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For very rapidly rotating nuclei, the moment of inertia can be readily increased if the mass is distributed

in the form of i torus. Thus, a rotating toroid can be a figure of equilibrium when the angular momentum

exceeds a certain limit. The angular momentum thresholds for the onset of toroidal figures of equilibrium are

evaluated and found to be greater than the limits at which the fission barriers vanish for riuclei with the

topology of a sphere. Stability against sausage deformation, in which the toroid becomes thicker in some

sections but thinner in some other, is examined. We obtain two different results on the question of stability,

depending. on the flow pattern in the presence of these axially asymmetric deformations which, in turn, is

greatly affected by the dissipative mechanism.

NUCLEAR STRUCTURE Rotating toroidal nuclei. Nuclei. with very large angu-
lar momentum. Sausage stability. Regions of stable rotating toroidal nuclei.

I. INTRODUCTION

The equibbrium shape of a nucleus under rota-
tion has been the subject of many investigations.
From the survey of Cohen, Plasil, and Swiatecki, '
we know how in the liquid-drop model the equilib-
rium shapes vary with the angular momentum and
the flsslllty parRmeter. AddltlonRl nueleRr shell
effects sometimes alter the equilibrium shapes. '
Furthermore, as the ela, ssical-type treatment in
terms of a mechanical system can only be of use
in describing the average behavior of a quantal
system, statistical fluctuations of the actual en-
ergies from the classical mean may have very pe- .

culiar consequences such as the possibility of the
existence of yrast traps put forth by Bohr and
Mottelson. '

Recent measurements of the total fusion cross
section in heavy-ion reactions suggest that the li-
quid-drop limit of critical momentum at which the
fission barrier vanishes for a nucleus with the top-
ology of a sphere has been exceeded' while a dif-
feren't measurement reaches this limit. ' If one
takes into a.ccount the competition of particle emis-
sion, the critical angular momentum should be de-
fined as the angular momentum at which the fission
barrier height is of the order of the binding energy
of the least bound particle. Seen in this light,
reaching the so-called "liquid-drop limit" is, in
fact, exceeding the proper limit for stability against
fission for a nucleus with the topology of a sphere.
The breakdown of such R bmit can, of course, be
explained in terms of dynamical effects, the de-
tails of which are still rather obscure, or. in
terms of ehRnges of llquld-dl op parameters. On
the other hand, one, can raise the pertinent ques-
tion whether the so-called liquid-drop limit is the

only limit for all shapes. What if the shapes are
drastically different from that of a sphere'P

As of yet, much of the discussion of a rotating
nucleus is limited to shapes with the topology of a
sphere. However, for very rapidly rotating sys-
tems, the moment of inertia can be readily in-
creased if the mass is distributed in the form of a
torus. Equilibrium or quasiequilibrium toroidal
systems become possible. ~ Indeed, many rapidly
rotating and gravitating toroidal objects have been
observed. v There is even the interesting sugges-
tion that the mass distribution (as distinct from the
visible light distribution) of our nearest neighbor-
ing galaxy, the Andromeda, is essentially toroidal. '
The fact that some rapidly rotating systems have
been observed to be toroidal and the apparent
breakdown of the liquid-drop limit for a nucleus
with the topology of a sphere calls for a careful
examination of the stability of rotating tor"oidal
nuclei.

In this first survey of the rotating toroidal nu-
clei, we shall focus our attentionon the treatment
-of these nuclei as classical mechanical systems
endowed with a uniform charge density and a sur-
face tension. The interesting consequences, if
any, due to the shell effects ean be dealt with a,s
in Ref. 9 but will not be treated here.

In Sec. II we consider toroidal nuclei in equilib-
rium and observe that as the angular momentum
exceeds a, certain limit, there can be toroidal fig-
ures of eqUilibrium. In Sec. III we examine the
stability (or instability) of the rotating toroidai
nuclei under "sausage" deformations in which the
toroid becomes thicker in some sections and thin-
ner in some others. %e obtain two different re-
sults on the question of stability, depending on the
Dow pattern in the presence of these axially asym-
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metric sausage deformations, which, .in turn, is
greatly affected by the dissipative mechanism. In
Sec. IV we discuss the fate of the rotating toroidal
nuclei under the most optimistic estimates of sau-
sage stability so as to provide characteristics for
their detection, if they ever live long enough to
become detectable.

