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We extend the Fabre-Levinger calculation of the He photoeffect (E1 transition to final isospin 3/2) by
including an additional grand orbital (L =3) in the final state wave function. The coupled differential
equations between L =1 and L = 3 for the final state are given. We solve for two model potentials, and
find the Blatt-Biedenharn eigenphase shifts and the mixing parameter, and also the total cross section for
photodisintegration. We find reasonable agreement (generally within 10%) with the cross section found for
one hyperspherical harmonic. The convergence speed of the hyperspherical harmonic expansion for the
outgoing channel is also examined by comparison with sum rules for the integrated cross section: We find

rapid convergence for both models.

NUCLEAR REACTIONS ?hotodisiritegration of trinucleon system;
coupled hyperspherical harmonics.

I. INTRODUCTION

The trinucleon photoeffect has been cal-
culated by Gunn-Irving!, Barbour-
Phillips?®, Gibson-Lehman?®, and Fabre-
Levinger*. The first attempt to use hy-
perspherical harmonics (h.h.) for the tri-
nucleon photoeffect was made by Delves?®.
Unfortunately his calculation gives poor
agreement with sum rules.",® Experiments
on three-body break-up were reported by
Fetisov et al.’, Gorbunov®, Berman et al.’®
and Gerstenberg et al.!?®

The first successful application of h.h.
to El transitions to isospin 3/2 states of
the trinucleon was made by Fabre and
Levinger", (FL). Recently Myers et al.!!
used sum rules to test the accuracy of
the use of a single h.h. for a spin-inde-
pendent potential of Wigner character:
they find agreement within 6% for the in-
tegrated cross section.

We perform our calculation of the wave
functions using an expansion in h.h. We
keep only a finite number of terms of the
expansion, giving us the same number of
coupled equations, which are integrated
numerically. The convergence of this
method has been tested for the wave func-
tion of the trinucleon ground state; we
are able to find quite accurate solu-
tions.!2,!%® We must investigate the con-
vergence of the wave function for the
final state.

The accuracy of the final state wave
function is tested by comparison'! of
two different calculations of moments of
the photoeffect cross section. These
moments can be calculated numerically
from the cross section cT(E ) found using
the final state wave function. The mo-
ments can also be determined by sum
rules® which are expressed entirely in
terms of the trinucleon ground state wave
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function, and of the potential and its
assumed exchange mixture. We extend the
comparison made by Myers et al. to the
use of two coupled h.h. for the final
state wave function, and to the use of a
spin-dependent potential,

We note that if we neglect the tensor
force and use a potential with a soft core
which gives correct values of the binding
energy and the form factors of the tri-
nucleon'!?®, the first partial wave with
grand orbital L=0 contains about 98% of
the total wave function, while the mixed
symmetry wave L=2 contains about 1%.
Electric dipole transitions obey the selec-
tion rule AL = *1, Then transitions to a
final L=1 come from the dominant L=0 or
L=2, and constitute roughly 98% of the
total cross section. About 1% of the cross
section comes from an initial wave L=2,
leading to a final wave, L=3. This rapid
convergence of the ground state wave func-
tion, combined with the dipole selection
rule, explains the good agreement with the
Thomas-Reiche-Kuhn sum rule for the inte-
grated cross section found by Myers et
al.!!, using only a single partial wave,
L=1, in the final state.

We have also shown'!" that the forms of
the trinucleon partial waves L=0 or 2 are
insensitive to the assumed potential, when
we impose the constraints of the binding
energy and r.m.s. radius. The total creoss
section is then expected to be sensitive
only to the details of the wave function
L=1 for the final state. The shape of
this wave is modified by the coupling be-
tween waves of odd grand orbital, L=1, 3,
5, ... At low energy the effect of the
coupling is predominately between waves of
small grand orbital. In this paper we
study the effect of the coupling of the
wave L=3 on the wave L=1; and we find that
the change caused by this coupling is
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small.!s

This result implies a rapid convergence
of our h.h. expansion, in accord with the
good agreement found between two different
calculations of the moments of the cross
section.

We use two different soft core central
potentials: the spin-independent Volkov
potentiall® and the spin-dependent VX po-
tential.?!?®
for even parity of the two-nucleon system.
In Section IV we present these potentials
for even parity states, and specify our
assumptions for their exchange character.
The Volkov potential gives!?, a triton
energy of -8.46 MeV and an rms radius of
1.73 fm. The VX potential gives!® the 3He
energy as -7.74 MeV, and also gives excel-
lent agreement with experiment on the 3He
and ®H form factors, ug to squared momen-
tum transfers of 8 fm~

Comparison of measured bremsstrahlung
weighted cross sections for two -body and
three-body break-up in the 3He photoeffect
with sum rule calculations of the brems-
strahlung weighted cross sections for
specified isospin final states has shown
that almost all of the observed three-body
break-up is due to isospin 3/2 final
states. For some reason, not yet com-
pletely understood, the isospin 1/2 state
has a small branching ratio for three-body
break-up. We therefore follow FL in com-
paring our calculations for the.V* poten-
tial for isospin 3/2 final states with ex-
perimental measurements on three-body
break-up.

