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Trinucleon photoeffect to isospin 3j2, using coupled hyperspherical harmonics"
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We extend the Fabre-Levinger calculation of the He photoeffect (EI transition to final isospin 3/2) by
including an additional grand orbital (L =.3) in the final state wave function. The coupled differential

equations between L = 1 and L = 3 for the final state are given. We solve for two model potentials, and

find the Blatt-Biedenharn eigenphase shifts and the mixing parameter, and also the total cross section for
photodisintegration. %'e find reasonable agreement (generally within 10%) with the cross section found for
one hyperspherical harmonic. The convergence speed of the hyperspherical harmonic expansion for the

outgoing channel is also examined by comparison with sum rules for the integrated cross section: We find

rapid convergence for both models.

NUCLEAR REACTIONS Photodisintegration of trinucleon system,
coupled hyperspherical harmonics.

I. INTRODUCTION

The trinucleon photoeffect has been cal-
culated by Gunn-Irving', Barbour-
Phillips , Gi. bson-Lehman , and Fabre-
Levinger". The first attempt to- use by-
perspherical harmonics (h. b. ) for tbe tri-
nucleon photoeffect was made by Delves'.
Unfortunately his calculation gives poor
agreement with sum rules. "~' Experiments
on three-body break-up were reported by
Fetisov et al. , Gorbunov , Berman et al.
and Gerstenberg et al. '

The first successful application of h. b.
to El transitions to isospin 3/2 states of
the trinucleon was made by Fabre and
Levinger", (FL). Recently Myers et al. '
used sum rules to test the accuracy of
the use of a single h. h. for a spin-inde-
pendent potenti:al of Wigner character:
they find agreement within 6% for the in-
tegrated cross section.

We perform our calculation of the wave
functions using an expansian in h. b. We
keep only a, finite number of terms of the
expansion, giving us. the same number of
coupled equations, which are integrated
numerically. The convergence of this
method bas been tested for the wave func-
tion of the trinucleon ground state; we
are able to find quite accurate solu-
tions. ' ' We must investigate the con-
vergence of the wave function for the
final state.

The accuracy of the final state wave
functian is tested by comparison'' of
two different calculations of moments of
tbe photoeffect cross section. These
moments can be calculated numerically
from the cross section crT(E ) found using
the final state wave iunctiEn. The me-
ments can also be determined by sum
rules6 which are expressed entirely in
terms of the trinucleon ground state wave

function, and of the potential and its
assumed exchange mixture. We extend the
comparison made by Myers et al. to the
use of two coupled h. h. for the final
state wave function, and to the use af a
spin-dependent potential.

We note that if we neglect the tensor
force and use a potential with a soft core
which gives correct values of the binding
energy and the form factors of the tri-
nucleon'', the first partial wave with
grand orbital L=O contains about 98~/o of
the total wave function, while the mixed
symmetry wave L=2 contains about 1%,
Electric dipole transitions obey the selec-
tion rule ~L = +1. Then transitions to a
final L=l come from the dominant L=O or
L=2, and constitute roughly 98~&o of the
tatal cross section. About ltd of the cross
section comes from an initial wave L=2,
leading to a final wave, L=3. This rapid
convergence of the ground state wave func-
tion, combined with the dipole selection
rule, explains the good agreement with tbe
Thomas-Reiche-Kuhn sum rule for the inte-
grated cross section found by Myers et
al. '', using only a single partial wave,
L=l, in the final state.

We have also shown' that the forms of
the trinucleon partial waves L=O or 2 are
insensitive to the assumed potential, when
we impose the constraints of the binding
energy and r.m. s. radius. The total cross
section is then expected ta be sensitive
only to the details of the wave function
L=l for the final state. The shape of
this, wave is modified by tbe coupling be-
tween waves of odd grand orbital, L=l, 3,
5, . . . At low energy the effect of the
coupling is predominately between waves of
small grand orbital. In this paper «e
study the effect of the caupling of the
wave L=3 on the wave L=l; and we find that
the change caused by this coupling is
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small. ''
This result implies a rapid convergence

of. our b. h. expansion, in accord with the
good agreement found between two different
calculations of the moments of tbe cross
section.