II. ROTATING TOROIDAL NUCLEI IN EQUILIBRIUM

In the discussion of rotating toroidal nuclei in
equilibrium we shall restrict ourselves to cases
where the Quid elements are in a uniform rota-
tion about the symmetry axis with a common an-
gular velocity. Such a motion is also called rigid-
body rotation as the velocity field and the moment
of inertia are the same as those of a rotating rigid
body. Our restriction is a natural one. For, in
a classical mechanical system, viscous forces
can transfer the necessary angular momentum
point by point and dissipate the necessary ener-
gies to convert a nonuniform rotation to a uniform
rotation, given a sufficient lapse of time. Secondly,
the rotating energy of a rapidly rotating nucleus
in the nuclear cranking model is what one obtains
in a uniform rotation, when angular momentum is
sufficiently large such that the nuclear pairing
force becomes ineffective. 'o Of course, one does
not wish to imply that the current flow inside a

'

nucleus in the cranking model is a uniform one
(as a matter of fact, recent investigations sug-
gest the opposite); the uniform rotation can be
used here to calculate the rotational energy of a
rapidly rotati;ng nucleus.

As in the case of a rotating and gravitating mass,
one knows very well that the meridian of a rota-
ting toroidal nucleus in perfect equilibrium is not
circular. In the gravitational case, self-consis-
tent figures of equibbrium were calculated. ' The
meridian of the equilibrium figure is found to be
nearly elliptical with the "major axis" lying per-
pendicular to the direction of the central symmetry
axis of the torus. ' So, with the Coulomb repulsion,

f
the meridian of the figure of equilibrium is ex-
pected to be nearly elliptical with the "major axis"
lying in the same direction as the central sym-
metry axis. For the evaluation of the equilibrium
shape, one can follow the self-consist;ent treat-
ment presented in Ref. 6. However, such a treat-
ment is rather complicated and does not seem to
be warranted at the present time. Furthermore,
the action of the surface tension is expected to
counterbalance the long- range Coulomb repulsion
in reducing the ellipticity which can therefore be
neglected in the first approximation. Hence, we
consider the simple case of a toroidal nucleus
whose meridian is restricted to be circular. Such

a problem lends itself to a simple treatment in
toroidal coordinates in terms of which analytic
expressions for various relevant quantities are
already known. '

A toroidal nucleus having a circular meridian
is characterized by a major radius A measured
from the geometrical center of the torus to the
center of the meridian and a minor radius d which
is the radius of the circular meridian. The ratio
of the major to minor radius E/d is defined as the
aspect ratio of the torus. In toroidal coordinates,
the surface with such an aspect ratio is the coor-
dinate q:

q= cosh '(ft/d) . (2.1)

N —g ~

E &o&(N, Z) = a, (2.2)

E"'(N Z)=C Z'/&'~',

E„"&(N,Z) =L,'/-,'(m„r, 'X'~'), (2.5)

where a, is the surface energy coefficient, v,a, is
the surface symmetry energy, C, is the Coulomb
energy coefficient, rn„ is the nucleonic mass, and
z, is the radius parameter. The surface geometric
factor g, (q) is'

g, (g) = (4n' cosh'/9)'~'. (2.6)

The Coulomb geometrical factor gc(q) is'

5 3m '~' sinh'g
gc(n) =—

6 2 cosh2g cosh@

oo

&„S„cosh' 8„ cosh'

cosh@
(4 cosh'q+3)

Sn sinh'g

where c„ is the Neumann factor defined by

(2.7)

=2 for v=1, 2, 3, . . .
The functions S„and C„are

For a deformation which preserves axial sym-
rnetry and the volume of the nucleus and a rotation
about the symmetry axis, the energy of the nucleus
as a function of g is given by

E(N, Z, q) =E,"'(N, Z) g, (q)+Ec '(N, Z)gc(q)

+E„"'(N,Z)g„(q),
where E,"' and g"' are the surface and Coulomb
energies of a spherical nucleus with the same vol-
ume, while E@' is the rotational energy for the
spherical nucleus having the same angular momen-
tum. In terms of the parameters for the liquid-
drop mass formula, the surface, Coulomb, and
rotational energies are:
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$„(cosh') = (n+ ,')P—„, (cosh)))()) „ t '(cosh)))

