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Three-nucleon results for one-boson-exchange potential
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The binding energy of 'H, percentage S-, S'-, and D-state probabilities and charge form factor of 'He

are calculated using the Adhikari-Sloan separable expansion to the Holinde and Machleidt one-boson-

exchange potential. The results show that the Adhikari-Sloan expansion has good convergence for the

binding energy, and the lowest order Adhikari-Sloan expansion considered gives excellent results for the
form factor.

NUCLEAR STRUCTURE ~H binding energy, ~He charge form factor, Faddeev
approach, separable expansion to realistic N-& interaction.

I. INTRODUCTION

In a previous publication, here referred to as I,'
we compared the use of the unitary pole expansion
(UPE)' and the Adhikari-Sloan separable expansion
(ASE)' in calculating trinucleon bound state obser-
vables for the Heid soft core potential (HSC).' In I,
we found that the ASE in general gave better results
for lower rank separable expansion than the UPE.
In particular, it was not necessary to resort to T-
matrix perturbation theory to achieve convergence
in the binding energy of 'H (Er), and the lowest
rank ASE considered gave far better results for the
charge form factor of He (CFF) than a higher rank
UP E.

In the present communication, we present trinu-
cleon results for the one-boson-exchange potential
(OBEP) of Holinde and Machleidt (HM), ' using the
ASE with the hope of showing: (i) The convergence
for the binding energy of 'H and CFF is as good as,
if not better than, was the case for the RSC. (ii) Al-
though with OBEP we improve the agreement with
experiment for E~,' the minimum in the CFF
moves to higher momentum transfer, and away .

from the experimental results. ' ' (iii) The success
of the low rank ASE for the one-boson-exchange
potentials, which are commonly used in relativistic
two-body equations such as the Blankenbecler-Su-
gar (BS) equation, "suggests that such an expansion
can be used to construct separable nucleon-nucleon
amplitudes which satisfy relativistic two-body unit-
arity, and at the same time give a good represen-
tation of the experimental data. Such amplitudes
can then be employed in relativistic three-body cal-
culations such as n-d scattering at medium ener-
gj.es, s or the determjnatj. on of relativistic effects
in E~ and C FF.'

We can write the OBEP for the exchange of sca-
lar (s), pseudoscalar (ps), and vector (v) bosons
as'4

(q, q) = g I'.(q', q),
fX =8~A~ V

where t/ is the Born amplitude resulting from the
exchange of one boson n from a nucleon with initial
center of mass momentum q, to another nucleon
with final center of mass momentu~ —q'. The pro-
blem with OBEP arises from the asymptotic be-
havior of the amplitude V (q, q), which displays
polynomial divergence in q and/or q'. The worst
of these divergences occurs in the case of vector
boson exchange, where, for example with q' fixed,
the tensor coupling component of the vector meson
amplitude diverges as q' for q tending to infinity.
To overcome this problem the coupling constants

'

of the bosons are multiplied by strong interaction
form factors F (q, q), which die off sufficiently
fast in q and q' to ensure that the potential will be
wel. l behaved asymptotically once these form fac-
tors are included. In practice this regularization
technique reduces to formation of the final potential
from a linear combination of the exchange ampli-
tudes calculated with the boson masses, and with
several large cutoff masses. For q and q' small,
the effect of the additional terms involving the cut-
off masses is negligible; however, since these ad-
ditional terms exhibit the same asymptotic behavior
as the terms involving the boson masses, as q and/
or q' become large they cancel the divergences of
the boson amplitudes, producing a potential with
good asymptotic behavior.