We use two differ'ent soft core eentx'a„l
potentials: the. spin-independent Volkov
potential'' and the spin-dependent V po-
tential. '' These potentials were specified
for even parity of the two-nucleon system.
In Section IV we present these potentials
for even parity states, and specify our
assumptions for their exchange character.
The Volkov potential gives''~' a triton
energy of -8.46 MeV and an rms radius of
1.73 fm. The Vx potential gives'' the 3He
energy as -7.74 MeV, and also gives excel-
lent agreement with experiment on the 'He
and 'H form factors, uq to squared momen~
turn transfers of 8 fm

'Comparison of measured bremsstrablung
weighted cross sections for two-body and
three-body break-up in the 'He photoeffect
with sum rule calculations of tbe brems-
strahlung weighted cross sections for
specified isospin final states has shown'
that almost all of the observed three-body
break-up is due to isospin 3/2 final
states. For some reason, not yet com-
pletely understood, the isospin 1/2 state
has a small branching ratio for three-body
break-up. We therefore follow ~FL in com-
paring our calculations for the. Vx poten-
tial for isospin 3/2 final states with ex-
perimental measurements on three-body
break-up.

In the next section we use the group
theoretic cia,ssifieation of symmetries of
the three-body system to derive an expres-
sion for the photoeffeet cross section.
In Section III we expand the continuum
wave function in hyperspherical harmonics.
We find the coupled differentia, l equations
for two byperradia. l functions, with grand
orbita, ls one and three, respectively. We
also find the differential and total
pbotoeffect cross sections in terms of
four overlap integrals. In Section IV we
give numerical results for the Volkov po-
tential (spin-independent, of assumed
Wigner ebaraeter) and the Vx potential
(spin-dependent, zero potential in odd
parity two-body states). In Section V we
conclude that expansions in h. h. give
rapid convergence for the cases considered;
we find fair agreement with other calcula-
tions for isospin 3/2 and good agreement
with Gorbunov's experimental result for
three-body break-up.

II TRINUCLEON PHOTOEFFECT TO
ISOSPIN 3/2 STATE

There are four independent spin-isospin
functions for a system of three nucleons
in a state with tota. l spin S and total iso-
spin T given by S = T = 1/2, with given
projections S and T . Our notation fol-
lows.

A:
S:

A t ~

S f

completely antisymmetric
completely symmetric
mixed symmetry; antisymmetric for
the pair (1,2)
mixed symmetry, symmetric for the
pair (1,2)

For total spin and isospin given by 8 =
1/2, T = 3/2, with given projections there
are two independent functions of mixed
symmetry.

A": antisymmetrie for the pair (1,2)
S".: symmetric for the-pair (1,2)

Appendix A gives a summary of spin-isospin
wave . functions, and gives expressions for
the six wave functions listed above.

We use Jacobi variables"

(1 xl x2 j (2 3 I (x3 X}

Here x~, x2 ayd x3 are tbe nucleon coor-
dinates, and X is the coordinate of the
center of mass. We designate thy canoni-
cally conjugate wave vectors by k~ and k2.
We use these two pairs of three-dimensional
vectors to define tyo gectors jn sip-di-
mensional space: (((~, (2) and k(k~, k2).

If we neglect the tensor force, the
ground state wave function of'the trinucle-
on ean be written as

&G(s', t, 6) = A0G(() + 2 ' 'I ' 4G(C) +

S yG(g)] + SqG(g). (2)

Here s denotes the, spin variables, and t
denotes isospin variables. gS(g} is com-
pletely symmetric for the exchange og any
pair of space coordinates, while yG(() is
completely antisymmetric for space ex-
-change. Q+(() is symmetric while Q (E) is
antisymmePric for exchange of the pa. ir
(1,2). The mixed symmetry states QG and
the completely antisymmetrie state Q dis-
appear when the even spin singlet and trip-
let potentials are the same (for instance
for an interaction of Wigner character).
In general the wave $A has a negligible
weight in the trinuclPon ground state.

The final state, with quantum numbers
T = 3/2, S = 1/2, 1 is written

V ( } (s, t, k, g) = [A"q (k, ()
S"QF(k, g}]/2 (3)

The (-) superscript on 'P& designates an
incoming wave. QF is a wave symmetric on
exchange of (1,2), while Q& is antisym-
metric. These wave functions depend on
the momenta of the particles in the con-
tinuum.