—(n- —,')P„, (cosh)))Q „,, '(cosh))) (2.8)

( „(cosh@)= (n+ —,')Q „,, (cosh)))

(n-—,')-g „,(cosh@)Q „,, '(cosh))),
(2.9)

where the functions P„and Q„are I egendre func-
tions of the first and second kind with order n de-
gree I (toroidal harmonics). The geometrical
factor for a rigid-body rotation about the symmetry
axis ls

8 2 -2/3.
g„(q) =— (4 cosh' )) + 2) ' . (2.10)

5 3mcoshq

The geometrical factors as a function of the as-
pect ratio 8/(f are given in Fig. . l. One observes
that g~ is a monotonically decreasing function of
tbe aspect ratio R/d. (2 The function gc bas a mag-
nitude less than unity, indicating a smaller mag-
nitude of the electrostatic energy as compared
with that of an equivalent spherical nucleus with
the same volume. The rotational geometrical fac-
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FIG, 2. Total geometrical factor as a function of the
toroidal aspect ratio R/d. For each value of x, the
lower curve gives the threshold of the rotational param-
eter at which a toroidal minimum just begins to develop.
The other two curves are the total geometrical factor for
higher values of the rotational parameter y. The posi-
tions of the energy minima are indicated by arrows.
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tor g„ is a monotonieally decreasing function of
the aspect ratio, while the surface tension geo-
metrical factor g, is a monotonieally increasing
function of the aspect ratio.

It is of interest to note that in the region 1.0
&8/(f s 2.0, the magnitudes of the slopes of g„with
respect to R/(f are approximately twice as large
as the corresponding slopes of gc())). We shall see
how such an approximate relationship affects the
boundary of the threshold of toroidal rotating nu-
clei.

%e introduce the dimensionless measure of Cou-
lomb and rotational energies as in Ref 1:

&
—g (0)/2g (0)

C

y =g(o)/~(0)
s

(2.11)

(2.12)

2 5
R/d(=cosh q)

FIG. 1. Geometrical factors as a function of the
toroidal aspect ratio R/d.

where x is the usual fissility parameter and y is
the rotational parameter. Then, the deformation
energy can be written in terms of the surface en-
ergy and the total geometrical factor g:

(2.12)
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With these definitions, the deformation enex gy
(apart from the scale of E+') is determined en-
tirely by g(g). An examination of this total geo-
metrical factor g(q) then reveals stabibty or in-
stability against variations of q (or the aspect ra-
tio ft/d).

The total deformation energy of toroidal nuclei
with different fissility parameters and rotational
parameters can be easily calculated from the dif-
ferent geometrical factors. As the surface ten-
sional geometrical factor is a monotonically in-
creasing function of the aspect ratio while the Cou-
lomb and the rotational geometrical factor is a
monotonically decreasing function of the aspect
ratio, it is clear that there can be 3n energy min-
imum in the q degxee of freedom when the fissility
parameter and the xotational parameter exceeds
a cex'tain llmlt.

We show in Fig. 2 the total geometrical factor
as a function of the aspect ratio for selected com-
binations of x and y parameters. For each value
of x, the lowest curve is the total geometrical
factor for the particular threshold value of y at
which the toroidal minimum begins to develop.
After the toroidal minimum is developed, an in-
crease in angular momentum gives rise to an in-
crease in the aspect ratio. The positions of the
minima are indicated by ax rows.

As the value of x increases, the values of y at
which toxoidal energy minima begin to develop de-
creases. We plot in Fig. 3 the boundary in the
(x, y) plan for the toroidal threshold above which
toroidal equilibria are possible. It is of intex est
to note that the boundary is given approximately by
the equation

(2.15)

Such a result is a consequence of the fact that the
magnitude of the slopes of the geometxical factor
g„ is about twice that of gc in the region 1.0 %R/d
~ 2.0 where the energy minima are first located.
As the equilibrium condition is obtained by

the approximate relation between the slopes allows
one to wx'lte dan the following Rppx'oxlmRte equl-
libx ium condition:

).0 (2.17)

On the other hand, we knowe that a toroidal nucleus
without rotation begins to have an energy minimum.
when x= 1, we see from Et(. (2.1V) that the inclu-
sloQ of rotation leRds to the approximate l elation

TABLE I. Threshold rotating parameters y, beyond
which toroidal minima develop, are listed as a function
of the fissility parameter x. Given also are the aspect
ratios 8jd, total geometrical factor g, and the relative
geometrical factor $ for these threshold cases.

