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Nuclear level density with schematic forces
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For a system of fermions interacting via a pure pairing force, exact level densities are obtained in a
semirealistic model space. The results are transmitted through graphs and tables so that they are readily
available for comparison with various approximate methods. A fairly detailed comparison with a particular

approximate method using the grand partition function is also made. The consequences of adding the
quadrupole force to the Hamiltonian are discussed. Variational calculations done in the specific case of Sn
isotopes suggest that although these nuclei are spherical in the ground state (zero temperature), it is possible
that they prefer deformation at finite but low temperature. This can lead to very large changes in the
calculated values of level densities.

NUC LEAR STRUCTURE ii6Sn, ~Sn; calculated LeveL' density using quasispin
formalism, grand partition method, and pairing-pLus-quadrupoLe model at finite

temperatur e.

I. INTRODUCTION

Nuclear level density data 'are available mostly
at neutron separation energies. The motivation
for doing level density calculations at these ener-
gies is to ascertain if the parameters that give a
reasonable description of very low energy spectra,
can also reproduce the level density data.

At the present time, most level density calcula-
tions' ' employ realistic single particle levels.
Thus shell effects are already built into the calcu-
lations. Often the only residual interaction em-
ployed is the pairing force which is solved in an
approximate way. Usually an approximate grand
partition function is constructed' 4 from which the
level density is obtained by Laplace inversion,
although different approximations' have also been.
made.

In doing similar calculations in the Sn isotopes'
we have felt the need for some exact calculations
against which approximate calculations couM be
compared. The present work was initially planned
with this in mind. The model space for which
exact calculations are to be done must be semi-
realistic. Thus we have avoided level density cal-
culations involving fermions in a single j shell.
On the other hand, a completely realistic valence
space is too large to handle exactly. We have,
therefore, limited ourselves to a moderately large
space and allowed fermions to interact by a pair-
ing force. Exact level density calcul. ations for
even-A and odd-A. systems were done in this
space. These results are transmitted through
graphs and tables such that they are readily avail-
able for studying the suitability of any approxi-
mate method.

The second motivation for this paper arose as a
byproduct of this study above. Having established
the bounds for approximate calculations, we re- '

alized that it is not possible to achieve agreement
with the experimental data in Sn isotopes using the
pairing force as the only residual interaction. If
we use realistic single particl. e energies and a
pairing force which reproduces odd-even mass
differences, .then the calculated level densities
are smell by a factor of 20 or worse. Discrep-
ancies of the order of 100 for these isotopes have
been mentioned in the literature before. ' We our-
selves have done a level density calculation' in
this region with Lee-Kahana-Scott' matrix ele-
ments; the results do not change appreciably.

One solution to this dilemma is the following in-
teresting possibility. As is well established, the
Sn isotopes are spherical in the ground state. All
calculations mentioned above assume that they re-
main so at higher excitation energy. Suppose,
however, that a large number of excited intrinsic
states at =8 MeV in these nuclei are deformed.
Then rotational states built upon these deformed
intrinsic states will lead to a la.rge increase in
level density, Such 3n increase can be as high as
a factor of 40 (see Refs. 3 and 4) in the well de-
formed region. A variational. calculation done in
this paper is strongly indicative of the possibility
that at excitation energies of the order of 8 MeV,
the Sn isotopes are, in a statistical sense, de-
formed. We investigate this by adding the quad-
rupole force to the pairing Hamiltonian and calcu-
lating the energy surface against deformation Bt
zero temperature (ground state) as well as at finite
temperature (excited states). At zero temperature,
the shape is spherical; at fin. ite but still I.ow tem-
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TABLE I. Neutron shell model energies for exact
calculation in model space. '

Orbital Energy (MeV) 10

1d(/2
0g7/~
2Si /2

1d3/ p

0.
0.8
1.3
2.50
2.80

perature, the pairing effect is weakened and the
quadrupole force takes over, giving preference to
a deformed shape over the spherical shape.

II. EXACT CALCULATIONS IN A MODEL SPACE

e consider zz Sn ii7Sn, and i2oSn. These are
regarded as 16, 17, arid 20 neutrons in the 1d,/„
Og, /„2s, /„OA, „/„and 1d, /, shells. The single
particle energies are taken from Kisslinger and
Sorensen' and are listed in Table I. The pairing
force strength is g=23/A MeV. The exact diago-
nalizations were done using Kerman's quasispin
formalism. ' In. spite of the simplification that this
formalism provides, some of the matrices are
quite large. The largest matrix in the case of
'"Sn was 110x 110.

