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A new method for analyzing a-nucleus optical potentials is presented. It consists of adding to the
conventional Woods-Saxon real potential an extra potential given by a Fourier-Bessel series. The coefficients
of the series are determined by least-squares fit to experimental cross sections for elastic scattering. A
detailed discussion of the uncertainties in the derived parameters is presented, both for the real potential as a
function of radius and for integral quantities such as the volume integral and the root-mean-square radius.
The method is illustrated using existing data over wide angular range for the elastic scattering of 139 MeV
a particles by **Ni and of 104 MeV a by “Ca, where with the new method x* per degree of freedom is
reduced by a factor of between 5 and 7 to a value of almost 1. The method is also used for the analysis of
data for 104 MeV a particles scattered by **Pb, which is restricted to the diffraction region of the angular
distribution. In that case the new method is capable of uniquely specifying the region where the real
potential is well determined. Evidence is presented for saturation effects in the folding model.

NUCLEAR REACTIONS «-nucleus optical potentials; modifications to Woods-

Saxon form using Fourier-Bessel series.

“ca(a,a), ¥Pb(a,a), E,=104 MeV.

¥Ni(a, @), E, =139 MeV.

I. INTRODUCTION

In optical model descriptions of elastic scatter-
ing there usually is some residual dependence of
the results on the particular choice of parameter-
ized form for the potential. The Woods-Saxon (WS)
form has been widely and very successfully used
to describe optical potentials for nucleons as well
as for composite projectiles. However, this form
gives an implicit coupling between the surface re-
gion and the interior of the potential and this could
introduce undesirable constraints in the analysis.
Indeed, in some analyses of very extensive and ac-
curate data,''? the best values of x*/F, the x? per
degree of freedom, are considerably larger than
one indicating possible deficiencies in the form of
potentials used. Alternatively, when the data are
clearly capable of determining only the surface re-
gions of the nucleus, the WS form leads to esti-
mates of the uncertainty in the potential in the in-
terior of the nucleus which are unrealistically
small. Some attempts have been made to improve
on the WS form, and it has recently been shown
for a particles® that better fits to the data could be
obtained either by using the square of the WS form
for the real part of the optical potential, or by add-
ing to the WS potential an extra term which is
centered near the nuclear surface. The use of the
square of the WS form has also been suggested in
connection with the elastic scattering of heavy
ions.* ‘

The elastic scattering of o particles provides a
good case for studying modifications to the conven-
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tional WS description of the optical potential. In
this case there are no spin or isospin dependent
terms, and therefore it is easier to study the main
part of the optical potential. Also, due to the rela-
tive strength of the absorptive term for a parti-
cles, the surface region and the interior of the nu-
cleus may play different roles, which could be re-
vealed when the constraints imposed by the WS
form are removed. Finally, and perhaps most
importantly, there is a considerable amount of ex-
tensive and accurate experimental data on the
elastic scattering of a particles.

The purpose of this paper is to present a new
method for studying phenomenologically the real
part of the optical potential. This method is cap-
able, in suitable cases, of reducing values of x*/F
to almost 1, and providing results for the real op-
tical potential which are independent, to a very
large extent, of the form chosen for the description
of the optical potential. In particular the present
method is free of any theoretical prejudice as to
the choice of the correction to the WS form. The
imaginary potential is, however, left in the con-
ventional WS form. The method is described in
Sec. I, where special emphasis is placed on the
analysis of the calculated uncertainties in the po-
tential. Integral quantities of interest such as the
volume integral and root-mean-square (rms) ra-
dius are also discussed. In Sec. III we present
results obtained using this method for the analysis
of 139 MeV « scattering by **Ni and 104 MeV «
scattering by “°Ca and 2Pb. In Sec. IV we discuss
the present results, comment on possible connec-
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tions with the folding model, and finally present
a summary of some practical points relating to the
new method.