In the next section we use the group
theoretic classification of symmetries of
the three-body system to derive an expres-
sion for the photoeffect cross section.

In Section III we expand the continuum
wave function in hyperspherical harmonics.
We find the coupled differential equations
for two hyperradial functions, with grand
orbitals one and three, respectively. We
also find the differential and total
photoeffect cross sections in terms of
four overlap integrals. In Section IV we
give numerical results for the Volkov po-
tential (spin-independent, of assumed
Wigner character) and the VX potential
(spin-dependent, zero potential in odd
parity two-body states). In Section V we
conclude that expansions in h.h. give
rapid convergence for the cases considered;
we find fair agreement with other calcula-
tions for isospin 3/2 and good agreement
with Gorbunov's experimental results for
three-body break-up.
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II TRINUCLEON PHOTOEFFECT TO
ISOSPIN 3/2 STATE

There are four independent spin-isospin
functions for a system of three nucleons
in a state with total spin S and total iso-
spin T given by S = T = 1/2, with given
projections S and T Our notation fol-
lows. z

These potentials were specified

A: completely antisymmetric
S: completely symmetric
A': mixed symmetry; antisymmetric. for
the pair (1,2)
S': mixed symmetry, symmetric for the
pair (1,2)

For total spin and isospin given by S =
1/2, T = 3/2, with given projections there
are two independent functions of mixed
symmetry.

A": antisymmetric for the pair (1,2)
S'": symmetric for the pair (1,2)

Appendix A gives a summary of spin-isospin
wave functions, and gives expressions for
the six wave functions listed above.

We use Jacobi variables"

> e -> >

£y = X1 - X3 E2 = 3Y/%(xs - X) (1)
§ -> > >
Here x,;, X» agd x3 are the nucleon coor-
dinates, and X is the coordinate of the
center of mass. We designate thg canonji-
cally conjugate wave vectors by k; and k,.
We use these two pairs of three-dimensional
vectors to define, two yectors jin six-di-
mensional space: £(&£1,&2) and k(ki,kz).

If we neglect the tensor force, the
ground state wave function of'the trinucle-
on can be written as

vo(st,8) = apS (@) + 27/ yiE)
st ug(B)] + subd). (2)

Here s denotes the. spin varlab;es, and t
denotes isospin variables. yS(£) is com-
pletely symmetric for the exghange o; any
pair of space coordinates, while w (g) is
completely antisymmetric for space_ eY—

-change. wé(&) is symmetric while vy, (g) is

antisymmetric for exchange of the pa1r
(1,2). The mixed symmetry states Y% and
the completely antisymmetric state wA dis-
appear when the even spin singlet and trip-
let potentials are the same (for instance
for an interaction of ngner character).
In general the wave w has a negligible
weight in the trinuclgon ground state.

The final state, with quantum numbers

T =3/2, S =1/2, 17 is written
(A" (e, )

- > >
- S"yp(k,£)]/2 (3)

The (=) superscrlgt on ¥Y_ designates an
incoming wave. is a wave symmetric on
exchange of (1, 2), while Y, is antisym-
metric. These wave functions depend on
the momenta of the particles in the con-
tinuum.

Following FL, the differential cross
section for electric dipole photodisinte-
gration is given by

do = (2n/fic) [<¥L[D|¥ > % oy (4)

v, () (s, 1,58 =

The density of final states per unit ener=
gy is

bp = d%k/(3m)CdE. - (5)
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The energy E = (H%/M) (k;2 + k,?), and D
is the dipole operator.

?he matrix element for E-1 transitions
is :

<WGID}W£> = i e(ZTZ)(ZﬂEY)1/2(4_13"1/2)

S + - _ + +
{<¥gleg, Vp + &, vp> + 2712 [<ygleg vp

“512¢£>'<Wa|€22¢£ * E“lzw;”} : (6)

Here e is the magnitude of the electron
charge, and T_ is the third component of
isospin of th& trinucleon.- We take the
polarization of the photon along the z--
axis. Only the first term, involving

wg(z), contributes for a Wigner force.

