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High energy collisions between nuclei and correlations*
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We investigate the effects of correlations on high energy collisions between nuclei. New types of multiple

scattering can occur in such collisions and their contributions to cross sections are shown to depend

significantly on the presence (or absence) of short range correlations. Nucleus-nucleus colhsions may,
therefore, be able to probe such correlations. Calculations are performed for "C-"C and "0-"0elastic
scattering, using correlation lengths obtained from nuclear matter calculations. The effects of short range
correlations are found to be significant and, in the case of collisions between heavy nuclei, their presence
prevents the higher order corrections to the optical phase shift function from taking unphysical values. at

1

small impact parameters.

NUCLEAR REACTIONS Nucleus-nucleus scattering, E= 2.1 GeV/n; correlation
effects.

One of the major objectives of nuclear scattering
measurements has been to learn about the density
distributions of nucleons in nuclei. One-body pro-
ton densities are directly measured by electron
scattering. Information on neutron distributions
can also be extracted from high energy proton
scattering. ' However, very little information is
available on two-body densities or pair-correla-
tion functions. Nuclear correlations have relative-
ly small effects on small angle proton-nucleus
scattering' ' where a first order optical potential
describes quite well the scattering from nuclei
heavier than helium. In high energy nucleus-nu-
cleus collisions, on the other hand, a first order
optical potential is .inadequate' ' even at small
angles and higher order corrections are needed to
reproduce accurately the processes in which one
or more nucleons of either nucleus may undergo
multiple collisions. These higher order process-
es, due to their geometry, may be quite sensitive
to short range dynamical correlations between
bound nucleons and thus nucleus-nucleus collisions
may provide information on such correlations. In

this paper we examine the effects of short range
correlations on nucleus-nucleus elastic scattering
cross sections. The correlation functions are
chosen to reproduce the correlation lengths ob-
tained from nuclear matter calculations using
realistic nucleon-nucleon interactions. Our model
calculations indicate that it should be possible to
see the effects of such correlations in nucleus-
nucleus scat tering.

Most of the existing information on two-body
densities in nuclei comes fromm nuclear matter
studies (where, for example, the binding energy
requires the expectation value of the potential

ll -g(r)] dr.

Equation (I) assumes a correlation function which
is translationnlly invariant and is not suitable for
long range correlations. We shall use it to de-
scribe short range correlations for which this
form is reasonable if the correlation lengths are
small compared with the nuclear sizes. (The long
range correlations can be added on separately. )
Because of the repulsive component which is pres-
ent in nucleon-nucleon interactions, the correla-
tion function is required to satisfy the constraint
g(r)-0 as r Oand al-so g(r) approaches unity for
distances greater than the correlation length.

At high energies the nucleus-nucleus collisions
can be described by simple extensions'" "of the
Qlauber approximation. " The elastic scattering
amplitude for collisions between nuclei of mass
numbers A, and A. , can be written as'"

i,kI"(a) =-
2m

I' b (I e opt(b) )

where hk is the incident momentum, kq is the mo-

which is a two-body operator). The short range
part of the two-body density can be calculated in

the independent pair approximation for nuclear
matter. ' (As is well known, this procedure is
justified because the pair wave function heals to a
noninteracting value. in distances small compared
with the average internucleon separation. } It is
convenient to write the two-body density as

p"(r„r,) = &p(r, )p(r.)g(lr, —r.l),
where N is a normalization constant, and define
the correlation length l, as
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mentum transfer, and b is the impact parameter
vector. The optical phase shift function X, , can
be expanded in a series

X X+X+

In this work we shall restrict ourselves to small
momentum transfers [n'q ~ 0.14 (GeV/c)']
where it is sufficient to retain terms up to X,.'
The phase shift functions X; can be expressed in
terms of nucleon-nucleon scattering amplitudes
f(V) bI

d'q e '"'f(q)S, (q) S,(-q)&(q),

d'q'e "'f(q')i[(A, 1)(A, ——I)S,(q, q')S.(-q, =q')+ (A, —1)S,(0, q+ q')S.(-q, -q')

+ (A, —l)S,(q, q')S, (0, -q —q')] K(q+ q')

-A,A, S„(q)S,(-q)S,(q')S, (-q')IC{q)K(q')],

where K(q) is the center-of-mass (c.m. ) correla-
tloll illllctloll (Rssullllllg tllRt tile c.nl. Rlld llltl'lllslc
wave functions factorize) and the one- and two-
body form factors are defined by

term ilt, is also negative and the ratio X,/It, de-
creases rapidly as A becomes large."