The results of matrix diagonalization are shown.
in the form of histograms in Figs. 1 and 2. Exact
level densities obtained from a pure pairing force
exhibit significant fluctuations. Some of these
fluctuations are not real but rather result from the
simple nature of the pairing force which leads to
many degeneracies. It is desirable to smooth
these fluctuations in order to compare with results
from approximate methods which provide a
smoothed density. We smooth the exact level' den-
sity by using the saddle-point method. This re-
quires the following steps. From the exact eigen-
values one can. obtain

z, (p)= Q c

The exact density is related to Z, by

1 $00

p(E) = 2„. z.(p)e"d p

The integral is evaluated by the saddle-point meth-
od and leads to
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saddle-point method is that it converts a discrete
density into a smooth one.

The smoothed densities obtained from the exact
calculations are given in Table II. In all subse-
quent sections, these smoothed densities are re-
ferred to as exact densities. We provide numeri-
cal values of ~(E) and p(E, I, w) where

&u (E) = Q (2I+ l)p(E, I)

= g (2I+ l)[p(E, I, +)+ p(E, I, )]. -

In many approximate calculations, ~(E) is ob-
tained first and p(E, I, v) is obtained subsequently.
Experimental results are usually for selective val-
ues of I with definite parity.

p(E) = exp [lnZ, (p, ) + p, E]/[2m((E') E') ]'~',
where

E= QE,e ~oN~/Z, (p,),
(E') = gE, 'e "~/z, (P,).

In the present context, the main feature of the

III. APPROXIMATE METHOD BASED ON THE GRAND

PARTITION FUNCTION APPROACH

If the exact grand partition function

Z(o p) Q euNe Ss( &N&

N, i

eg fXN-E
~

(E )j
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where the entropy S is

S= lnZ(o. „P,) —o.,N+ P, E

and the constants n„po are so chosen that
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FIG. 2. Histogram of energy levels for ' YSn. The
solid line represents the state derisity as described in
the caption to Fig. 1. The dashed line represents the
level density for spin ~" .

1
(2wI')' Z(a, P)e "eIsdu dP. (2)

'The saddle-point approximation for the integral
leads to

w„(E) = e~/[2w(D DII —D I')'~'],

is known, then the exact expression. for state den-
sity of N particles is given by

B lnZ
80 BP~

+QI BQ

B'lnZ
l

BQBp

Provided the residual force is the pairing inter-
action, an approximate grand partition function
can be readily obtained and the various quantities
appearing on the right-hand side of Eq. (3) can be
readily obta. ined. The method has recently been
extended to include more general interaction. '
For completeness, we write down the equations
that need to be solved for a pure pairing force.
For a given temperature T(=1/p) one solves

N= Q QI 1 — ' (1 2f,.) (10)

—= g QI—(1 2fI).
2

In the above, &~ are shell model single particle
energies, 0&

——(j+ —,') and

B lnZ
BP &PSBQ

The quantities D, Dz~, and D ~ are second deri-
vatives:

9' lnZ
(RQ B~2

flf pt HO

TABLE II. The- smoothed state density ~(E) and smoothed level density p(F. , I, n) for 6Sn

and ~Sn resulting from an exact calculation in the model space. Each density must be multi-
plied by 10 exponentiated by the number given in brackets.

Excitation
energy
(MeV)

(L) (E)
(MeV-')

"'Sn
p(g, 0, +)+ p(g, 1,+) '

(MeV-')
~(E)

(MeV-')

if 7Sn

p(& z +)
(MeV ~)

5
6
7
8
9

10
ll
12
13
14
15

3(3)
1.3(4)
4.v(4)
1.4(5)

, 4.2(5)
1.1(6)
2.6(6)
5.4(6)
l.o(v)
1.9(v)
3.o(v)

~ ~ ~

1 (2)
3 (2)
6(2)
1(3)
3 (3)
6 (3)
1.1(4)
1.8(4)
3(4)

2(4)
v(4)
2.3(5)
6.5(5)
1.6(6)
3.v(6)
v.5(6)
1.4(v)
2.3(v)
3.4(v)
4.8(v)

2(2)
4'(2)

9(2)
2(3)
4(3)
7(3)
l.o(4)
1.6(4)
2.1(4)
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[(~ g)2+ g2]1/2

f~ = (1+e2s~) '

4 is the energy gap which is largest at zero tem-
perature and decreases with increasing tempera-
ture. Above the critical temperature, Eq. (11)
cannot be satisfied and the problem reduces to that
of noninteracting fermions. The explicit expres-
sions for the various quantities appearing on the
right-hand side of Eq. (3) can be found in previous
work ' 4

To obtain p(E, I) we use

p (E,I) = p (E,M = I) —p(E, M = I+ 1),
p(E, M) = (2vv2) '&2~(E) exp(-M2/2112),

where

to within a factor of 2. One feature of the approxi-
mate calculation is that it underestimates the level
density below the critical temperature and overes-
timates it above it. The level density obtained
from the approximate calculation has an abrupt
rise at the critical temperature. This is associ-
ated with a sudden decrease in the value of D~~
[Eqs. (3) and (6)] at the critical temperature.