III. Expansion in Hyperspherical Harmonics

We now discuss the calcu ation of the
wave functions Y_. and V¥ using the, hy-
perspherical for%allsm The vectors & and
k are replaced by the coordinates (2,£&)
and (8, ,k) in six-dimensional space. The
five angles Q are chosen as (wi,w2,9),
where w, are each of the two angles of the

vector El in spherical polar coordinates,
and ¢ is defined (in disagreement with some
of our earlier work*:!!) as

tan ¢ = &£1/&,. (7)

The hyperradius £ in six-dimensional space
is

£ = (£1% + g22)1/2. (8)

With this choice of coordinates, the kin-
etic energy operator becomes
3

ﬁ?.
T=-3= ) V2
oM L Txy
- _h?
T T BM vx -
n? 2 2
= [V + V
w Vg, Ve,
52 5 3 A% () :
vZ + 92 = + 2=
en " Ve, T 37 TE e g2 )

52 3
A2(Q) = Er3a + 4 cot 2¢ 76

- %,%/cos®¢- £,%/sin?p

212(w;) and %,2%(w,) are the usual squared
angular momentum operator for particle 1
and 2 respectively.  The eigenfunctions
H[L](Q) of the angular operator A2 are

solutions of

[A2(Q) + L(L+4)]H (@) =0

[L
/e call these functions hyperspherical
harmonics, or h.h. (Simonov'!® calls them
K-harmonics; while Fano!® refers to
""Macek coordinates'".) The normalized
h.h. are given by?29,21,22

mp,mz
H...(Q) = H (Q
(L] ) Lflz,gz
my m, (2) %,,%
= Yggwx) Ygng) PL(¢) (10)
(2)P£§$§1= 2(L+2)n (L-n+1)! e
L 1T (n+8 1+ g)r(n+12 + %)
oy 2,
X (sing¢) (cos¢)
1 1
Ly + 5,80+ 5
xp 272 (goe24);  (11)

n
L = 2n+%,+%,

In Eq. (11), Pa’B is a Jacobi polynomial;
the guantum nuftiber n is a non-negative in-=
teger. L is called the grand orbital. The
subscript [L] in Eq. (10) represents,the
five quantum numbers (Rt my;%,,my;L). The
h.h. have a,parity (-1)" for inversion of
the vector §. We couple together spherical
harmonics to give a designated total orbi-
tal angular momentum %, and projection m,
as follows

L,m
@) =y (@ =]
[L] L,%1,%, m;,mp
my,my
X<%y,mp;L,,mp|%,m> H (Q). (12)
L)£1:22

<11,m1;22,m2[2,m> is a Clebsch-Gordan co-
efficient. We use the set of basis func-
tions, Eq. (12) in this paper. A plane
wave is expanded in h.h. as follows

+o
SO FEY = 3 T
exp(ik*§) (2m) [Li i H[L](Q )
XHp (@) Iy o (kE)/(KE)™. (13)

The sum is taken over all quantum numbers
[L], for L varying from O to infinity; and
Jv is a Bessel function.

The volume element in six-dimensional
spacevis

df¢ = d3®t, d%g, = an £° dg
d2 = dw; dwz (sin¢ cose)? do (14)
We rewrite Eq. (5) for the density of

states.

(5) = 1 MK ady
f 2 R? (2m)°

E =(h%/M) (k1% + ko?) = (R?/M)K%.
(15)

The h.h. Y () does not have a definite
symmetry for séatial exchange except for
exchange of thf (1 2) pair, for which the
parity is (-1)

We have shown in an earlier paper?! how
to construct from the complete set Y[L](Q)

another set having the desired symmetry
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properties for spatial exchange of nucleon
pairs. We use the following principle.
Let BL(s,t,Q) be an h.h., which includes
spin § and isospin t, antisymmetric for
complete exchange of any two fermions.

The minimum grand orbital L _is defined

by the condition that the interaction can-
not generate any other h.h. with grand or-
bital L < Lm

We define an optimal subset by the con-
dition that for each e€lement BL +2K(s,t,ﬂ)

of this basis we have, for K a gositive
integer,

*
J’BLm+2K(S’t’Q)V(g’Q)BLm(S’t'Q)dQ # 0
(16)

It is understood that for each value of
the grand orbital L + 2K we take the min-
imum number of orthogonal h.h. We call
BL (s,t,2) a fundamental h.h.

m

The ground state of the trinucleon has
Lm=0. Then,

Bo(s,t,0) = A(s,t) Vg (@);
Y01 () = 3/, : (17)

The ground state is expanded in the fol-
lowing form?!
+OO
LTy 0 S

+ 272 AP (R) + STPS ()] U (E)}.
(18)

The expansion only includes h.h. for even
grand orbital L = 2K since we have a

DO
-

8 K!
5 oy Jb v v

Vor(E) =

(Also see FL for the case of a Gaussian
two-body potential.) For K = 1, the state
Bs3(s,t,R) is Bhe projection on L = 3 of
the product P, (R)Bi(s,t,R). We find

Ba(s,t,2) = 271/2[A"P(R)-S"P3(2)]
with o ‘o
PE(R) = 3712 Yi0.(R) - (2/3)1/% Y35,1(2),

