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The combined interaction of a static electric field gradient and a static magnetic field with the
electromagnetic moments of a nucleus is considered for the case of nuclear orientation at low temperature.
The general expression of the angular directional distribution of radiation emitted by the oriented state is

developed for polycrystalline samples, where the principal axes of the electric field gradients are randomly
distributed with respect to a fixed magnetic field direction. Due to axial symmetry of the ensemble the effect
of the quadrupole interaction is reduced to an attenuation factor on the usual Bf,. coefficients. Numerical

calculations of these attenuation factors for K = l, 2, and 4 have been performed in the case of the
symmetric electric field gradient for a wide range of electric to magnetic interaction ratios and spin values

I = 1,3/2, ... 8. Typical attenuation curves for spin 5/2 and 9/2 are presented. Comparing the experimental

anisotropies with the tabulated values, one can extract the quadrupole interaction value fin&.

RADIOACTIVITY Attenuation by random and symmetric electric quadrupole in=
teraction of the low temperature nuclear orientation coefficient due to a polariz-
ing magnetic field are computed for multipole order 1, 2, and 4 of the emitted

radiation angular distribution.

I. INTRODUCTION

The knowledge of electric quadrupole moments
of nuclear states is quite important for understand-
ing nuclear structure. Hyperfine interaction meth-
ods, especially the perturbed correlation method,
have provided some quadrupole moment Q of short-
lived excited states. For longer lifetimes, nu-
clear alignment by quadrupole interaction observed
at low temperature can also be used, but in many
cases single crystal growing time or preparation
difficulties reduce considerably the experimental
applicability.

In ordel to avoid monocrystal preparation~ we
consider the attenuation of the magnetic nuclear
orientation by an electric quadrupole one in a poly-
crystalline sample, where the principal axes of the
electric field gradient (EFG) are randomly dis-
tributed with respect to the magnetic field direc-
tion. %e expect this attenuation to be very im-
portant if the quadrupole splitting is of the same
order of magnitude as the magnetic one. This
condition can be approached with the brute force
orientation method; nevertheless, in many cases,
quite low temperature is needed for measurable
anisotropy and attenuation.

'The recent technological developments on the
'He-. 'IIe dilution refrigerator [rapid sample loading
facility (=—,

' h) and much lower temperature (~10
mK)] and the strong external field (=10 T) produced

by the new available superconducting magnets,
give experimenter the tools to fulfill the conditions
required here.

In this paper we describe low temperature nu-
clear orientation with the combined interactions
defined above. To allow evaluation of measurable
cases, we have calculated and tabulated the atten-
uation coefficients for various spin values and
several electric to magnetic interaction ratio
values as a function of an orientation parameter
defined by the magnetic interaction only and the
temperature.

II. COMBINED ELECTRIC AND MAGNETIC INTERACTION

Eigenvalues E„and eigenvectors ~N) of the or
iented state being needed to calculate the low tem-
perature nuclear orientation coefficients (see Sec.
III), we must consider the total Hamiltonian given

H=H +H i

For our purpose it is convenient to take the mag-
netic field B direction as the z axis of the labora-
tory system (lab) (see Fig. 1). In this system, we

use as basis, the eigenvectors
~

Im) =
~

rn) of I,
and I' operators, so we have:

Hs ——-ZP, „I 8 = -gP+I,
In each microcrystal we choose the XFZ coordinate
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axis along the principal axis system (PAS) of the
EFG (see Fig. l), and define by

l ji& the eigenvec-
tore of I~ and I'. The electx'ic quadrupole interac-
tion is then given by the mell-known expression'

A rotation B(np y), where apy are the usual Euler
angles, connects the lab system to the PAS (see
Fig. l) and we have

The total energy matrix elements in the lab are
given. by

(mlIIlm')=-g jim mo, +&mlaolm')

Rnd require knox&ledge of the electx'ic part. Intro-
ducing projectors of the lab system, and using
Eq. (l),

FIG. 1. The Iaboratory coordinate system. (x/8) re-
lated to the principal axis system of EFG (XFZ) by the
Eulerian angles 0. , P, and.y. The Ou axis is the inter-
Section of the two planes (Oxj&} and (OXY}. The etnttted
radiation direction is shown as a douMe bar arrow, its
projection on the {Oxy} plane is labeled Ov .