0
0 0+

FIG. 3. The solid line is the toroidal threshold. above
which toroidal energy minima develop. The hatched
region is the stable region if the nucleus maintains. rigid-
body rotation in the presence of sausage deforInations,
while the shaded region is the stable toroidal region if
an axially asyInmetric Qow follows a sausage deforma-
tion (see Sec. III).
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-0.1619
-0.1313
-0.0996
-0.0658
-0.0298

0.0085
0.04918
0.0771
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a rotating toroidal nucleus, a rigorous treatment
of stability against axially asymmetric sausage
distortions necessitates a complete hydrodynamical
analysis, as the perturbation of the shape will, in
general, be associated with a nonuniform pertur-
bation of the flow. We shall defer such a dynami-
cal treatment until a later date and content our-
selves with quasistatic properties in simple cases,
where the flow patterns under sausage distortions
are assumed known. Our treatment follows closely
our previous analysis of a gravitating toroidal
mass (where following Dyson" the term "beaded
displacement" is used instead of the term "sausage
distortion" or "sausage deformation").

The surface shape of a toroidal nucleus having
sausage deformations o, about an equilibrium shape

g = g, is given by

FIG. 4. The total geometrical factor of the toroidal
minimum relative to that of a sphere for various com-
binations of x and y values. Each dotted curve is the re-
sult for a single y value. The solid curve is the envelope
for the toroidal thresholds.

(2.15) for the onset of toroidal minima.
As a function of x, the threshold rotational para-

meters are listed in Table I, together with the
equilibrium aspect ratios and total geometrical
factors. As is observed, the aspect ratios for the
threshold increases with fissility parameters, in-
dicating that the Coulomb repulsion is effective in
pushing the major radius outward.

For a given value of x, one finds that the thresh-
old value of y for a toroidal equilibrium exceeds
the rotational parameter for the fission barrier to
vanish. ' It appears that the toroidal sequence is
not connect'ed with the sequences of shapes involved
in those with the topology of a sphere.

The geometrical factor of a toroidal minimum can
be expressed relative to the geometrical factor for
a spherical nucleus with the same volume and an-
gular momentum:

$ =g - (1+»+y).

7/
= 7/0(1 + o'o+ Q (F~ Cos~&f&) (3.1)

where X is the number of maxima (or minima) of
the meridian area and 0, is of the order of o,' and
is introduced to conserve volume under sausage
deformation.

With a density confined to the boundary as given
by Eg. (3.1), the Coulomb energy and the surface
energies, when expressed in powers up to o, can
be written as

Z, (q, o) =E&" g, (q)+-P C,c,'1 (3.2)

E,(q, v) =R,"' g, (q)+ —g s,v,'1

X=1
(3.3)

f(q, o) =Z" g„(n)+-gr, c,'
X=1

(3.4)

where the coefficients C, and s~ have been calcula-
ted previously. 9

The moment of inertia for rotation about the axis
through the center of mass can also be separated
into two parts':

We plot the relative geometrical factor ( as a func-
tion of x and y in Fig. 4. As is observed, when a
toroidal equilibrium configuration is possible, the
relative geometrical factor is negative, except for
x & 0.78 and for small values of y. Thus, for these
nuclei with negative values of $, the total energies
of the toroidal minima are lower than the corres-
ponding energies for the spherical shape.

III. SAUSAGE DISTORTIONS

where

and

(3.5)

2 2/3 q2

8 3n cosh' sinh'q

&& (8 cosh4q+ 64 cosh'q+ 33)

3 coth2g —2 t

—2(8 cosh q+ 24 cosh'q+ 3)3 th2In our previous analysis of a nonrotating toroidal
nucleus, sausage instability is found to be the most
important instability of the toroidal nucleus. For 6n + q sinh '0(- 3 + 5 coth'q) (3.6)
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where we have taken into account the shift of cen-
ter of mass for a sausage deformation of order

In the presence of dissipation, viscous forces
can transfer the necessary angular momentum
point by point and dissipate the necessary energies
to convert a nonuniform rotation into a uniform

' rotation, after a certain lapse of time. How rapid
such a conversion can take place is completely
unknown. %e shall consider two limiting cases.
First, we consider the case where the viscous
force is so strong as to convert a nonuniform ro-
tation into a uniform rotation almost instantane-
ously so that a uniform angular velocity is approx-
imately maintained under a sausage deformation.
Secondly, we consider the case where viscous
forces are hardly operative so that an axially
asymmetric flow follows an axially asymmetric
SRusRge dlstoltlon being fRstex' Rt R constx'lctlon
and slower at a bulge.