IV. THE METHOD OF MOMENTS

This method was pioneered by French and colla-
borators. " Consider N fermions restricted to M
single particle states [M=+(2j, +1)]. Then, to
lowest order,

a„(E)= (2vF2) '~2d(i') exp[-(E —E)2/2E2]. (12)

Here
f

v2=+ 2 Q rn2 f,(1-f~).
m=X/2

The quantity a' is called the spin cutoff factor.
Finally it is assumed that p(E, I, +) = 2p(E,I)—

The level densities derived from this approxi-
mate method are compared with exact densities in

Figs. 3 and 4. The approximate method is correct

d(N) = (
E=-g &X, i~@~II,i&,
— 1

F2 &E2& E2

(13)

6
10

&E'&=-„g &X, iIII'~X, i&. (16)

In Eqs. (14) and (16), the index i runs over all pos
sible states of the N particle system in the re-
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FIG. 3. State density and level density for 6Sn. The
solid lines represent the densities obtained by smoothing
the exact results by the saddle-point method. They cor-
respond to the histograms in Fig. 1. The dashed lines
represent the approximate densities obtained from the
grand partition function method.
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FIG. 4. State density and level density for "~Sn as
described in caption to Fig. 3.
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stricted space. An equation similar to Eq. (12)
above can be written down for p(E, I, v) or for a
sum of p(E, I, v) with appropriate changes in d, E,
and E'. Equation (12) is the fi~st term of a Gram-
Charlier series' and can also be obtained" from
standard techniques of statistical mechanics.

The method was compared with exact calculation
in the following way. We assume that p(E)
=p(E, 0, +)+ p(E, 1,+) (this is the experimentally
measured quantity in "'Sn) is described by a
Gaussian mith parameters defined by appropriate
modifications of Eqs. (13)-(16). It is well known"
that the pairing force produces some skewness in.

the distribution which is not contained in the lowest
order expression of Eq. (12). Nonetheless, the
Gaussian distribution fits the exact density moder-
ately well. The real problem lies in. trying to re-
write Eq. (12) in terms of p(E,„,) where E„,is the
excitation energy. .This is necessary for compar-
ing with experiment. If we decide to approximate
the ground state energy" by E, where Ep satisfies

p(E)dE =-,'

Orbital
Energy (MeV)

Proton Neutron

1pi /2

1P3/2
Of s/~
Of p/2

2Si/2
dg/2

1d5/ 2

Ore/~

2pi /2

2p3/2
1f5/s
1f7/

Ohe/p

—9.6370
-10.7590
-11.2241
-15.6952
-0.6689
—0.7496
-2.5082
—2.4893
—7.7014

~ ~ ~

1.3*
2.8*
0.0*
0 ~ 8*

-4.6600
9.6320
8.9192

10.2434
7.6839

10.2813
5+

TABLE III. Shell model energies used in full space
calculations. These energies were calculated for a
spherical Woods-Saxon potential well (N. B. de Takacsy,
private communication). The energy scale for the neu-
trons has been shifted so that the 1d5/2 orbital has zero
energy. The energies identified by an asterisk are the
same as those given in Table I.

and use Eq. (12) to calculate p(E,„,), large errors
are obtained. For example, p(E,„,) overestimates
the exact density by a factor of 7 in "Sn at 9 Me&
exc itation.

V. COMPARISON WITH EXPERIMENTAL DATA

The calculations described in the previous sec-
tions were performed to test the validity of the
various approximations. If we now compare our
exact model space calculation with experimental
data, we find that we underestimate the experi-
mental density of states by about a factor of 25 in
each of the nuclei studied ('"Sn, "'Sn, and "'Sn).
The first remedy that comes to mind is to increase
the valence space. In this increased space (see
Table DI) exact calculations are not possible. We
use the approximate grand partition method of
Sec. III since it was a reasonable approximation
in the model spa, ce. When increasing the valence
space, the value of the pairing force constant g
has to be decreased such that the gap ~ at zero
temperature remains unchanged. The gap 4 es-
sentially gives odd-even mass differences. The
results of the larger space calculations are shown.

in Fig. 5. Theoretical calculations still under-
estimate experimental results by unacceptable
factors. It is possible to obtain the correct exper'-
imental data by further reducing the value of g by
more than 20%. However, this reduces the value
of 4 to unacceptably low values. There is another
possible solution to our dilemma.