This delicate cancellation between the amplitude
with the boson masses and that with the cutoff mas-
ses leads to difficulties in constructing the UPE for
OBEP. We recall that the UPE is formed from the
eigenvectors of the kernel of the I,ippman-Schwin-
ger equation, ' some of which contribute only attrac-
tion to the potential, and others only repulsion. In
the case of OBEP, nearly all the repulsion comes
from the exchange of vector bosons (the p, Id, and
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P in HM), and hence the repulsive eigenvectors de-
pend mainly on the vector part of the potential. Un-
fortunately the worst divergences occur in the vec-
tor boson amplitudes, and thus, in numerically cal-
culating the vector boson part of the potential by
the method described above, enormous cancell-
ations occur, even at moderately large values of q
and q'. These cancellations make the accurate
computation of the repulsive eigenvector impos-
sible. In fact, on calculation, most of them tend to
be approximately constant, or widely oscillatory at
quite large momentum values. We could overcome
this problem by resorting to analytic cancellation
which makes the calculation of the kernel highly
time consuming and renders the UPE an imprac-
tical approach to the construction of the separable
expansion for the two-body amplitude. However,
since this complication arises only in determining
the repulsive eigenvectors, we can still construct
the unitary pole approximation (UPA), which in-
volves only the attractive eigenvector correspond-
ing to the deuteron wave function. Of course, since
the ASE does not involve the calculation of the eig-
envectors of tPe kernel it can be constructed with-
out any numerical problem arising from the cancel-
lation in the vector meson's contribution to the po-
tential. Furthermore, these cancellations do not
affect the accuracy of other quantities calculated
with the HM potential such as the scattering phase
shifts or, most importantly, the deuteron wave
function (we obtain ED= —2.2250 MeV and PD
= 5. f4/g6in perfect agreement with HM).

II. RESULTS AND CONCLUSIONS

Since the main aim of the present calculation is
to show that the ASE can be constructed with great
success for OBEP, we will restrict our three-body
calculations to the use of the nonrelativistic Fad-
deev equation. In this way we avoid some of the
problems involved in using correct relativistic
three-body equations. " Since the potential in Eq.
(1), after regularization, was used in conjunction
with the Lippmann-Schwinger equation with rela-
tivistic unitarity to fit the experimental data, we use
the prescription of minimal relativity" to construct

a potential of the form

(2)

with E,= (q'+M')'~' and M the nucleon mass, to be
used in the nonrelativistic Lippmann-Schwinger
equation.

With the above stated problem in constructing t'he
UPA for OBEP, we will restrict our three-nucleon
results to the use of the UPA, ASK(1, 2), and

ASK(4, 6), where we imply. by ASK(M„M, ) a, rank
M, (M, ) 'So('S, —'D, ) Adhikari-Sloan separable ex-
pansion. To solve the Faddeev equation for the tri-
nucleon bound state we need t6 know the two-body
T matrix for the energies E= —Er SXq'/4—(X =)f'/
m) with 0 ~ q & ~, and Er the binding energy of the
trinucleon. To take optimum advantage of the spec-
ial features of the ASE, we chose our expansion
such that the two-body T matrix (p'l'

~

T"ss(E )
~

l„P„) is exact for all P' and t', and M, (M,) energies
E„, momentaP„, and angular momenta/„, from the
set of (E„,P„,f„) are given by

E„=E,—2Xq„'/4 (n= 1, . . .No)

P„'= —E„/X, l„=0,2

with E, = —7.0 MeV, and q„ the quadrature points
used to convert the homogenous Faddeev integral
equation to a set of algebraic equations. The ex-
plicit values of (E„,l„) used to construct the ASK
for the 'S, and 'S, —'D, channels of the HM potential
are the same as those used for the RSC potential
and are given in Table III of I,'

We present in Table I the trinucleon results for
the binding energy of 3H (Er), the percentage S-,
S'-, and D-state probability [P(S), P(S'), and P(D)]
of the 'H wave function, the rms charge radius of
He (x+')'~, the position of the minimum in CFF

(Z „'), and the ratio of the experimental to the cal
culated CFF at the maximum (i.e. , EC' = 20 fm ') R
for the OBEP of Holinde and Machleidt (HM). ' For
comparison, we have also included the results of
Brandenburg, Sauer, and Machleidt (BSM),' ob-
tained by solving the two dimensional Faddeev eq-
uations in momentum space for the same potential.

To examine the accuracy of our results for the

TABLE I. Three-nucleon results for the OBEP of Holinde and Machleidt (Ref. 5) using the
UPA, ASE(1, 2), and ASE(2, 4). Also included are the results of Brandenburg eI; al. (Ref. 7).