_ 10 10
P3(R) = =3"1/2 Y3,0(2)-(2/3)1/? Ys51,(R).
(22)

These functions B are normalized to-

2K+1
tally antisymmetric functions of total )
spin 1/2, total isospin 3/2, total angular
momentum £ = 1, (m = 0) for grand orbital
2K + 1.
. +o
- i K
=5 (2m)°® ] (-1
P2 KZ0

¥ (s,t,R)

2K+1

Vo1 (P K5 E). (23)

We expand the final wave function:

state of even parity.
PgK(Q) is a normalized h.h. of grand

orbital 2K, with total angular momentum
2 = 0, completely symmetric for spatial
exchange of ‘any pair of nucleons. On the

other hand, P;K(Q) has mixed symmetry and
is even for (1,2) exchange, while P;K(Q)

is odd. For the final 1~ state with iso-
spin-3/2, we have L = % = 1. We choose
the polarization algng the “-axis (m = 0),
giving us -

Bi(s,t,2) = —= [A"P1(R) - S"PT(D)],
10
P1+(Q) = Y10:1(R)
= 4(2/m)'/? cosd Yo' (w1) Y1%(w2),
10
PI(R) = Y110(R)

4(2/1T)1/2 sine Y1%(wi) Yo°(w2).
(19)
For a potential of Wigner character, the

elements of the optimal subset are given
by
*
[Bogyq(s,t,2)V(E,2)By(s,t,2)d2 # 0

with the potential

oo
= —3/2 0
V(E,Q) = m*/ Kzo AP ok (E)Vor ().
(20)
The constants agg are given by Belner and
Fabre! ap = 1, a, = 0, a, = 3! ag =

-gt/2 s etc. The hypermultipoles of a two-
body potential V(rij) are defined as

E(I—Zuz)(l—uz)l/zuzdu. o (21)

r

Here the partial wave w2K+l(Q k'g)bis the

hyperradial wave function which depends on
six-vector k expressed in hyperspherical
representation as (Qk, ). We use Egs. (4),
(14), (15), and (18), and the properties
of the members of the optimal subset
B2K+1' Limiting the expansion to K = 0
and K = 1, the differential cross section
becomes

2 M

2
3f2 o T (e u S
L do®/? = 25 (F9) BT E k" a2y | <y

&)

-2

Welv - <«of- 2 WMelvs]e.
/3

(24)

Here th ground sgate hyperradial func-
tions wo(g) and YP(&) are the pa{tlal waves
for the Symmetrlcal state, and Y3 (E) is the
partial wave for the mixed symmetry state.
We call Y, the wave function for a con-
tinuum state with no nucleon-nucleon in-
teraction (a plane wave in FL). We ex-
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pand this free wave function in the op- teraction to a spin-singlet even,
timal iﬂ?set: vOI*) and a triplet odd, v(37). pe-
- fine
yvo= ) B (s,t,2)|¥,>B (s,t,2) : _
B xio 2K+§ ;m B” T2K+1 vho= (v 4 y(8-dy g
_ o1/2 (2m) K _ ' _
= 2'/? e KEO (=107 Jgg43(kE) : vo o= (v Cy(8) (27)
+ - For a Wigner potential, V is zero.
[Pogs1 () = Pogay () 1Bogyq (s, t, @) A calculation??,23 gives the coupled
(25) differential equations, for grand or-
bitals 1 and 3 as follows:
That is, in Born approximation we have + -
B + {T1+3[Vo (E)+V2(E)]-E}y,
Vor+1 = [Page1 (%) =3[VZ(E)+Vi(E)]ws = O
_p~ 2 _ _
Pore1 () 1 ggeg (KE)/ (REDT {(T5+3[V5(8) + 3 vi(e) - £ vi(e)1-m),
(26) .
-3[V3 + V =0
The Bessel functions Jv can be expressed B2 52 W35 [82(5) +(E)]0n
using Hankel functions 1) ang H(2), Tp=-%Ggez * T 5E L(L+4)/&?)
which are outgoing and choming wives (28)
respectively.
The partial waves y,p ., for the problem (In our past papers'® we have made some
with nucleon-nucleon interaction in the . §;§§§Sf;2 Eﬁ: 3%%2? égrﬁg' (%ﬁié zigzlcu‘
. . 2 .
final state are a solutlog of a system error was corrected in our 1976 paper" for
of goupled gqgatlons gbeylng the fol- a single h.h.) This system of coupled
19w1ng conditions: First, the fugcf . equations has two independent solutions
tions w2K+1 are regular at the origin; o .o 8 B ]
second, their amplitudes are deter- Bledonharns® phabes o ander.  For example,
mined so that at very }arge & thgy the o solution has th& asymp%otic behavior,
correspond to an incoming normalized for grand orbital either 1 or 3
plane wave ¥,. -The system of coupled g
equations is written w%(k,g) N [cos Ga JL+2(kg)
- -0
<B T+ [ V(r,)-E|¥Z> =0 L 2 o
2K+1 i3> ij F ‘ - sin Sa NL+2(k£)]/(k£) (29)
K=0,1, .... N is the Neumann. function. (Our normali-
\ z3tion diffeys from FL by a factor of
For a central potential the final (2/m)*/2 k~%/2), The general solution
state 1 , isospin 3/2 limits the in- describing an incoming wave is?
J
vz = 2 (2m)?(a e 0ucoseB1 (0)yF (K, £)+sineBs ()95 (k, £)]
/5 a
+ Age g -sineBr ()vf(k, £)+ coseBs ()8 (k, )1} : (30)