II. METHOD

A. Optical potential

Looking for an improvement to the conventional
WS form employed in phenomenological descrip-
tions of the real part of the optical potential, we
aimed at using a form which was as flexible as
possible. The form chosen in the present work
consists of a Fourier-Bessel (FB) expansion of
part (or the whole) of the real potential, namely,

V) == Vo (e +1) = 3 bila?) W

where x =(r - 7,A*/%)/a, and V,, 7,, and a are the
parameters of a best-fit WS potential. j(g,7) are
spherical Bessel functions and ¢, =nm)R, where R
is a suitably chosen cut-off radius beyond which
the extra potential in (1) vanishes, i.e., for »>R
only the WS form is used. The b, coefficients are
determined by least-squares fit to the experimental
results. Similar approaches have been used in the
description of charge distributions in nuclei.5="?
However, there are several differences between
the two cases: (i) in the present case the volume
integral of the potential is not fixed and therefore
there are no constraints imposed on the coefficients '
b,. (ii) We do not assume that the extra potential
given by the FB series is small, and no lineariza-
tion of the least-squares-fit equations is attempted.
In fact, the method will also work without the WS
term in (1). However, in this latter case the cut-
off of the total optical potential is then an undesir-
able feature and the least-squares fits become
more difficult numerically. The method is then
also somewhat analogous to that used by Dreher
et al.” for analyses of elastic scattering of elec-
trons but unlike that case where the coefficients
are directly related to the form factor, the b, co-
efficients in the present problem have no direct
relation to experimentally determined quantities
nor to the momentum transfer in the scattering
process. They are determined only via the ¥? fits
to the data and the choice of the FB expansion for
the optical potential is by no means a “best” choice.
In fact, we have obtained very similar results us-
ing associated Laguerre polynomials. The FB ex-
pansion, however, seems to be more suitable from
the numerical analysis point of view and only re-
sults for the FB method will be presented here.
The method consists, therefore, of parametriz-
ing the real part of the optical potential by Eq. (1)
and using for the imaginary part an independent
WS form. An FB series could also be used for the

imaginary potential, but it was felt that at present
this was not justified and that the real potential
should be studied first. Values of R, the cutoff
radius for the FB series, are chosen to be well be-
yond the strong absorption radius,® and the number
of terms N determined by the fits to the data, i.e.,
we choose the value of N for which x*/F ceases to
decrease significantly when N is increased. Val-
ues of N between 9 and 11 were found to be ade-
quate, which means that only fairly low Fourier
components are determined. As pointed out earli-
er, N is not directly related to the momentum
transfer in the scattering process.

Values of the coefficients b, in Eq. (1) are deter-
mined by a least-squares fit to the data. As a first
stage, the six parameters of a conventional com-
plex WS potential are obtained by a standard least-
squares fit to the data. In the second stage, we
search on the parameters b, and on the three pa-
rameters of the imaginary potential, starting with
all the b, values set to zero. This second stage
usually requires less computing time than the first
stage, provided the data covers a sufficiently wide
angular. range (see Sec. III). This rapid conver- -
gence has been observed in cases where up to 14
parameters have been varied. The improvement
in values of x*/F achieved at the second stage of
the fit can be by almost a factor of 10. The method
is found to be very flexible in providing modifica-

‘tions to the WS form, but its main advantage is,

perhaps, in providing estimates of uncertainties in
the potential which we discuss next.

B. Uncertainties in the potential

In the course of calculating the parameters of the
potential by least-squares fits to experimental re-
sults the uncertainties in the parameters are usual-
ly determined from the diagonal elements of the
covariance matrix. (See below.) However, the un-
certainties in the best-fit parameters are not suf-
ficient for the evaluation of uncertainties in quan-
tities of interest and one also needs to know the
correlations between the various parameters. For
example, suppose the least-squares fit to the data
determines the FB coefficients to accuracies +AD,,.
Then the mean square uncertainty in the value of
the potential at a radius 7 is given by

N
[AVF = 5 (8b,Ab, Dado(dm?iolg,7) @)
My n=l
and the correlations between the coefficients,
(Aab,Ab,),,, are required. [Note that the WS po-
tential in (1) does not enter here because it essen-
tially serves to determine the initial values for the
FB fit]. The correlations are found to be very im-
portant in the present problem and this is another
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essential difference when compared with the elec-
tron scattering case.

The general result for the correlations between
the different parameters obtained in least-squares
fits is a well-known one readily derived by stan-
dard methods of matrix algebra. Writing x?/F as
a function of some parameters a,

X3/F=fla,** +a;) (3)

a matrix M is formed from the partial derivatives

of f at a minimum of f, namely,

9%f
an,- <‘8amaan> min ’ @

Diagonalization of the positive definite symmetric
matrix M leads to

<AamAan >3.V = (Mnl)mnfmin > (5)

where f,;, is the value of x*/F at a minimum and
M is-usually referred to as the-covariance ma-
trix. If f,,, is significantly greater than one then
the uncertainties lose their statistical meaning.
The uncertainty in the derived real part of the op-
tical potential as a function of » is therefore given

by

N 1/2
AV = fae > O iaisa) | (0)
myn=

The volume integral (J) and rms radius of the
real part of the optical potential ({72 )»/2) are
quantities of interest, mainly in connection with
the “microscopic” aspects of the potential.® Writ-
ing J =J,+J,, where J, is the volume integral of
the WS component in (1), J, is given by the FB co-
efficients as follows

g, AR %)