Following FL, the differential cross
section for electric dipole photodisinte-
gration is given by

« = (»/«)l&~ylDI~G'I' pz (4)
The density of final states per unit ener-
gy is

PE = d k/(2m) dE. (5)



The energy E = (4 /M) (kl + k2 ), and D
is the dj.pole operatoI'.

The matrix element for E-1 transitions
3.8

~D~V & = i e(2T )(ZvZ )'/'(4 'S '/')6 F z

(&VS)g q + g tI»& + 2-'/'[ &IGIK2 sip

Kl ~K2

HtLj (~} = H (~)
L, ~, , a2

m,
~&(» ) ~&(h)2 ) I"L((I)) (10)

(2) g2, kl I/2
2(L+2)n (L-n+1).'

&L((I ) =
3 3' I'(n+kl+ —)I'(Q+R2 + —)2 2

0 &-&4GI&2 4p + &i pZ'»»

HeI'6 6 38 the magni tude of the electI'GQ
charge, and T is the third component of
isospin oi th8 trinucleon. We take the
polarization of the photon along the z--
axis. Only the fiI'st term, involving

(g), contributes for a Wigner force,g

III, ExpRnsion 3.n HyperspheI'3cal HRrKGQ3. cs

We Dow d1.8cUss the calcu/Rtlon of the
wave functions & and &&( ~ using the hy-
qerspherical iorRalism. The vectors g and
k are replaced by the coordinates (0, ()
and (Ak, k) in six-dirriensional space. The
five angles 0 are chosen as (h)l, h»2, (I)),
where h). are each of the two angles of . the
vector g. in spherical polar coordinates,
Rnd (I) 1.8 def1ned (3.D disRgI"66ment %'ith some
of our earl16r work '') as

tan (I) = (1/(2.
The hyperradius g in six-dimensional space
3.8

(p 2 +, g 2) l/2

With this choice of coordinates, the kin-
etic energy operator becomes

v2
2M . 1 x.

g 2
GM x

tg2 + Q2 j
M gj E2

g 2 5 3

3
A (&) = ) 2 +4 cot 2(I)

/cos (I)- &l /sin

(h)1) Rnd ~2 (h)2) Rre the UsUR1 squared
RQgU1Rr momentum op6rRtol- fol" pR1"t3.cle 1
and 2 respectively. The eigenfunctions
H~Lj(& ) of the angular operator A2 are
solut30QS of

I
A2 (n ) + L(L+4)] H

t j
(n) = 0

We call these functions hyperspherical
harmonics, or h. h. (Sirrionov' calls them
K-harmonics; while Pano'~ refers to
"Macek coordinates". ) The normalized
h. h. are given. by

Rlx (sin(t) ) (cos(t) )

g, l + —, k2+—1
&( p {eos2(I) );

2Q+Rl+R2

In Eq. (11), P ' is a Jaeobi polynomial;
the quantum nu&her n is a non-negative in-
teger. L is called the grand orbital. The
subscript |Lj in Eq. (10) represents, the
five quantum numbers (&~, ml, &2, K2, L}. The
h. h. have a parity (-1)+ for inversion of
the vector (. We couple together spherical
hRIKGQ1. cs to g3.ve R d683.gDRted totR1 Grb3. —

tR1 angulRI' momerltUJQ ~, RDd progect3. 0D m,
Rs follows

ml, m2
X«~, m~, i2, m2 ) t, m& H (t) ) .

L, kl, k2

&tram&;i, , m, li, m& is a C).ehsch-aordan co-
efficient. We use the set of basis func-
tions, Eq. (12) in this paper. A, plane
wave is expanded in h. h. as follows

exp(ik'g) =. (27r)3 Li H(Lj (Ak)

we (0) J (k()/(k() '. (13)

The sum 3 8 t Rk6Q over Rl 1 quantUK QU1Tlb6r8

I Lj, for L varying f rom 0 to j.nf inity; and
J is a Bessel function.

The volume element in six-dimensional
space is

We rewrite Eq. (5) for the density of
8 tates.