B
Here ¢ is the mixing coefficient. The functions A (Qk) and A (Rk) are_obtained by compar-
ison with the partial wave expansion (25) of the i%coming plane wave WB:

8,2 = [PT(@) - PI(@)]cose - [P3(R) - P3(R)]sine,

+ FR . + -
AB(Qk) = [Pl(gk) - Pl(Qk)]slna + [Pa(Qk) - P3(Qk)]COS€. (31)
These functions are orthogonal, and normalized to 2:
= 0- 2 - 2 =
IAGABko = 0; f(Aa) ae, = I(AB) ae, = 2. (32)

We now substitute (30) in Eq. (24) to find the differential cross section

dod/? = (w2/36)(e2/hc)(M/hz)(Eyk“)dﬂklAu(Qk)[R%lcose - RY; sine]

- exp(ié)AB(nk)[Rﬁlsine +Bfs cosel|?; & = 5, - . (33)

The four overlap integrals Ri ' are designated by the grand orbital L of the symmetric'

part of the initial state and L' of the final state; the superscript states whether we
use the a or B solution.

RE: = <v5 - 272 yMelud>; rE, = <uf - 27t/ Mgl
<« - 272 M e]ybs. (34)

[}

RYs = <ub - 27172 yMg|y%>; S,
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We find the total cross section by integrating Eq.
is independent of the phase difference § because of orthogon-
(32).

The total cross section ¢

ality of A (%) and AS(QK§ given in Eq.

TRINUCLEON PHOTOEFFECT TO ISOSPIN 3/2,...

29

(33) over the 5 angles contained in Q. .

Op = (n2/18)(ez/hc)(M/h2)(Eyk") {(cose RY, - sine R%;)?2

+ (sine R%l + cose REa)z}.

Setting € = 0 and Y3 = 0 (and noting that
RY, corresponds to (2/m)!'/?2 k's/zrif of
FL) we reproduce the equation given ear-
lier by FL for o,, for a single uncoupled
partial wave, wi?h grand orbital one.

IV. Numerical Results

We use two pbtentials, the spin-indepen-

dent Volkov potential'® and the spin-de-
pendent central potentiall?®,22 VX, which
was adjusted to agree with experimental
values of the trinucleon energy, and the
form factors of H and *He, at least for
small momentum transfers. For the first
potential, we use the °H ground state wave
function calculated by Beiner and Fabrelz;
for the second potential the °He wave
function calculated by Ballot et al.!® We
modify the original Volkov potential by
assuming'! pure Wigner exchange, We as-

sume a Serber mixture for the V= potential:

namely that the potential is zero for
states of odd parity.

We use the standard Runge-Kutta numeri-
cal method to solve the coupled differen-
tial equations (28). We follow the anal-
ysis due to Blatt-Biedenharn?", Hulthen-
Sugawara®®, and Drechsel-Maximon?® in
order to find initial conditions that
give the o or B eigenphase solutions.
(See Fang?® for details.) The numerical
results for the Volkov spin independent
potential are compiled in Table I and the

(35)

" for Born-approximation (dash—dot) and for

a single h.h. (dashed) with grand orbital
one, as well as our new results (solid)
for 2 h.h. We see that the broad peak in
Born approximation is narrowed and pulled
to lower .energy by the strong attraction
using a single h.h. Use of two coupled
h.h. corresponds to an additional attrac-
tion, giving some additional narrowing
and shift to lower energy, However, the
use of a second h.h. gives a relatively
small change in the total cross section,
in general less than 10%.

Our numerical accuracy in calculation of
the total cross section can be checked by
comparison with the sum rule for the brems-
strahlung-weighted cross section o-;,
which is proportional®;!! to the mean-
square value of the hyperradius & for the
ground state wave function. In Table II
the sum rule value of 1.42 mb and the
values of 1.43 mb for Born approximation
and for a single, uncoupled h.h. are taken
from Myers'!. Our value of 1,40 mb, found
by Gauss-Gegenbauer quadrature!?!,27 of the
cross sections in Table 1, is in agreement
with the other two values, within the nu-
merical accuracy of our calculation.