Method
E~

(MeV)
I'(s)

(%)

P($')
(%)

2)1/2

(fm)

. 2
+min
(fin 2)

UPA
ASE (1,2)
ASE (4, 6)
BSM

7.503
7.415
7.344

7.47 + 0.1

90.64
90.21
90.33
91.57

1.19
1.25
1.25
1.10

8.12
8.46
8.35
7.31

2.035
2.054
2.059
1.97

16.0
15.3
15.3

15.48+ 0.3

5 ' 5
4.7
4.6



328 N. D. BIRRELL AND I. R. AFNAN

binding energy we have yerformed the following
tests: (i) To examine the convergence of the ASE
we have calculated Er with ASE(2, 4) with the re-
sultant binding energy of 7.330 MeV. Determining
the rate of convergence ~Er(1, 2) —Er(2, 4)

~

= 0.085
MeV and ~Er(2, 4}—Er(4, 6)

~

=0.014 MeV and corn
paring it with the corresponding quantities for the
HSC of 0.101 and 0.011 MeV, respectively, we ex-
pect our results for HM to be of comparable ac-
curacy to the RSC' and better than a0.02 MeV. (ii)
To study the sensitivity of E~ to the choice of E„,
the energies at which the off-shell T matrix is ex-
act, we have taken E, to be -7.5 MeV instead of
-7.0 MeV. With thi4 choice of E„ the correspond-
ing binding energy is 7.348 MeV using the ASE(4,
6), a change of 0.004 MeV from the value in Table
I. As a test of the number of energies E„—for
which the off-shell T matrix is exact —needed for a
given rank expansion to maintain accuracy, we
have calculated E~ with only two of the four basis
energies for the singlet expansion, and three of the
six basis energies for the triplet expansion in the
ASE(4, 6) T matrix. Despite the fact that we have
not taken full advantage of the special feature of the
ASE, we obtain a=binding energy of 7.352 MeV with
ASE(4, 6), a change of 0.008 MeV from the result in
Table I.

Combining the possible sources of error, i.e.,
finite rank expansion, choice of energies E„, and
finite quadrature points, we expect an error in E~
using ASE(4, 6) of less than 0.03 MeV.

In I' we showed that although we have restricted
the two-body interaction to the 'S, and 'S, —'D,
channels, the antisymmetry leads to an infinite
series for the partial wave expansion of the wave
function. The criterion used for truncating the ser-
ies for the wave function was determined by the
normalization (@ ~@) which we could determine in
closed form [see Eq. (45) of 1]. For the RSC po-
tential the restriction l +L ~ 10 on the partial
wave expansion was sufficient to give 99.63% of the
normalization, where f (L ) is the orbital angular
momentum of the pair (Py) (spectator o.). For the
HM potential this restriction using [UPA, ASE(l,
2), ASE(4, 6)] gives, respectively (99.71,99.71,
99.70) Pp of (4 ~4'). Ca'lculating (4 ~@) using ASE(4, 6}
and all terms with/ +L ~20 gives us 0.9991, an-

increase of 0.21 at the cost of nearly doubling the
number of terms in the partial wave series. We
have thus restricted our expansion to l + L with
the belief that, as in the BSC calculation, the ad-
ditional terms would not change our results appre-
ciably.

In Table II we present the percentage probability
for the Blatt-Derrick components of the trinucleon
wave function with / +L & 10. Since the P-wave
nucleon-nucleon interaction is not included in our

/

TABLE II. Percentage probabilities of the Blatt-Der-
rick components of the trinucleon wave function for the
HM potential.

Channel L 8 l~ L~ P UPA ASK(1, 2) ASK(4, 6)