The h. h. Y |L (~ ) does not have a definite
8ymmetry fGl 8 Rt 1.Rl exchRQge except for
exchange oi' th~ (1,2) pair, for which the
parity is (-1)

We have shown in an earlier paper ' how
to construct from the complete set 7 L (~)
another set having the desired symmetry
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properties for spatial exchange of nucleon
pairs. We use the following principle.
Let BL(s, t, ~) be an h. h. , which includes
spin s and isospin t, antisymmetrie Tor
complete exchange of any two fermions.
The minimum grand orbital L is defined
by the condition tha. t the iRteraction can-
not generate any other h. h. with grand or-
bital L & L .

We define an optimal subset by the con-
dition that for each element BL +2K(s, t, ~)
of this basis we have, for K a Positive
integer,

fBL &H(s, t, Q)V{$,0)BL (s, t, 0)dQ p 0
m m

It is understood that for each value of
the grand orbital L + 2K we take the min-
imum number of orthBgonal h. h. We ca,ll

(s, t, &) a fundamental h. h.

The ground state of the trinucleon has
L =0. Then,

(s, t, n) = A(, t) Y~
~
(0);

-Y (0) = vr
'/'

lol (17}
The ground state is expanded in the fol-
lowing form

'P0(s, t, g) = ) (AP~K(Q) /2K(g)
K=O

2 ' . [A'P2K(0) + S'P2K( )jg2K(()}.
(18)

The expansion only includes h. h. for even
grand orbital L = 2K since we have a,

with the potential

a2H zK(")V2H(").
K=O (20)

The constants a2K are given 'by Beiner and
Fagre : R0 = lp R2 = Op aq = 3 ' , a, e

12, 1/2
-8'/ , etc. The hypermultipoles of a two-
bgdy potential V(r. ;} are defined asiJ

state of even parity.
P2K(~) is a normalized h. h. of grand0

orbital 2K, with total angular momentum
0, completely symmetric for spatial

exchange of any pair of nucleons. On the
+other hand, P2 (0) has mixed symmetry and

is even for (1,2) exchange, while P&K(&)
I

is odd. For the final 1 state with iso-
spin 3/2, we have L = & = l. We choose
the polarization al8ng the -'-axis (m = 0),
giving us

B1(s,t, ~) = —lA" P1(~) — S"P1(~ }J
v'2

10
(~) = Y101{~)

4 (2/Tr } / cos(I) Y0 (M1 ) Y1 ((1)2 )
10

P1(~) Y110 (~}
4(2/m) '/ sing Y1 ((1) 1 } Y0 ((o2 )

(19}
For a potential of Wigner character, the
elements of the optimal subset are given
by

f B2K+1(s,t, 0)V($, 0)Bq (s, t, 0)d0 p 0

1

V2K(g) = '

& f 0 V( gu) PK {1-2u ) (1-u ) '~ u du.
7 '/' I'(K+ -)

2

(21)

(Also see FL for the case of a Gaussian
two-body potential. ) For K = 1, the state
B3(s,t, Q) is )he projection on L = 3 of
the product P„(~}B1(s,t, &). We find

B3(sp ty~) ' 2 / tA"P3(A)-s"P3(A)]

X '2K+1("k "'}. (23)

with
10 10

P3(~} 3 / Y30 1(~) — (2/3) '/' Y32 1(~),
10 10

P3(~) 3 / Y3 10 (~ } (2/3) / Y3 12 (~) ~

(22)
These functions 82K 1 are normalized to-
tally antisymmetric functions of total
spin 1/2, total isospin 3/2, total angular
momentum & = 1, (m = 0) for grand orbital
2K + 1. We expand the final wave function;

+OO

&F =
2 (2m}' g (-1) B2K 1(s, t, Q)

K=O

Here the partial wave /2K+1(Ak, k; (} is the
hyperradial wave function which depends on
six-vector k, expressed in hyperspherical
representation Rs (&k, k). We use Eqs. (4),
(14), (15), and (18), and the properties
of the members of the optimal subset
B2K l. Limiting the expansion to K = 0
and K = 1, the differential cross section
becomes

Tf edc. ~ = —(—) E k" dQ36 %e e y k

—:e. I &I&~' — &v. ——&, I&I&~'I .1 M S 1 M

v'2

{24)
Here thm ground s)ate hyperradial f'unc-
tions Q0 (g) and Q„(g) are the partial waves
for the symmetrical state, and Q2-(g} is the
partial wave for the mixed symmetry state.