34

6

A. Rigid-body rotating under sausage distortions

In the presence of a viscous force strong enough
to maintain approximately a rigid-body rotation
under sausage deformation, the coefficients C„
s~, and x, determine the question of stability. The
rotational enex gy becomes

(3.7)

and'the total energy of the system under this as-
sumption ls

Z =E,"' g, (q, )+2Xgc(q, )+yg (g, )

PIG. 5. The rotational stability coefficients as a func-
tion of the aspect ratio. The curves labeled x&, x; where
i = 2, 3, 4, ... are the coefficients of rotational stability
under the assumption of a uniform rotation in the pres-
ence of sausage deformations, while the curve labeled
r'; is the coefficient of stability under the assumption of
axially asymmetric flow in the presence of sausage de-
formations.

(3.8)

Thus, in this case, the sign of K, determines sta-
bility or instability. In Fig. 5, we plot the stabil-
ity coefficients x~ as a function of the aspect ratio.
The other coefficients s~ and C~ have been pre-
sented previously in Fig. 5 of Ref. 7 and will not be
reproduced here. One observes' that s, is always
negative wlrile s~ for &~ 2 is positive for B/d ~ A.

and negative thereafter. On the other hand, C, is
always positive while C~ for ~ 2 is'negative for
R/d ~ ~ and positive thereafter. The values of r~
are the same for RQ X values if rotation is about
the geometrical axis. A correction for the shift
of center of mass gives x, different from the other
x~'s. As one observes, x, is positive abvays while
the other x)„'s are positive for A/d = 1.5.

%e ev'aluate the total stability constant K„ for the

threshold of toroidal equilibrium. That is, for a
given value of x, we evaluate K~ for the values of
rotational parameter j and the aspect ratio R/d
listed in Table I. Out of such a calculation we ob-
tain the stability constant K~ for various values of
x Rt the toroidal thxeshold. They are plotted in
Fig. 6. One observes that under the assumption
of rigid-'body rotation in the presence of sausage
deformation, the incipient rotating toroidal nu-
cleus is stable for distortions of all orders when
x& 0.41. When x exceeds -0.41, !,t remains stable
against distortions of order &=1, 3, '4, and 5 but
becomes unstable against distortions of order
~=2. As a sausage instability of order ~=2 leads
eventually to a disintegration into two equal pieces,
the fate of incipient rigidly rotating toroidal nu-
clei with x ~ 0.41 is a toroidal breakup of two equal
fragments.

The stability constants E„plotted in Fig. 6 are
eve, luated for the incipient rotating toroidal nu-
cleus. As the rotational parameter y increases
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)0

8

0

0 0.2 0.4 .0.6 0.8 1.0

FIG. 6. Total coefficients of stability &z for nuclei at
the toroidal threshold as a function of the fissility, pa-
rameter for sausage deformations of various orders.

B. Non-rigid-body rotation under sausage deformation

As mentioned previously, an axially asymmetric
distortion of the torus will generally lead to axially

above the threshold values, these curves will
move downward, Such a downward movement
arises because of the shift to a greater aspect
ratio as y increases. The rapid decrease of the
stability constant s~ with respect to an increase
in the aspect ratio results in greater sausage in-
stability as the rotational parameter y increases.
Thus, we have the following order in which in-
stability sets in: first, there is the instability of
order &=2, followed by ~=3 and ~=1 which occur
quite close to each other, and then ~=4 and 5.
The region of stability, after sausage distortion
of all orders is considered, is shown as the cross-
hatched region in Fig. 3. As one observes, the
region of stability is very small indeed. In terms
of angular momentum, the stable region encom-
passes only a few units of h. It appears therefore
that in the presence of dissipative forces such that
rigid-body rotation is maintained throughout sau-
sage distortions, a rotating toroidal nucleus is
unstable against sausage distortions for all intents
and purposes.