& lffolm'& =2 &mlftl»&j lft'Ifel j '&&1"Ift'lm'&

&',„(apy)&'*;;(npy)(P lJIolP '&

P e-ia(»&-m'&e-i & iu-w'&dl (p)d Iy (p)(ji lp l
ti&&

where S', (apy) are rotation matrix elements and di „(p)=di*„(p) are reduced matrix elements. '
Writing Eil (2) as

~vPI& , +Z ~ ' ' '.& (»&"~" ";(i'.&(,i &&,'.I.P &I'
p pt

= e ' ' '(m
l
H (a = 0, p, y) l

m'),

the a dependence appears as a rotation B(a) around
the z axis. Under this unitary transformation,
the elgenvalues Rre Invariant:

E( Pa, y)=E.(a=0, P, y)

The elg6nvectors Rre trknsforIDed Rs .

lj&f(a, p, y)&=a'. lx(a=0, p, y))
—e zl~(a=a p y)&

g

(m lN(a, p, y)) = e ' (m lN(a = 0, p, y)& .
For axially symmetric EFG, q=O and the matrix

element of H@ in the PAS is diagonal:

(5 lffolP '&= ~ &"l)l3tt' Nl)tO+. . -

In this cRse, the totRl energy matrix element I'6-
duces to

&mlH(n=o, p, y) lm &

&& Z d'. (p&d';. (,pksti' N+ l)l. -
The y dependence disappears, corresponding to the
physical invariance of the interaction in the rota-
tion of the IHlcrocrystal around the symmetry axis
8 of PAS.

Our results have a different analytical fox'm but
are identical to those obtained by Matthias, Schnei-
der, and Steffen, ' just noting that they call the ro-
tRtxon Rx'ound 8 R p lnsteacl of c.
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We now put & ml pl m'&. t. = g &m III(o'Pr)&(II(~Pr)
I
plI)I'(~or)&

e
4I(2I —1) '

N(ofgy )
N' (f) A')

x(A (nPy)lm).

and write Eq. (5) in the following way:

&mllI(~=0, P, y)lm &

=~'dB -~~m m +
~(d

Q '( ' ()[ '-(+ )](.

We remark that, taking AcoB just as a scale fac-
tor, the eigenvalues zN of the reduced Hamiltonian
II'=II/h~s depend only on P and &oo/~s and have
the same eigenvectors as H:

H'~)))()), K, K ~))=a ()), ~ )N(P)), R ~),),
B

)))))),))~„a,)) )))(8=

As for low temperature nuclear orientation we
have the diagonal Boltzmann distribution:

&~( Py)
l
ply'(~, P, y)&

exp(-E»(~ )) )/kT)
N, N' '

exp(-E»; (~ )) )/kT
N" (eely &

'The a dependence can be given explicitly using
Eqs. (3) and (4):

B"(n, P, y)=e'" B"(~=0, 8, r).
For polycrystalline samples, we have to inte-

grate Eq. (7) over n, P, and y:

W(8, p)=g(-) (2K+ 1)'I'A» Y»(8, p=0)cosny
. Ksn

III. ANGULAR DISTRIBUTION
B»(o) =0, P, y)sinPdPdy.

W(8) =Q (-)"B»A»P»(cos 8), (6)

but we can use the general expression given by
gteffen and Alder' in Eq. (12.294):

W(8, y) =g (-)»(2K+ I)'I'B»A»Y»(8, y = 0)coen )p

Ky n

As the axial symmetry of the interaction is not
conserved, we cannot use the well-known formula
of directional distribution in each microcrystal:

Because the integration over o reduces to 2mB„„
only BK terms contribute to the angular distribu-
tion. This result indicates that, due to the ran-
dom orientation of the PAS, the axial symmetry
of the whole sample is conserved with the mag-
netic field direction as the symmetry axis. We
get

W(8, (p) =Q (-)»(2K+ I)'I'A» Y»(8, p = 0)B„

with

with

(7) B»= 2» Bo»(o. =0, p, y)sinpdpdy
0 0

(8)

1 i, ( I I K)B"=(2K, 1)iI~Q &-&

i-m m' nj
where 9 and cp are the polar angles in lab of the
propagation direction of the radiation (see Fig. 1).
We introduce the normalized BK coefficients in
order to be consistent with the BK notation of Eq.
(6): B~z B». They are rel——ated to the original
statistical tensor pK by the relation'

n n
BK 2K+ y

PK'

The density matrix element (ml plm'& has to be
expressed in the eigenvectors lIv(o. )8y)& of the I
state.

