction
Rnd 1epulslon. Th18 px'operty 18 R generRl .ChRx'Rc-

teristic or nonlocal potentials. A very simple
Gaussian form for nucleon-nucleon potential with

attraction and repulsion was used by us" in thxee-
body calculations. But in the present case, with

the calculations considered in the present paper,
for the type of the present nonlocal seperable po-
tentials, one cannot tell if the interaction is purely
attractive or purely repulsive merely by knowing
the overall sign. In other words, many wxong con-
clusions can be drawn if one looks only at R single
factor f(P) and not both, These unfamiliar features
are shared by and exist for all separable poten-
tials. One must examine and consider the detailed
structure of the nonlocality. The single sepa'rable
potentials used hexe already incorporate the at-
tx'Rct1on Rnd repulslonq Rnd-thi8 x'educes the totRl
number of separable terms needed to reproduce
the two-nucleon data. This reduction in the num-

ber of separable terms simplifies considerably
our three-body calculations.

In the present calculations we proposed a thx'ee-

body model for both the nuclei 'Be and "C on the

n cluster model. The z particles are taken as
rigid entities. %6 have solved the Faddeev equa-
tions numerically for separable interactions. %6
have employed three types of the potential, i.e.,
Yamaguchi, Gaussian, and Tabakin. Throughout
this work we are only concerned with the nuclear
binding enexgies. Accepting the rough estixnate of
the Coulomb energies and adding their approximate
values to the nuclear values, we obtained reason-
Rble values fox' the gl ound-state energ168 whxch

are not far from the observed experimental values.
However, the Coulomb forces could be treated Rc-

curately by treating the pure Coulomb 7.
' matrix in

the integral equations. Inclusion of Coulomb
forces in the three-body calculations is found' to
give more accurate values for the binding energ-
168.

%6 expect that considering higher wave forces
will give additional attraction to pxoduce the ex-
cited states. This involves solving sets of coupled
integ'ral equations with complicated kernels, but

it is rather straightforward numerical calculation.
Moreover, the potentials used already include the

size effect of an o. particle in that the repulsive
part, of the potentials originates from the exclusion
principle operating between two composite a par-
ticles. Thus, the only effect that should be explic-
itly included in these potentials is the Coulomb

repulsion.
Our present calculations lead us to a consistent

picture of the 'Be and "C nucle'i. From these cal-
culations the important physical observables, i.e.,
the energies, can be deduced from the theoxy
which employs the two-body data only. Thus the.

models px'esented here provide a good description
of the composlt1on of the nuclei 'Be and "C. Also,
it is shown that i.t serves as a useful proving

ground for methods of solving the thxee-body prob-
lem. In the present calculations we used three
separable approximations to the ~-n interaction.
A glance at Tables I and II shows that the Tabakin

potential is preferable, in view of the fact that it

provides the best account of the two-body scatter-
ing as well as the three-body observables. So,
from the agreement between the present theoreti-
cal calculations for the binding energies and the

experimental values me can draw some interesting
points. It is found that for the same two-body po-
tential, the two-z system is unbound, while the

three-at system is bound. Since an increase in the

attractive paxts of the potential yields the correct
binding energies, the 6~feet of the two-body forces
is more attractive in the three-body system than

in the two-body system, due to the closed channel

contribution. The z cluster description for the

nuclei is only one of the structures, and it must be

treated Rs an approximation. So, it is better to
sum over all possible three-particle constructions.
Thus the structure of the nuclei will be quite well

represented by the coupled three-body systems.
Also, in the present calculations, the Faddeev

equations are solved with two-body T matrix ne-

glect1ng the interaction between the Q pRrticles Rnd

the constituents of the second channel, but keeping
-the complete two-body T matxix. This indicates
that the inelastic processes tend to increase the

binding energies of the constituent particles closer
to the experimental values of the ground-state en-
ergies of the nuclei.
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