We eall VB. the wave function for a con-
tinuum state with no nucleon-nucleon in-
teraction (a plane wave in FL). We ex-
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pand this free wave function in the op-
timal subset:

'R — ~ '2K+i(' '")I'R '2K.l ' ' "
K=O

2 / (k])o ) (-l) J2 K+3(kE)
(2m) K

K=O

2K+1 k 2K+1 k ] 2K+1

(25)
That is, in Born approximation we have

B p+
&2K+1

= ['2K+1{"k)
-~„„(~k)]J2K„(k~)/(k~)'.

(26)

The Bessel functions J can be expressed
using Hankel functions H and H

' (1) (2)
which are outgoing and incoming wolves
respectively.

The partial waves /2K 1 for the problem
with nucleon-nucleon interaction in the
final state are a solution of a system
of coupled equations obeying the fol-
lowing conditions: First, the func-
tions /2K 1 are regular at the origin;
second, their amplitudes are deter-
mined so that at very large P they
correspond to an incoming normalized
plane wave V . -The system of coupled
equations is written

&H2K, lIT + $ v(r . )-EI.y & = o
i, )~i

K = 0, 1,
For a central potential the final
state 1 , isospin 3/2 limits the in-

teraction to a spin-singlet even,
V and a triplet odd, V '. De-(1+) (3-}
fine

V+ = (V('+) + V"-')/2,
(V(1+) V(3-)/2

For a ttItigner potential, V is zero.
A calculation o

' gives the coupled
differential equations, for grand or-
bitals 1 and 3 as follows:

(27)

QL(k, g) ~ [cos 6 JL 2(kg)
g-+ 0O

sin 6 N {k(}]/(k() (29)

N is the Neumann. function. (Our normali-
zation differs from FL by a factor of

/z) c/2 k sP 2 } The general solution
describing an incoming wave is

{T&+3[VO(()+V2(6)]-E&fi
—3[v. (r)+v, (g}]q, = o

3+3[VO(g) +
3 V, {g) —

3 V, (g)]-Ej-,+ 1 8

e3-3[V2(&) + V. (&}]e~ = o

5 3' 5 3( + ——— L(L+4 }/( )M 3(~
(28)

(In our- past papers' we have made some
errors in the signs in Eq. (28), particu-
larly for the V2(() terms. This sign
error was corrected in our 1976 paper" for
a single h. h, ) This system of coupled
equations has two independent solutions
(Qy, $3) and (tI/~, Q~) corresponding to Blatt-
Biedenharn phases 6 and 6 . For example,
the n solution has the asymptotic behavior,
for grand orbital either 1 or 3

{31)

0

'P = —(2T[)'{A e o, [coscB~(A)gy(k, ()+sin@83{A)$,(k, E)]F ~2 o,

+ A~e g [-sincB ~ (~ ) tI/ x (k, ()+ «sB 3 (~ )g 3 (k o () ] ~ (30)
Here e is the mixing coefficient. The functions A (Q ) and A (Q ) are obtained by compar-
ison with the partial wave expansion (25) of the i8co ing pla e wave

A ("k) = [P i ("k) — P ~ (~k) ] cos~ — [ p 3 (~k) — p 3(~k }]sin~,

A& (~k } = -[p i (~k) — P i (~k) ]»n~ + [P 3 (~k) — p 3 (~k) ] c«~.
These functions are orthogonal, and normalized to 2:

JA A3dQk = 0; j(A )'dQ = f(A )'dQ = 2. (32)

(33)

Me now substitute (30) in Eq. (24) to find the differential cross section
da'/' = (vr'/36)(e'/5c)(M/fI )(E k")dQ IA (Qk) [R, ~cosa. — Ro o sine]

— exp(iA')A ("k) [Ro 1 sine +Ro 3 cosel I

8

The four overlap integrals P~ , are designated by the grand orbital L of the symmetric
1

part of the initial state and L' of the f inal state; the superscript states whether we
use the I or 8 solution.

Ro i = &4o — 2 '/' RI CI47'; Ro i = &4o — 2

Roo = &4o — 2 ' ' 0 IZlto', Roo = &0 (34)
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We find the total cross section by integrating Eq. (33) over the 5 angles conta, ined in &k.
The total cross section a is independent of the phase difference 6 because of orthogon-
ality of A (A&) and A (AE given in Eq. (32).