T nz n

n=1

and the uncertainty is given by

3 N _1)men
AJ=:4‘E~ [fmin E ( 1)

2,,2
m Tl m-n

(M_'l)m,,]m : (8)

Similarly, the rms radius and its uncertainty can
be obtained from (72 )J = (72 )dJ,+(7*)J, (in obvi-
ous notation) using the following expressions

5 N (_1)n+1
=)0, =S U e g, ©)

and

N (_l)m-m

4R" l:
2 _
A((r?)d) = 7 | Jmin §:1 o

myn=.
1/2
x(m?m? - 6)(m*n? - 6)(M'1)m,,} .

(10)

In the next section the particular féatures of the
present method are demonstrated by analyses of
several sets of experimental results.

III. RESULTS

Three sets of experimental results have been
used to illustrate the power of the present method.
The first'® is for the elastic scattering of 139 MeV
a particles by *®Ni. This is the same data which
enabled Goldberg and Smith'! to eliminate the so-
called discrete ambiguity in the real optical poten-
tial. The second'? is for the elastic scattering of
104 MeV « particles by **Ca. This angular distri-
bution consists of 112 data points and extends to
large angles. These results are also analyzed
over two different angular ranges in order to as-
sess the relevance of the “rainbow angle” criteria
of Goldberg et al ?*°'*! to the present method. The
third set of experimental results'® is for the elas-
tic scattering of 104 MeV « particles by °®Pb,
where the angular distribution is restricted to the
diffraction region.

A. SNi(a,®) at 139 MeV

This set of experimental results'® consists of 50
differential cross sections measured between 8°
and 79°. As the present method uses 10—14 param-
eters to describe the optical potential, only the
full angular range was analyzed. Results of the
least-squares fits are given in Table I. The pres-
ent results for the WS model differ slightly from
those of Ref. 10 probably due to the inclusion of
relativistic effects'® in the present work. The

TABLE I. Results of optical model fits to **Ni(y, ) at 139 MeV. Errors are quoted only
for the present Fourier-Bessel method. J is the volume integral and {»2)!/? is the rms

radius of the real optical potential.

—J/4A Gyt
Model X*/F (MeV fm?/nucleon pair) (fm)
Woods-Saxon 290 4.74
Woods-Saxon
281 +3 4.69+0.07

plus 11 FB terms (R =13 fm)
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second stage of the fit, namely, fitting the coeffi-
cients b, in (1) (and readjusting the imaginary po-
tential) converged very rapidly and produced a sig-
nificant reduction in the value of x?/F. The pa-
rameters for the imaginary potential changed very
little in this stage of the search. Figure 1 shows
the real potential obtained for the best-fit WS form
as well as for the best-fit WS plus 11 terms for the
FB series. An interesting feature is the variation
of the estimated uncertainties with . The potential
is rather poorly determined at the nuclear center,
but quickly becomes well determined as 7 increas-
es; such a result is clearly impossible to get us-
ing a WS parametrization (even when correlations
are included in the analysis of uncertainties). The
accuracy is reduced at large radii, but this is not
observed in Fig. 1. (See, however, Fig. 4). Note
that the uncertainties displayed in Fig. 1 are not
uncorrelated, and generally (AV(r)AV(#')),,#0.
These correlations are however automatically in-
cluded when the uncertainties in J and {(»2)/2 are
calculated.

B. “°Ca(a,a) at 104 MeV

Results of optical model fits to the full range of
‘the angular distribution, which consists of 112
points between 5° and 116°, are given in the first
part of Table II, and the fit to the data obtained
using the present method is shown in Fig. 2. As
in the case of °®Ni, convergence of the second
stage of the least-squares search was rapid, and
as can be seen from Table II and Fig. 2, the fit to
the data is very good. Again, the parameters of
the imaginary potential changed very little in the
second stage of the search. Figure 3 shows the
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FIG. 1. Real part of optical potential for ®Ni(a, o) at
139 MeV, for conventional WS model (continuous curve)
and for the present method, with 11 FB terms, R =13
fm (dashed curve). Note that the errors are not uncor-
related.