v(P) = v, sinh' q, /sinh' q, (&f&) . (3.11)

In consequenc'e, the kinetic energy under sausage
distortion is related to the rotational kinetic ener-
gy without sausage distortion E+'g„(go) by

E„=E„"' g„(q,)+Q r,'o,'
X=1

where

(3.12)

r,'=g„(q, )q, 1+, ' (coth' q„+1)
3 coth' g, —2

0 0 3 coth' g, —1
(3.13)

and the stability constant K, becomes

(3.14)K~ = s)t+ 2xC)t+yx)t
I

The coefficient r~ is now independent of the order
of sausage distortion. In Fig. 5 we plot x,' as a
function of the aspect ratio. As is observed, it is
always a positive quantity and it decreases as the
aspect ratio increases. The pattern of flow under
the present asSumption of Dyson has .the effect of
stabilizing the sausage distortions.

With the knowledge of the x~ coefficients, we can
calculate the coefficient of stability K~ for various
values of x, y at the equilibrium toroidal aspect
'ratio. One then obtains the region of stability as
the shaded region given in Fig. 3 in the x-y plane.
We observe that for nuclei: up to x-0.85, there
are regions of rotational parameters in which a

asymmetric patterns of flow. The assumption of
rigid-body rotation discussed in Sec. III A is an
idealization in the presence of frictional forces
transferring the necessary angular momentum
point by point and dissipating the. necessary en-
ergy. What of other forms of flow pattern which
are not axially symmetric and where the viscous
force is inoperative'? We can follow the method
of Dyson" and discuss a simple case with the ax-
ially asymmetric flow pattern. Under sausage de-
formations, the area of the meridians becomes a
function of the azimuthal angle. As the nuclear
fluid can be considered incompressible, in order
to maintain the same mass flow across different
meridians, the flow velocity needs to depend on
the area of the meridian. It is faster at a con-
striction and slower at a bulge. The average vel-
ocity v(Q) for the meridian at Q is then a function
of Q:

(3.10)

where A is the area of the meridian at the azimuth-
al angle Q and A, and g, are the area and the aver-
age velocity of the meridian without sausage de-
formation. The dependence of the meridian area
on the surface toroidal coordinate g, (P) leads
from Ecl. (3.10) to
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FIG. 7. Stable toroidal region in the plane of angular momentum E and mass number A. for nuclei along the p-stability
line.

toroidal rotating nucleus is stable against sausage
distortions with the axially asymmetric flow pat-
tern of Dyson.

For different values of x, the instability which
sets in at y y is of a different type. This is
understandable as the aspect ratio is usually
smaller for smaller values of x and y, and the
smaller aspect ratio is usually associated with
sausage instability of lower order. For x~ 0.2, it
is the ~=1 sausage instability which provides a
limit to the rotational parameter and for 0.2 ~ x
~ 0.7 the sausage instability of order ~ = 2 provides
a limit to y . For x —0.8 and x slightly greater
than 0.8, sausage instability of order ~ =2 sets a
limit of y for y -0.24, while sausage instability
of order ~ = 3 sets up the limit of y~ for y

-0.7.
So far, the region of stability is given in the

x, y plane for convenience. It is of practical in-
terest to express the stability region in terms of
angular momenta l and mass number A. Using
the mass formula of Myers and Swiatecki, '4 we
obtain from Fig. 3 the stable toroidal region in the
/-2 plane for nuclei along the P-stability line (Fig.
7). As is observed, the region of stability is quite

large under the present assumption of the pattern
of axially. asymmetric flow given by Dyson. The
angular momentum even reaches a value up to
1-300 n.

IV. DISCUSSION

From the analysis of the last section, we have
two very different results for the stability of the
rotating toroidal nuclei, depending on the flow pat-
tern in the presence of sausage deformations which
in turn is greatly affected by the dissipative mech-
anism.