The speed of convergence of the h.h. ex-
pansion is tested by the value of the inte-
grated cross section og. The Thomas-
Reiche-Kuhn value of 19,9 MeV mb holds for
any potential that commutes with the dipole
operator. . The value of 47,6 MeV mb for
Born approximation is in serious disagree-

total cross section of o¢,,(E_) of Eq. (35) ment with the sum rule; while the value
for *H photoeffect is plgttéd vs E_ in of 21,1 MeV mb for a single h.h. is only
Fig. 1. Note that §; (for a singlé h.h.) 6% above the sum rule value. Our present
is close to 6 and somewhat smaller. use of coupled h.h. gives 20,5 MeV mb,
In Fig. 1 wé& include results by Myers!? only 3% above the TRK value!
Table I . .
Phase Shifts, Overlap Integrals and Cross Sections for Volkov Potential
EY(MeV) tan &, tan Gu tan GB tan € R%l(fm) R%s(fm) R%l(fm) REs(fm) UT(mb)
8.83 0.26 0.28 0.05 -0.40 175, ) 0.40 29. 0.0 0.011
9.51 0.54 0.66 0.11 -0.14 214, -6.0 36. 0.0 0.26
10.61 1.283 2.11 0.17 -0.03 251. -6.5 30.7 1.2 1.73
12.33 20.5 - -3.83 0.25 0.06 171. -3.7 21.3 2.5 3.02
15.02 -1.63 -1.18 0.33 0.16 68.8 -1.0 12.3 3.4 1.69
19.38 -0.94 -0.81 0.47 0.23 22.1 -0.11 5.78 3.13 0.0”
26.99 -0.91 -0.85 0.68 0.27 5.56 -0.03 2.30 1.92 n.16
41.79 -1.23 -1.03 1.07 0.32 0.90 0.00 0.62 0.62 0.035
76.92 -2.93 -2.10 1.86 0.39 0.032 -0.011 0.011 -0.0054 0.21 x 1073
201.72 2.60 5.43 1.72 0.85 -0.0010 -0.0073 -0.0058 -0.0088 0.26 x 10”3
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Ot (mb)

Ey (Mev)

Cross section o, in mb for °3%H,

El transitions %o isospin 3/2
state vs photon energy E_ in MeV,
for Volkov potential. THe dash-
dot line shows Born approximation;
the dashed line shows a single
h.h. (both from Myers'!); the
solid line shows two coupled h.h.
from Table I.

Fig. 1.

The sum rule for the moment o; is pro-
portional to the ground state expectation
value of the kinetic energy; the approxi-
mate value of 290 MeV? mb in the Table is
from Myers'!. We also reproduce Myers'
values of 2100 MeV2 mb for Born approxima-
tion and 338 MeV2 mb for.an uncoupled h.h.
Our present value of 342 MeV? mb is 18%
above the approximate sum rule value.

This discrepancy (much larger than the 3%
above for the integrated cross section) is
due in part to (i) approximations in the
sum rule value, (ii) approximations in
Gauss-Gegenbauer quadrature, and (iii)
sensitivity of o; to value of o(E_) at
high photon energies, where the truncation
at grand orbital 3 is likely a poor ap-
proximation. (Note that the highest en-
ergy in Table I contributes substantially
to o;. Figure 1 shows that the curve for
2 h.h. is lower than that for 1 h.h. up to
40 MeV; but the former curve is higher at

201.7 MeV.)
We use the same numerical techniques to
find the eigenphase solutions of Eq. (28)

for the continuum wave function with the
spin-dependent VX potential. The phase
parameters § , 6, and € are given for ten
photon energ%es Qn Table III along with
tan 8, for a single h.h.* We combine our
continuum eigenphase solutions with
Ballot's numerical results for the ground
state wavefunction of 3He to find the four
overlap integrals, Eq. (34) and the total
cross section, Eq. (35). 1In Fig. 2 we
compare three cross sections all using
Ballot's ground state wave function for
the VX potential: i) Born approximation®,
using a free partial wave with grand
orbital one, shown dash-dot; ii) a single
h.h. for the VX potential® shown dashed
and iii) the present work using 2 h.h.
shown as a solid line. Figure 2 shows
the same general features as Fig. 1 for
the spin-independent case: the very broad
peak in Born approximation is narrowed
and shifted towards lower energy when we
use a single h.h. for an attractive po-
tential. There is a smaller shift when
we use a second h.h. Cross sections for
2 h.h. agree with those for 1 h.h. to
better than 10% for photon-energies of
less than 100 MeV.