In the presence of short range correlations, we
have

S (q) = d'«"' p'"(I)
ix2(b) = A'f'4- dz [p(r)J',

S, (q, q') = d'rd'r'e"" ""'p'"(r, r') .

- 2Ilf(0)
iX,(b) = -Af p(b), f= . —, P(b) =

ik„
dz p(r) .

(8)

In the absence of correlations the second order

In order to be able to make some general state-
ments about the effect of correlations, let us first
consider the extreme case where the nucleon-nu-
cleon (NN) amplitude is assumed to have a range
shorter than the correlation length (in detailed
calculations, this assumption will not be made).
For comparison, let us first consider the scatter-
ing of a single incident particle from a nucleus.
In this case

i', (b) = A,A,f d-'s p, (. s)p, (s —b), (10)

and in absence of correlations,

where A is the nuclear size. Since A-r, A. ' ', the
ratio y, /X, is independent of A and decreases ra-
pidly with b. However, the absorption in the cent-
ral region due to X, is already large for large A
and hence short range correlations have little ef-
fect on the cross sections. I et us now consider
the case of nucleus-nucleus scattering. We obtain,
from Eqs. (5) and (6) (assuming A „A, large so that
tile c.lll. col'1'elRtlolls cRll be lleglected),

iq, (6)= —.
'
(A,A, )f '](I -A, -A, )

+ d's p, (s)p, (s —b) [(A, —1)p, (s)+ (A, —l)p, (s —b)]

The last two terms in X, arise due to the processes
in which one nucleon in either nucleus can undergo
double collisions (these terms are absent in X„~,
for particle-nucleus scattering). Re(ix,) now gives

a positive contribution and, at small b, the ratio
X,/y, grows as - -A' '. In most nuclei X, leads to
a significant reduction in the size of X,. For heavy
nuclei X, &X, at small b and X, , can take unphys-



HIGH ENERGY COLLISIONS BET%EELY NUCLEI AXO ~ ~ ~ 269

ical values if truncated at y, .' ' This ean happen
at small 5 whenever the phase shift series (4) is
trunca. ted at even order (the series always con-
verges at large b as the corrections involve higher

powers of densities and decrease rapidly with in-
creasing 5).

In the presence of short range correlations Eq.
(6) becomes

IAA24 (lr; -r~l)g. (l(s; -s~ ~) -~i)l) —1)

+ (1-A, -A,)g,(lr; —r.l)g. (l(s; —sa, ~, -~~)1

+ &(A. —1) d's, d', d~, P,(s()P;(s; b, ~-g)P.(s; - b, ~i)g. ( I~( -~
~ I)+ (1-2)

For repulsive correlations tg(r) —1] is negative
and the leading contributions to Re(ix, ) are now
negative. For small b, one can show that the ratio
)(,/X, (for large A, =A, =A) behaves as A(l, /A)-(f/
A'). With increa, sing b many terms in ix, compete
with each other and one should use the full expres-
sion (6) for iy, Neve. rtheless, we can see that
since the correlations produce a change in sign of
ix„ they prevent X.„from taking nonunitary val-
ues.

In realistic cases, however, one cannot make a
short range approximation for NN interactions as
it generally leads to too large a correlation effect.
ln order to evaluate the full expressions (5) and (6)
'for X, and X, accurately we shall restrict our
selves to light nuclei where the densities can be
approximated by Gaussians (suitably chosen so
that both the one- and two-body densities reproduce
the correct rms radii). This approximation is rea-
sonable since we only intend to compare theoreti-
cal expressions. The correlation functions needed
in two-body densities can be calculated"' from
the solution of the Bethe-Goldstone equation em-
ploying the "standard hard core potential" of
Moszkowski and Scott" which has an attractive ex-
ponential part outside a hard core of radius 0.4
fm. The hard core interactions lead to a correla-
tion length l, = 0.85 fm. In addition one also has
Pauli correlations which give l, =0.35 fm. The ef-
fective correlation function is the statistical aver-
age of Pauli and interacting pair-correlation func-
tions and yields' an effective correlation length l,
=0.74 fm. The elastic scattering cross sections
are quite insensitive to the shape of the correlation
function and depend mostly upon the correlation
length. ' It is therefore convenient to parametrize
the correlation function by

g(r) = 1 —exp(-p~'),

which satisfies the appropriate requirements at

f(~) = —"—k„o (i+p),g„,2

4m
(14)