real part of the optical potential for the WS model
and for the WS plus 11 FB terms. Compared to
®Ni, it is seen that the uncertainties in the poten-
tial are smaller and it looks as if for these *°Ca

TABLE II. Results of optical model fits to 40ca (o, o) at 104 MeV. Errors are quoted only

for the present Fourier-Bessel method. J is the volume infegral and (rH1/2 is the rms
radius of the real optical potential. '

Angular ~J/4A (r2y1/2
range Model x*/F  (MeV fm3/nucleon pair) (fm)
5°-116° Woods-Saxon 10.5 332 4.45

Woods-Saxon
plus 11 FB terms. 1.5 323 +2 4.36+£0.04
(R=13 fm)
5°-48° Woods-Saxon 2.8 339 4.37
Folding 1.8 393 4.09
Woods-Saxon
plus 11 FB terms ? 0.9 296 +10 4.33+0.17
(R=13 fm)
22°-116°  Woods-Saxon 12.3 335 4.47°
Woods -Saxon
plus 11 FB terms 1.8 333+16 4.5 +£0.5

(R=13 fm)

2 An example of a typical, but not unique result.
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FIG. 2. Experimental angular distribution for 4°Qa(a', o) at 104 MeV (Ref. 12) and calculated best-fit angular distri-
bution obtained by the present method. (Several experimental points for angles smaller than 10° have been omitted from
the figure for clarity). Two angular ranges used in separate fits are indicated by arrows.

data that the a-particle probes the interior of the
nucleus more completely.

Separate optical model fits have been made to the
experimental results using the 73 data points be-
tween 5° and 48°. This range is in the diffraction
region of the angular distribution, and according
to the criteria of Goldberg et al.'®'!! the data over
this range are incapable of providing a unique real
optical potential in the nuclear interior. The re-
sults of the present work are in agreement with
this conclusion. The second part of Table I shows
that a reasonably good fit is obtained with the WS
form and some improvement is obtained when the
FB series is included. However, the second
stage of the parameter search took a very long
time to converge (unlike the previous case where
the large angle data were included), and it was
possible to obtain convergence to different sets of
parameters, which were not always consistent
with each other. In particular, values of the vol-
ume integral did not always agree and the discre-
pancies were larger than the estimated uncertain-
ties. This indicates that the present method is of

limited use when the data are restricted to rela-
tively small angles, or put in other words, when
the data are not extensive enough'® to enable infor-
mation to be obtained about the nuclear interior.
The elastic scattering of a particles by “°Ca in
the diffraction region has been used®'? to “cali-
brate” the effective a-nucleon interaction for the
folding model. We have also used the folding model
for this angular region and in Table II are shown
results assuming identical neutron and proton den-
sities'® (with rms radius of 3.39 fm) and searching
on the a-nucleon interaction and the imaginary
potential. The fit is quite good, probably because
under these conditions of restricted data, the ex-
tra constraints imposed on the potential via the
folding model are useful.’ The a-nucleon inter-
action obtained in this fit is very reasonable. Val-
ues of —J/4A of 393 MeV fm?® and rms radius of the
interaction of 2.29 fm (obtained from the rms radii
of the potential and of the matter distribution) are
in excellent agreement with previous determina-
tions®*? of these quantities. Very recently Lassut
and Vinh Mau'” obtained parameters for the effec-



tive a-nucleon interaction, starting from the nu-
cleon-nucleon interaction. At 104 MeV they obtain
—J/4A in the range 317 to 400 MeV fm? and rms
radii in the range 2.1 to 2.4 fm. Our empirical re-
sults clearly agree with-these values.

If the results for —J/4A and (7?)/? obtained in
the present work from the fit over the full angular
range (see first part of Table 1) are to be inter-
preted in terms of a simple folding model, then the
effective interaction should have an rms radius of
2.74 fm. The apparent reduction of —J/4A from
393 to 323 MeV fm® which is accompanied by an in-
crease in the rms radius of the interaction from
2.29 to 2.74 fm when the large angle data are in-
cluded indicates saturation of the interaction as
the penetration into the nucleus becomes deeper,

a result which is to be expected. This means that -
large angle data cannot be analyzed with the simple
folding model using a density-independent inter-
action. We return to this point in Sec.IV.