We use our 10 cross sections for 2 h.h.
to give the moments o-;, and o0, presented
in Table IV. We compare with the moments
in Born approximation and with a single
h.h.* The three values of o-, agree,
within round-off errors, as they must.
They also agree with the sum rule value,*
based on the rms radius. We evaluate the
integrated cross section o, using the
O'Connell-Prats!’ approximation for a
symmetric ground state. We truncate the
ground state wave function at the lowest
partial wave, uo(&). This trgncates the
hypermultipole expansion of E1V(&:1) at
V2(&). Our value oo = 29.5 MeV mb for
2 h.h. is 2% above the sum rule value
0o = 28.8 MeV mb.

V. Conclusions and Discussion

In this paper we extend the calculations
of FL* and Myers!! by including another
hyperspherical harmonic in the expansion
of the continuum wave function.

We find excellent convergence in the
model calculation of a Volkov potential

Table II
Comparison with Sum Rules, Volkov Potential

Moment Born? Uncoupled Coupled Sum Rule?
O-1 1.43 mb 1.43 mb 1.40 mb 1.43 mb
To 47.6 MeV mb 21.1 MeV mb 20.5 MeV mb 19.9 MeV mb
o1 2100. MeV? mb 338 MeV? mb 342 MeV? mb 290 MeV2 mb (approx.)

a. See Myers!?,.
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E (MeV) tan 81 tan §, tan 8 tanc R{i(fm) RYs(fm) RS, (tm) BB, (fm) o (mb)
8.13 0.128 0.143 0.0082 -0.20 59.3 -0.6 15.2 ~-0.06. 0.00212
8.81 0.248 0.277 0.0151 -0.160 81.3 -0.90 14.4 0.21 0.0347
9.91 0.384 0.440 0.0257 -0.114 85.6 -1.01 13.1 0.67 0.186

- 11.63 0.544 0.640 0.0362 -0.080 72.8 -0.94 10.4 1.19 0.515

14.32  0.736 0.876 0.0494 -0.0443 49.8 -0.62 7.35 1.52 0.854
18.68 0.960 1.14 0.065 -0.0074 27.4 -0.265 4,43 1.38 0.941
26.29 1.142 1.30 0.094 0.036 11.6 -0.040 2.22 0.760 0.689
41.09 1.151 1.254  0.141 0.100 3.58 0.0136 0.770 0.174 0,327
76.22 0.880 0.965 0.223 0.247 0.658 -0.0113 0.0706 -0.0722 0.0834
201.00 0.370 0.590 0.223 0.830 0.0168 -0.0191 -0.0131 -0.0193 0.00500
assumed to have pure Wigner character, theoristsé:3 and may well be similar to

First, Fig. 1 shows that the values of the
total photoeffect cross section at a spec-
ified energy show rapid convergence when
we consider Born approximation, h.h. and
two coupled h.h. Second, Table II shows

a corresponding rapid convergence in
values of the moments o, and ¢;. Third,
Table II also shows that the value of oy
has almost converged to the Thomas-Reiche-
Kuhn value, missing by only 3% if we use 2
coupled h.h.

Convergence is equally rapid for our use
of the spin-dependent VX potential, zero
in two nucleon states of odd parity: see
Fig. 2 for the rapid convergence of the
total cross section at a given energy.

The agreement to 2% between the integrated
cross section for 2 h.h. and an approxi-
mate sum rule value is as satisfying as
the excellent agreement noted above for
the Volkov potential.

Since this VX potential is in rough
agreement with potentials chosen by other

10 —
- L
€ L
& L

0.5 f—

]
¢)
€, (Mev)

Fig. 2. Cross section o, in mb for °3He,

El transitions %o isospin 3/2
state vs photon energy E_ in MeV,
for VX potential. The dish-dot
line shows Born approximation;
the dashed line shows a single
h.h. (both from Fabre"); the
solid line shows two coupled h.h.
from Table III.

the potential in the real world, a brief
comparison with calculations and experi-
ment is in order.  Figure 3 shows the
Gibson-Lehman?® calculation for final iso-
spin 3/2 states as a dashed curve, 'and our
cross sections for 2 h.h. as a solid curve.
Considering the different potentials used,
the overall agreement between the calcula-
tions is satisfactory. The figure also
shows three different sets of measurements
on three-body break-up, which include a
small contribution from isospin 1/2

states: (i) Gorbunov® as x's with standard
errors, (ii) Gerstenberg'' as squares, and
(iii) Berman® as circles. The experimental
results disagree with each other above

20 MeV. Our calculation agrees with
Gorbunov almost within eXxperimental accu-
racy up to 50 MeV. We can also compare

our o-31 and o, values for 2 h,h, with

[Ke] o
=t
£
6—0.5—

1 |
[¢]
E,,(Mev)