In the case of axially symmetric EFG as seen
in the preceding section, neither eigenvalues nor
eigenvectors in Eqs. (3) and (4) depends on y, and

Eq. (8) reduces to

B»= 4v' Bo»(n = 0, )8, y = 0)sin p dp . (9)

These BK appear as the act„ual nuclear orientation
coefficients and depend on K~s/kT and &oo/~s. In
Eqs. (8) and (9) the 2» and 4»' factors will dis-
appear in the renormalization procedure of the
BK coefficients to B,= 1.

The influence of the random oriented quadrupole
interaction is to induce an attentuation factor QK
defined by the ratio
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FIG. 2. Calculated attenuation coefficients, for spin I =aa and &, plotted for some values of the ratio 3cuo/~s used as
a parameter on the curves. The positive and negative values of this parameter are, respectively, drawn in full and
dashed lines. G4 curves are not drawn for hcoz/AT values giving B4 coefficients less than 10 . In the tabulation, the
ratio 3'@/cuz is employed to be consistent with the 4 E/T notation introduced by Krane (Ref. 5).

~&d B&[(Ktds/kT), ((do/(ds)]
kT '

(o~ B„(k~s/kT)

@&here B~ are the nuclear orientation coefficents
for the pure magnetic interaction case, already
tabulated by Krane. '

IV. NUMERICAL RESULTS

In order to estimate the remaining anisotropy
%'e tabl11ate the VRlueS of the Q~ coefflclents as
function of the orientation parameter @&os/kT for
a wide range of the parameter tdz/tds and several
spin values, only for the case of the axially sym-
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metric field gradient. 'These numerical calcula-
tions have been performed on a CDC6600 com-
puter. The diagonalization procedure of the com-
bined II' Hamiltonian has been done using the
Givens-Householder method with wilkinson in-
verse iterations, giving eigenvalues equal to those
obtained by Matthias et al. ' within 10 '. For the
integration over P, we apply the Gauss method
and test the convergency of the results using
various integration steps. For a 24 step proce-
dure the precision is better than 10 '. %hen the
B~ coefficients are smaller than 10 4 we do not
calculate the corresponding QE because they do
not contribute to the orientation and are not of any
experimental interest. %'e have tabulated' the G~
factors for E= 1, 2, 4 and spin values I=1, —,', . . . , 8.
for the ratio 3~o/~s varying from +0.05 to +10 and
for orientation parameter Res/kT from 0.01 to
10. Typical attenuation curves for spin, —,

' and -,
'

@re shown in Fig. 2.
Some general trends can be found from our re-

sults:

(1) The attenuation is larger on the coefficients of
higher rank, so G 1 &62 &Q4.
(2) The results are sensitive to the sign of the

ratio &u, /&us in contrast to the perturbed angular
correlation method. This fact can be understood
by the Boltzmann statistic.

Some of the brute force nuclear orientation ex-
periments"' reveal attenuation. If these are owing
to a stable association of the radioactive atom with
an impurity or a crystal defect, the calculation can
be applied with an electric field gradient, assumed
randomly oriented, for the case of polycrystalline
samples. For example, we estimated the fieM
gradient value needed to explain the attenuation in
the Oxford experiment on '"In in Cu' to be

V» —-+ 2.7 x10" or -0.9 x10'". V/cm'.

These values are higher than the usual ones found
in noncubic metals. However, other measure-
ments' indicate such large values. If this as-
sumption is verified, these electric field grad-
ients could be used to measure quadrupole mo-
ments of nuclei.
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ful discussions and comments, and are very in-
debted to Dr. J. Meyer for his interest in this
work and for enlightening advice concerning
computational tests.
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