It is well known that the major features of the
residual interaction can be simulated by two

forces —the pairing force and the quadrupole force.
So long as the nucleus remains spherical, the
quadrupole force makes no contribution to the en-
ergy of the system. The deformation of a nucleus
is the result of two competing effects: the pairing
force, which tends to make nuclei spherical, and
the quadrupole force, which favors deformation.
In Sn. isotopes, .at zero temperature the pairing
force dominates and a spherical shape is favored.
However, as mentioned before (Sec. III), at finite
temperatures the effect of the pairing force is re-
duced and ~ drops in. value. But, if the pairing
effect is reduced, what keeps the nucleus from de-
forming? Of course, finite temperature tends to
wash out the effects of the quadrupole force as
mell; however, it is a matter of differential effects
that one is studying. Provided nuclei do favor de-
forrnation, it is clear that a different formalism
should be used to calculate level density at the ap-
propriate excitation energy.

Quite apart from the question of level density,
the possibility of deformation at finite temperature
in a nucleus which is spherical in its ground state
is interesting in itself. The effect of the quadru-
pole force on the level density was investigated by
Kanestrorn" using the SU, scheme. However, the
pairing force and the one-body spin-orbit force
mas not taken into account. Hillman" considered
approximate solutions of the pairing force problem
in the Nilsson scheme of single particle levels.
That calculation we believe is much harder to exe-
cute compared to what follows in the: next section.
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6
10

N=Q (( — ), (18)

model.
(2) The pairing force problem is now solved on

these deformed orbitals. This means one solves

I

4
y 10—

UJ

where E~= [(e~ —A) + n ]'~'. The energy of the
system as a function of deformation is given by

Llj
210 where

(20)

(21)

10 I I

6 9
E (wcv)

I

12

VI. PAIRING PLUS QUADRUPOLE FORCE AT

FINITE TEMPERATURE

FIG. 5. State density and level density for Sn re-
sulting from the grand partition function method. The
solid lines are the same as the dotted lines in Fig. 3
and result from a calculation in the semirealistic space
defined in Table I. The dashed lines give the results
for the full space (Table III) with g suitably modified to
keep the correct A. The dotted lines are obtained by
repeating the full space calculation but with the pairing
force reduced by 20%. This gives closer agreement with
the experimental value indicated by an x. Unfortunately
this reduces the pairing gap 6, from 1.234 MeV to the un-
realistically low value of 0.714 MeV.

An extremum in energy is obtained whenever
D =XQp

The generalization of this procedure to a given
finite temperature r(=1/P) leads to the following
steps.

(1') Same as (1).
(2') One solves

(1 —2f,) ,
k&p - k'

(22)

—(1-2' .„,Ek
(23)

E(P,) = P (H, )„1- ' (1 - 2f,)
k&p

Here, as before, E,= [(c„-A)'+ &']'~' and f,
= 1/(1+ e~s)). The energy of the system as a func-
tion of deformation is given by

We take the quadrupole force to be

V(1, 2) = —)(r,'r, ' g Y, (1)Y,* (2). where

(24)

The other part of the residual interaction is the
pairing force. At zero temperature the energy vs
axially symmetric deformation can be studied"
by the following procedure.

(1) Diagonalize the one-body Hamiltonian

H Hp DY Y2p (17)

. to obtain eigenvalues &k. Here H, is the shell mod-
el part and D is a parameter. If we equate D
= mv'P„where is the appropriate oscillator
frequency, then P, is closely related to the quad-
rupole deformation parameter of the Nilsson

k&P

x 1 ' (1 2f„) (25)

The free energy is given by I' =E —TS, where

S=-2 g [f~lnf~+ (1-f„)ln(l f~)]. -
k&p

Since we vary X so as to keep X fixed the condition
D= yQ, gives an extremum in E (Ref. 17) rather
than in I" —MV. If there is more than on.e self-con-
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sistent solution, then the one which gives the mini-
mum value of F should be chosen. Because N cZ,
the actual calculations are more complicated than
what is implied in Eq. (17) to Eq. (25). The de-
tails can be found in Ref. 16.