The results of our full calculation for "C-"Cand
"0-"0collisions at 2.1 GeV/n are shown in Fig.

For "C-"C scattering, correlations increase
the cross sections by -15-20/0 near the second
maximum and by -28-36'fo near the third maxi-
mum. In "0-"0scattering the effects are roughly
-13-20% and -25-35%, respectively, at the two
maxima. As expected from earlier rough esti-
mates, the effects are smaller in n-n collisions,
being -12-14% near the second maximum. Also
shown in Fig. 1 are "C-"Ccross sections neglect-
ing c.m. correlations. The effects of c.m. corre-
lations are quite large and clearly must always be
included in any realistic analysis. The effects of
short range correlations increase with increasing

small and large distances. The parameter P is
related to the correlation length by means of Eq.
(2). The form (13) for g simplifies the calculations
considerably and is fairly accurate for our pur-.
poses (e.g. , it leads to errors ~2% for P-nucleus
scattering').

In real nuclei one also has longer range correla-
tions. For example, center-of-mass correlations
(which have a range of the order of the nuclear
radius) are very important. '" The effect of c.m.
correlation is to pull the nucleons away from each
other and their inclusion significantly improves
the convergence of the optical phase shift series at
larger impact parameters. These correlations are
included in Eqs. (5) and (6) where the c.m. correla-
tion function, for Gaussian (or harmonic oscilla-
tor) densities, is given by K(q) = exp[ad'((r, ')/A„
+ (&,')/A, )/6J, (& )' ' being the rms radii of the
two nuclei (obta. ined from electron scattering mea. —

surements after correcting for finite proton size
and the center-of-mass motion). For NN ampli-
tudes we use the usual high energy parametrization
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in the exterior region of the nuclei. The calcula-
tion can be improved by using density dependent
correlation lengths. In particle-nucleus collisions,
at least, this results in a slight increase in the ef-
fects of correlations. ' [Alternatively, Eq. (1) can
also be used without referring to nuclear matter
approximations. A short range repulsion can be
introduced in the many-particle wave function by
introducing correlations of Jastrow type. " A
cluster expansion, when truncated at second
order, will then yield results quite similar to
Eq. (1).' Furthermore, before an attempt to
extract correlations from experimental data is
made one should examine the effects of spin de-
pendence of NN amplitudes which may not be neg-
ligible at intermediate energies. Pauli correla-
tions can also be added in a more accurate manner
(for example, by constructing wave functions from
Slater determinants of single particle orbitals).

It is perhaps also worthwhile to clarify the rela-
tionship of our results with those of lower energy
heavy-ion collisions. The Pauli correlations we
have talked about, arise from the antisymmetriza-
tion of the projectile and target wave functions
separately. The antisymmetrization of the two nu-

clei (which leads to exchange amplitudes at low en-
ergies' ) becomes increasingly unimportant as the
energy goes up and most of the scattering moves
to smaller angles. The multiple scattering cor-
rections to the first order optical potential (the
"double folding model"' '" in the terminology of
low energy scatter'ing) involve higher powers of
densities, and become much less important at low-
er energie's because the overlap between the two
densities is quite small. The scattering is deter-
mined by the tails of the heavy-ion potentials (at
the so called "strong absorption radius""). Due
to the dominance of Coulomb interactions at low
energies, this radius is 2-3 fm larger than the
sum of the rms radii of the two nuclei. " With in-
creasing incident. energy, greater penetration of
one nucleus into the other becomes possible and
the surface and interior regions of nuclei play a
more important role. The sensitivity of high en-
ergy nucleus-nucleus cross sections to higher or-
der optical potential corrections (and to correla-
tions) is a consequence of this.
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