Fig. 3. Cross section ¢ in mb for ‘He

photoeffect vs photon energy E

in MeV. The x's show experime%ts
on three-body breakup by
Gorbunov®, the circles show
Berman's results® and the squares
show Gerstenberg's!®., The dashed
curve shows calculations by
Gibson?®, the solid curve is from
Table III for h.h. (Both calcu-
lations are for isospin 3/2 final
state.)
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Table IV

Moments for VX Potentials

Moment Born® 1 h.n.? 2 h.h. ‘Sum Rule
O—1 1.14 mb 1.12 mb 1.11 mb 1.1 mb
Ty 38.9 MeV mb 29.0 MeV mb 29.5 MeV mb 28.8 MeV mb

a. See Fabre."

low energy by !2C leading to three alphas,

Gorbunov's values for three-body break-up.
Our o-; value is 20% below the experimental
1.42 +* 0.07 mb; and our o_ value is 32%
below Gorbunov's 43.6 * 2°7 MeV mb.
Comparison with other calculations and
with experiments could be extended in five
ways. First, we should evaluate the sum
rule for o, for a spin-dependent force for
comparison with our values in Table III,

by treating this nucleus as a 3-a sys-
stem®!. (iv) The low energy photoeffect

of ®Li (as a N-N-o system) and of °Be (as
a N-a-o) system). (v) The decay of w meson
into three pions. (vi) Photopion produc-
tion from the deuteron, using good con-
tinuum wave functions for the w-N-N final
state. (vii) Photopion production from °H
and °He, using good continuum wave func-

and we should evaluate o, with fewer ap-
proximations. Second, we should use the tion for the 3-neutron and 3-proton sys-

h.h. expansion for other choices of the tems, respectively. (viii) Analysis of the
two-nucleon potential, including coulomb ¢classical three-body problem by finding
and tensor forces.?® Third, we should use the classical limit’? of the quantum
Eq. (33) for the differential cross sec- mechanical h.h. expansion.
tions to make comparisons with the energy )
distributions (which amounts to the depen- ACkQOWIEdgmentS

We are grateful to Karen J. Myers for

dence on the angle &, in momentum space)
found in other calcu&ations and in experi- discussion of her work on the Volkov po-
tential and on sum rules, and to L.

ment. We should include E2 transitions
and their effect on angular distributions. Maximon for discussion of eigenphase
Fourth, we should evaluate the ground solutions.
state Stark effect to determine the tri-
nucleon polarizability and hence® o-,.
Fifth, we should study El1 transitions to
isospin 1/2 states.?®

We can also apply h.h., expansions to
several different problems, as follows.
(i) Use of 3 or more h.h., for the con-
tinuum wave function. (ii) Further calcu-
lations of three-body to three-body scat-
tering?? and of corresponding virial co- -
efficients®. (iii) Photon absorption at

Appendix A

Let us consider three mathematical en-
tities (1), (2), and (3) that obey the
orthonormal rule:

<ils> =
ilj Gij'

We can write three orthonormal combina-

tions as follows:

Table V
Spin-Isospin Wave Functions
Notation Combinations Total Spin S Total Isospin T Symmetry
A A2 [(+,-)=(=, )] 1/2 1/2 a
s /2 [(+,4)=(=,=)] 1/2 1/2 s
Al (1/Y2)[(+,-)+(-,+)] 1/2 1/2 m_
S (1/V2) [(+,+)+(=,-)] 1/2 1/2 m,
s (0,+) 1/2 3/2 m,
A 0,-) 1/2 3/2 m_
g ©(+,0) 3/2 1/2 m,
A (-,0) 3/2 1/2 m_

g(iv) (0,0) 3/2 3/2 s
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(0) = (1/V3)[(1) + (2) + ()],
(+) = (1/V/6)[2(3) - (1) - (2)],
(=) = (1/VZ)[(1) - ()]. (1)

When we describe a spin state of a system
of three nucleons for a specified projec-
tion of total spin Sz’ li> gives the spin

state. For example for S_ = 1/2, |i> =
Biujak’ where o designate% spin up and B

designated spin down. Of course the. same
notation holds for isospin. For example,
for TZ =1/2, [i> = nipjpk, where p is a
proton with positive isospin, and n is a
neutron. Then (0) stands for a spin
state that is completely symmetric for

v
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exchange of any pair, and has S = 3/2; or
(0) stands for a completely symmetric
isospin state with T = 3/2. The states
designated (+) or (-) have mixed symmetry
and S = 1/2 (or T = 1/2). The former is
symmetric for exchange of entities (1)
and (2); the latter is antisymmetric for
this exchange. '

Using Eq. (I) we form the nine possible
combinations of spin and isospin. We
designate a combination of isospin (a) and
spin (b) by the symbol (a,b). The overall
symmetry for the spin-isospin wave function
is given in the right column: "a'" is a com-
pletely antisymmetric; s is completely
symmetric; m, has mixed symmetry, symmetric
gr antisymmetric for interchange of 1 and
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