The results of such calculations are depicted in

Fig. 6. The energies of the various shell model
single particle orbitals used for this calculation
are given in Table III. The results unfortunately
are sensitive to the relative value of g and y. In
Fig. 6 we have shown the results for fixed g„=0.16
MeV. This gives 4„=1.3 MeV in "'Sn in the spher-
ical zero temperature limit. Since 4~=0, the val-
ue of g~ is immaterial. The value of y lies be-
tween the value of Ref. 15 and Ref. 16. Effects of
small variations in the value of g on the free ener-
gy curve are shown. We find that shape transition.
can indeed occur. At zero temperature, the free
energy is equivalent to energy and it minimizes at
zero deformation. Yet at finite temperature, the
free energy may minimize at nonzero deformation,

although the variation of free energy with deforma-
tion is not great. If one now takes this deforma-
tion as the proper static deformation and performs
a standard rotational model calculation for level
density, very large differences from the values in

Sec. V are found.
Although the free energy against deformation

curves are relatively flat, the energy against de-
formation curves vary more rapidly. They also
tend to favor larger deformations.

VII. LEVEL DENSITY USING THE ROTATIONAL MODEL

Since the rotational model formulas are well
known, ""we merely write down the formulas
that were used in the calculation. Assuming a de-
formation P, =-0.104 (the free energy was mini-
mum at this value of deformation at ~= 0.743 MeV
and the corresponding excitation energy was 9.51
MeV) we calculate ~„„(E)from which p„,„(E,Q)
is obtained:

p„„(E,Q) = (2wv') ' 'Cd (E)e " (26)

0.743

Here p„„(E,Q) is the level density for many-
particle states each of which has magnetic quantum
number 0 and

o'=2 g k'f, (1 f,)
k&o

(27)

Q

IJJ

LLI

7 =0,6

p(E, I) = Q p, t,[En—E„,(Q, I), Qj (28)

and the rotational model prescribes

In Eq. (27) IC is the magnetic quantum number for
each Nilsson- type orbital. Now

E„,(Q, I) =2@ [I(I+ 1) Q']. (29)

Q
CL
LIJ

QJ

E)F

Z0 l -I--
'—02 —01 0

F 'i

Ux F

/ J=—0-

0.1 0.2,

7 =0.743

Here 8„ is the moment of inertia. about an axis
perpendicular to the symmetry axis. Combining
Eqs. (28) and (29) and with the usual approximation
one finally obtains

p(E, I, +) = —, g p,„,(E, Q)
Q»-O

x e«p — [III 11 —0']I.leh'

28,

FIG. 6. Potential energy surface and Helmholtz free
energy surface as a function of quadrupole deformation
for Sn at various temperatures z. The unit of 7. is
MeV. The solid lines correspond to a quadrupole
strength X = 0.0966 (mes/5) MeV with 5~/= 41.2&
The dotted lines give the results for P altered by +3%.
The arrow indicates the minixnum of 5' for 7 = 0.743 MeV.

The rigid body moment of inertia is used in the
calculation. Because only I= 0 and 1 are needed to
compare with experimental data, the calculated
value for level density is insensitive to the choice
8,. Reducing 8, by a factor of 2 changes the calcu-
lated level density by a few percent.

The method outlined in this section gave

p(E, 0, +) + p(E, 1,+) = 6 x 10' Me& '
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for "'Sn at the neutron separation en.ergy. The
experimental value" is 2 x 10' MeV '. The spheri-
cal model (Sec. V) gives 2 x10' MeV '. The neu-
tron separation energy in "'Sn. is 9.53 MeV. At
this energy, with our forces the gap 4„has al-
ready gone to zero. We know from our model cal-
culation in Secs. II and III (see the last paragraph
in Sec. III) that above the gap the grand partition
method overestimates the exact level den. sity.
Looked at in this light, the deformed model is in
much better agreement with experiment than the
spher ical model.

VIII. DISCUSSION

space when. the only interaction is the pairing
force. This then allows one to test the validity of
various approximate methods the't are in. current
use.

If one considers the quadrupole force in addition
to the pairing force, quite interesting features
emerge. In the cases investigated, the nucleus is
spherical in the ground state, yet it is more pro-
pex to think of lt as being deformed when consider-
ing 8-9 MeV excitations. While this is an ideal-
ized model) lt j.s more valHi than a simple spheri-
cal model for level densities. It will be very in-
teresting to verify if similar results are obtained
with more realistic interactions.

The present work had two objectives. One was
to obtain the exact level density in a semirealistic
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