1 0 2 0 0 A 89.60

2 0 2 0 0 — 0.55

3 0 —, 1 1 + 053

4 0 2 2 2 A 0.88

5 0 2 2 2 — 0.043

6 0 2 3 3 + 0 046

89.12

0,57

0.56

0.92

0.047

0.050

89.18

0.57

0.56

0.98

0.048

0.050

10

12

20

21

22

0 2 4

0 2 4

0 2 5

2 2 03

2-1
2 2 13

222
2-'2
2-3
2 2 23

2 2 33

223
2 2 4

43

2 2 4

2 2 53

2 2 53

2 2 6

4 A 0.16 0.17

4 — 0.0081 0.0085

5 + 0.014

1.00

1 + 2.42

3 + 0.89

0 — 2.71

0.16

1 + 0.30

4 — 0.13

3 + 0.12

+ 0.18

2 — 0.050

4 — 0.016

6 — 0.029

5 + 0 023

3 + 0 076

4 — 0,013

0.015

1.03

2.49

0.97

2.84

0.16

0.32

0.13

0.12

0.18

0.053

0.016

0.030

0.025

0.081

0.014

0.17

0.0084

0.014

1.01

2.42

0.96

2.80

0.16

0.34

0.14

0.12

0.19

0.054

0.016

0.030

0.023

0.083

0.014

calculation, we have not tabulated the P-wave pro-
babilities. In the table, L and S refer to the total
orbital angular momentum and spin in L-S coupling.
The column labeled P gives the symmetry under
permutation of the spin-isospin yart of the wave
function. Thus A denotes the totally antisymmetric
component, and + denotes the two mixed symmetry
comyonents. As we observe from the table there is
good agreement between the two ASE results, and
quite good agreement between the UPA and ASE re-
sults. We also note that there are relatively large
contributions to the wave function from channels
with large L (e.g. , channels 16-18). The same
situation was true for the BSC yotential. This large
contribution from high partial waves implies that
one needs to be careful in truncating the expansion
for the wave function, and can effect the results for
the S-, S', and D- state probabilities as we will
see.
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In' Table I we yresent the S-, S', and. D- state pro-
babilities of the trinucleon wave function using the
different separable expansions with l + L, ~ 10.
Included also are the results of BSM.' By compar-
ing the results for the different separable expan-
sions, we observe the general close agreement
particularly for the ASE(l, 2) and ASE(4, 6), which
is a strong indication of the convergence of the
ASE. As a test of our restriction l +I. ~ 10, we
have calculated the probabilities using the ASE(4,
6) with/ +I. ~20, the resultant values (90, 2, 1.2,
8.4) are in excellent agreement with those in Table
I, and a confirmation of the fact that the restriction
l +I ~ 10 will. not introduce significant error into
our results. A comparison of our results for the
probabilities with those of BSM shows a discrep-
ancy of 1% for P(S) and P(D). For the HSC poten-
tial a discrepancy of the same magnitude was pres-
ent between our results using the ASE, and the
solution of the two dimensional Faddeev equation in
momentum' space. ' This discrepancy was mainly
due to the fact that we had included more terms in
our yartial wave expansion which add to the D-state
comyonent of the wave function and effectively re-
duce the S-state probability. A similar effect is

' present here for the HM potential.
Having established the convergence of the ASE for

the trinucleon wave function, we present in Fig. 1
the CFF of 'He for the different expansions. Also
included are the experimental results of McCarthy
et al." The most notable feature of these results is
that the ASE(1, 2) and ASE(2, 4) give indistinguish-
able results. This means that as far as the CFF is
concerned we need not go beyond the ASE(1, 2).
This is a major simplification in the trinucleon
wave function needed to calculate the contribution
from meson exchange currents and three-body for-
ces. At the same time this simpler wave function
that reproduces the experimental CFF data for E'
&8 fm ' can be used to construct pion optical poten-
tials and to study such reactions as d(p, v)t.

Finally, we compare in Table Ieur results with
those of BSM for the rms charge radius and the yo-

10-1

CV

10-2
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(J
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10

UPA

SE, (1,2)
SE (4,6)

1Q I I I I I I I I I 1 I I I

0 2 4 6 8 10 12 14 16 18 20
K (fm )

FIG. 1. The charge form factor of ~He using the UPA,
ASE(1, 2), and ASE(2, 4). Also included are the experi-
mental results of McCarthy et af, . (Ref. 15).

sition of the minimum in the CFF. The general
agreement is an indication of the success of the
ASE of low' rank for OBEP.

In conclusion we note that the ASE for 'So and Sy
—'D, channels of the HM OBEP converges for the
binding energy of 'H and the charge form factor of
'He without perturbation theory. The ASE(l, 2)
gives a simple yet accurate reyresentation of the
OBEP trinucleon wave function for other studies.
Furthermore, the method can be used to construct
separable amplitudes for use in relativistic three-
body calculations. Finally we confirm previous re-
sults' ' on the fact that as one improves the binding
energy of 'H the fit to the experimental CFF of ', He
gets worse.
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