Optical model fits have also been made to that
part of the data which only covered larger angles.
The third part of Table I gives results for the 73
data points in the range of 22° to 116°. Here the

“Ocq,a 104 MeV
T~
u.o%

120+ X

— Re(U) (MeV)

r(fm)

FIG. 3. Real part of optical potential for *Ca(a, a) at
104 MeV for conventional WS model (continuous curve)
and for the present method, with 11 FB terms, R =13
fm (dashed curve). Also shown are several points
(crosses) for the fit obtained for the 22°-116° data.
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second stage of the parameter search converged
very quickly to a well-defined result. The real
part of the optical potential agrees very well with
the potential obtained by fits to the full angular
range. Several points near the center of the nu-
cleus obtained for the large-angle fit are included
in Fig. 3. For »=>1.5 fm the two potentials are in-
distinguishable on the scale of Fig. 3. However,
the results for the volume integral and the rms
radius show significant differences between the
partial and full angular ranges. Comparing the
first and third parts of Table II, we see that the
corresponding results agree, within their esti-
mated uncertainties but the exclusion of the data
below 22° causes an 8-fold increase in the uncer-
tainty in the volume integral and a 12-fold increase
in the uncertainty in the rms radius. This is un-
doubtedly due to the fact that the small angle data
are sensitive mainly to interactions at large radii.
This result provides an interesting demonstration
of the power of the present method and in particular
of the analysis of the uncertainties.

C. 25Pb(a,a) at 104 MeV

In this case!® the data are well within the diffrac-
tion region of the angular distribution and there-
fore there is little hope of extracting any informa-
tion about the nuclear interior.'* Under these cir-
cumstances one cannot expect to get a unique de-
scription of the optical potential. Calculations.
using the present method took a very long time to
converge and lead generally to nonunique results.

" However, a region of the potential near the strong

absorption radius was found to be very well deter-
mined. This is, of course, a well known result,
but an interesting fegture of the present method is
that indeed the uncertainties are predicted to be
very small in that region. Examples for two such
fits are shown in Fig. 4 where it is clearly seen -
that the uncertainties are very small near » =10 fm.
The folding model appears to be more suitable for
analyzing small-angle data but, nevertheless, the
present method shows which are the well deter-
mined regions of the potential.

IV. DISCUSSION

A. General

A new method for analyzing phenomenologically
the real part of the a-nucleus optical potential has
been developed. The method consists of adding to
the conventional WS potential an extra potential
given by a Fourier-Bessel series, where the coef-
ficients are determined by a least-squares fit to
the data. In the examples shown here values of x?/
F decreased by factors of between 5 and 7 to val-
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ues close to 1. Although the number of parameters
has increased from 6 in the conventional model to
up to 14 in the new method, this is still a small
number compared with typically 50 to 100 experi-
mental data points in a good angular distribution.
The present method is free from any prejudice as
to the form of the modification to the WS param-
etrization and the analysis of the uncertainties in
the potential is particularly powerful. The method
is at its best when the data extend well beyond the
nuclear “rainbow angle,”? i.e., well beyond the dif-
fraction region of the angular distribution into the
region of exponential decrease. In such cases the
convergence of the parameter search is very rapid
and a single calculation is capable, thanks to the
estimated uncertainties, of showing clearly the re-
gions of the potential which are well determined.
This is in contrast to the approach'® of introducing
a local perturbation into the WS potential and re-
peating the least-squares fits many times, varying
the location of the perturbation in order to ascer-
tain which are the well-determined regions of the
potential. The alternative method of Brissaud .
and Brussel'® using a sum of Gaussians to describe

ﬁ 2OBPb +a 104 MeV
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FIG. 4. Real part of optical potential for 208ph(a, @) at
104 MeV. Dots and crosses indicate two different fits
to the data.
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the matter distribution is essentially a folding
method, but again involves 10’s of repeats of the
least-squares-fitting procedure. This last method
could have advantages for analyses of data over a
restricted angular range.

The present method is not very efficient when the
data do not include cross sections for sufficiently
large angles. This is not a deficiency of the method
but it is more clearly observed here than in the
simple WS parametrization where coupling between
the surface region and the interior is implicit in
the model. In situations where the data do not
probe the nuclear interior, the extra flexibility
available in the present method is not justified al-
though it can still clearly indicate the region near
the surface where the potential is well determined.