However unlikely it may seem, it is of interest to
obtain information on the rotating toroidal nuclei
under the most optimistic estimates of sausage
stability in order to provide characteristics for
their detection, if they ever live long enough to be-
come detectable. For this reason, we shall dis-
cuss the fate of rotating toroidal nuclei in'the stable
toroidal region of Fig. 7, keeping in mind the re-
strictive nature of our assumptions with regard to
the flow pattern. How these nuclei come into being
is a separate question which need not concern us



TABLE II. The tlaDsitioD eDergles +8 for an F2 tran-
sition in a toroidal nucleus along the P-stability line.
The toroidal nuclei with angular momentum between

lm;n and l~ are stable against sausage deformations,
on the assumption of an axially asymmetric flow follow-
ing a sausage deformation. Here, &E(E l, ) and &E(E~)
are, respectively, the transition energies at l &, and

l~; x is-the fissility parameter, and Z and A. are the
charge and mass number s of the nucleus on the P-sta-
bility line.

&E(l 1„)
l~n (MeV) l (MeV)

0.1
0.2 '

0.3 .

0.4
0.5
0.6
0.7
0.8
0.8
0.9

11
22.4
34.2
46.3
58.6 '

71.0
83.5
96.0
96.0

121o3

23.9
50.5
79.4

110..5
143.4
178.1
214.3
251.9
251.9
291.0

25.33
56.92
90.22

122.40
150.71
172.21
182.28
173.71
248.75
249.83

10.85
7.057
4.99
3.87
2.96
2,31
1.73
1.20
1.06
0.77

30.95 7.89
74.26 4.80

127.86 3.32
177.12 2.55
217.86 2.04
261.91 1.64
304.18 1.35
190.30 1.10
324.99 1.07
292.04 0.81

here.
Consider first a "cold" rotating toroidal nucleus.

Although these nuclei may be stable against sausage
deformation& and particle emission, they are un-
stable against y decays. We envisage the deexcita-
tion of the rotating toroidal nuclei by y radiation
with a multipolarity of 2 and an energy given by

AE(l) =E(E)-E(l- 2) =4ygg,"'/l,
where g„ is the rotational geometrical factor eval-
uated at the equilibrium aspect ratio appropriate
for the angular momentum t;. This y energy is
characterized by a larger moment of inertia as
compared with that with spherical topology and
therefore is typically lower than that for the same
spherical nuclei with the same angular momentum.
The y-ray energy is given in Table II for the max-
imum and the minimum E values in the stable re-.

gion of Fig. V. There may be yrast traps either
due to the nuclear shell effects or statistical fluc-
tuations. ' Without the occurrence of these traps,
p deexcitation will bring the nuclei to the toroidal
threshold below which a toroidal equilibrium is

impossible. At this juncture, the nucleus may
tunnel through a barrier in the q degree freedom
to change the topology from toroidal to ellipsoidal.
The accompanying change of topology, which may
be slightly delayed, brings the nucleus to an ellip-
soidal shape with a x'otational parameter exceeding
that of the Cohen, Plasil, and Swiatecki limit for
the fission barrier to vanish. The nucleus will
subsequently undergo fission. The examination
of the y-ray-energies before the fission of the
toroidal nucleus, if experimentally feasible, will
provide information on the intermediate toroidal
configuration.

With regard to the liquid-drop angular momen-
tum limit and the heavy-ion total fusion cross sec-
tion which partly motivated the present investiga-
tion, our result indicates that there can be a, dif-
ferent limit of angular momentum when the shape
of the nucleus is drastically different from that of
a sphere. However, our result as it is does not
explain how the liquid-drop limit of a sphere can
be exceeded. Our stat le toroidal region is not
connected to the stable spheroidal region of Cohen,
Plasil, and Swiatecki. Consequently, after the
toroidal threshold is reached and conversio~ to a
spheroid takes place, the resultant spheroidal nu-
cleus has an angular momentum exceeding the li-
mit for a, syheroidal nucleus arid will subsequently
fission. The present result, however, has the re-
striction on the circular shape of the meridian,
which is not a truly self-consistent equilibrium
shape, particularly near the toroidal threshold.
Removal of such a restriction may perhaps modify
the toroidal threshold to bring it within the region
of stable spheroidal nuclei for A & j.00. This, how-
ever, remains to be studied. If the toroidal and
spheroidal regions have an overlap, our conclusion
on the fate of toroi:dal nuclei mentioned in the la.st
paragraph needs to be modified.

A more definitive analysis of sausage stability
calls for a complete hydrodynamical analysis of
the flow. In this respect, the nuclear hydrodynam-
xcal computer program we have developed" for the
investigation of heavy-ion collisions can be easily
adopted for such an investigation in the future.
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