We have stressed the importance of experimental
results for large angles, but the role of experi-
mental results at small angles should not be over-
looked. That has been clearly demonstrated by the
uncertainties in the values of the volume integral
and rms radius in the analysis of the results for
“Ca. v
The present method is, obviously, not “model
independent.” The cutoff radius R and the number
of terms N cannot be varied, in practice, beyond
reasonable limits and there is some dependence on
the initial values provided by the best-fit WS po-
tential. For example, starting the second stage of
the search for °®Ni with x2/F =1600 (compared to
6.2 in the best fit), the final x?/F was 3 (compared
to 1.2) and the potentials did not agree for ¥=2.5
fm, probably due to the value of N being too small
in this case. Nevertheless, values of J and (72 )/?
agreed within their estimated uncertainties. Start-
ing from any reasonable WS fit, the searches con-
Vérge quickly to produce a well defined potential.
The dependence of the results on the form chosen
for the potential is considerably smaller in the
present method than in conventional analyses. We
also note that the imaginary potential used here is
of the traditional WS form and this could have a
small effect on the results.

Finally, the present method may be suitable for
analyses of heavy-ion scattering, where it could
help settle the question of whether the optical po-
tential at small separations can be determined.*

B. Relationship to more fundamental models

The description of the scattering process in
terms of a local phenomenological potential is a
very useful approximation. More fundamental ap-
proaches which are based on nucleon-nucleon in-
teractions and which may involve, for example,
exchange effects, are seldom employed in direct
comparisons with extensive experimental results.
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Instead, the resulting interaction can be approxi-
mated by a local and energy-dependent optical po-
tential, and the latter compared with the results
of phenomenological analyses.?* Such comparisons
however, may not be very meaningful when the de-
tails of the phenomenological potential itself may
depend on the particular choice of parametrization
and when values of ¥/F are significantly greater
than 1. The present method offers an improvement
to phenomenological optical potentials which may
be used as an intermediary in confronting more
fundamental theories with expgriments.

A particularly simple form of a more fundamental
approach is provided by the folding model® which
has been used in direct comparisons with experi-
mental data. In the analysis of the *°Ca data we
indicated possible difficulties in relating the re-
sults of the present method to the simple folding
model. These difficulties are observed when com-
paring results obtained from fits over the full an-
gular range with those obtained from fits over the
diffraction region only. In the former case the
volume integral and rms radius of the real poten-
tial are well determined but in the latter there are
ambiguities and we choose, for a comparison, the
folding model fit which leads to unambiguous re-
sults and acceptable value of ¥?/F. The values ob-
tained for the volume integrals and rms radii sug-
gest saturation effects as the probing of the nucleus
becomes deeper, hence making questionable the
merit of analyzing large angle data with the simple
folding model. However, using a simple Gaussian
in the folding model, one could be tempted to tech-
nically take advantage of the Fourier-Bessel series
in the present method and unfold analytically an ef-
fective @-N interaction in order to obtain a nuclear
matter density distribution. We wish to discourage
such an approach.

As mentioned in Sec. II, an FB expansion 6f the
potential is possible also without the WS term in
(1). (The initial values of b, are then taken from
a Fourier-Bessel expansion of the best-fit WS.)

In that case, unfolding a Gaussian with a range pa-
rameter u Ieads to FB coefficients for the nuclear
matter distribution b{™ as follows

2

b{m =;}—] b,exp [<gg> nz} (11)
and the covariance matrix can also be transformed
into the matter distribution. Because of the finite
cutoff radius R, Eq. (11) is expected to hold only
for small values of n even for folding calculations.
Also, it is well known that unfolding procedures
are quite often unreliable because of propagation
of errors. We have verified that the present case
is no exception. Applying (11) to the b, coefficients
obtained for *°Ca from fits over the full angular
range produced results which were numerically
meaningless. It is felt, however, that these ob-
servations are worth reporting.

C. Practical comments

As demonstrated in the present work, the new
method is particularly useful in cases when the
data contain cross sections for angles beyond the
diffraction region. The most efficient approach is
to first fit a WS potential and only then perform
the least-squares fit for the FB series, together
with further adjustments of the imaginary potential.
A search then over for example 14 variables does
not require more computing time than the conven-
tional WS fit. Typical values for R, the cutoff ra-
dius are 13-16 fm and about 10 terms in the series
were found to be sufficient. Failure o converge
in a reasonably short computing time usually indi-
cates either too stringent convergence criteria or
that the data are incapable of providing a reason-
ably well determined optical potential throughout
the nuclear volume. In such cases the uncertain-
ties in the potential as given by the present method
could be underestimates, particularly close to the
center. Results for volume integrals and rms
radii are, however, usually reliable.
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The Hebrew University, Jerusalem, Israel.
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