(Yt /18)(e /5c)(M/4 )(E k ) g (cosa Ro q
— 81.nc R~ q }

+ (sins. Roq + cosE RI, 3} }.8 8 (35)

Setting c = 0 and $3 = 0 (and noting that
Ro~ corresponds to (2/m)'/2 k 5/2r. f of
FL) we reproduce the equation given ear-
lier by FL for cr for a single uncoupled
partial wave, wi h grand orbital one.

IV. Numerical Results

We use two potentials, the spin-indepen-
dent Volkov potential'6 and the spin-de-
pendent centra, l potential'' 2 V , which
was adjusted to agree with experimental
values of the trinucleon energy, and the
form factors of 'H and ~He, at least for
small momentum transfers. For. the first
potential, vre use the H ground state wave
function calculated by Beiner and Fabre'';
for tbe second potentiRl the He wRve
function calculated by Ballot et al. ' We
modify the original Volkov potential by
assuming'' pure Wigner exchange. We as-
sume a Serber mixture for tbe V potential:
namely that the potential is zero for
states of 'odd par1. ty. '

We use the standard Runge-Kutta numeri-
ca.l method to solve the coupled differen-
tial equations (28). We follow the anal-
ysis due to Bla.tt-Biedenharn2", Hulthen-
Sugawara 5, and Drechsel-Maximon 6 in
order to find initial conditions that
give the n or g eigenphase solutions.
(See Fang ' for details. } The numerical
results for the Volkov spin independent
potential are compiled in Table I and the
total cross section of a (E ) of Eq. (35)
for 'E photoeffect is pl ttld vs E in
Fig. 1. Note that (Iq (for a singlK h. h. )
is close to 5 and somewhat smaller.

In Fig. 1 w8 include results by Myers''

f01 Bol n-Rpp1 oxlmRt 1.on (dash-do t ) Rnd for
a single h. b. (dashed) vrith grand orbital
one, as vrell as our nevr results {solid)
for 2 b. h. We see that the broad peak in
Born approximation is narrovred and pulled
to lovrer energy by the strong attraction
using a single h. h. Use of two coupled

cor1esponds to Rn Rdd3. t1onRl RttrRC-
tion, giving some additional narrowing
and shift to lovrer energy, Hovrever, the
use of a second b. h. gives a relatively
small change in the total cross section,
in general less than 10%,

Our numerical accuracy in calculation of
the total cross section can be checked by
comparison with the sum rule for tbe brems-
strablung-vreighted cross section a
which is proportional ~' to the mean-
square value of the hyperradius ( for the
ground state vrave function. In Table II
the sum rule value of 1,42 mb and tbe
values of 1.43 mb for Born approximation
and for a single, uncoupled h. h. Rre taken
from Myers''. Our value of 1.40 mb, found
by Gauss-Gegenbauer quadrature''~ of the
cross sections in Table 1, is in agreement
vrith the other tvro values, vrithin the nu-
merical aecuraey of our calculation.

The speed of convergence of the h. h. ex-
pansion is tested by the value of the inte-
grated cross section oo. The Thomas-
Reiche-Kuhn value of 19,.9 MeV mb holds for
any potential that commutes vrith the dipole
operator. The value of 47, 6 MeV mb for
Born approximation is in serious disagree-
ment with the sum rule; while the value''
of 21.1 MeV mb for a single b, h. is only
6% above the sum rule value, Our present
use of coupled b. h. gives 20, 5 MeV mb,
only 3% above the TRK value!

Table I
Phase Shifts, Overlap Integrals and Cross Sections for Volkov Potential

8.83
9.51

10.61
12.33
15,02
19.38
26. 99
41.79
76. 92

201.72

1.23
20. 5
-1,63
-0.94
-'0. 91

1 ~ 23
-2.93
2.60

E (MeV} tan tan
Ol

0.28
0.66

- 2. 11
-3, 83

1 0 18
—.0 ~ 81
-0.85
-1.03
-2.10

0.05
0.11
0.17
0.25
0.33
0.47
0.68
1.07
1.86
1.72

Ro~(fm) R~3(fm) R, , (fm)8 Rqs(fm) aT(mb}8

0.40
-6.0
-6, 5

3 ~ 7
-1.0
-0.11
-0, 03
0.00

0.0
-0.14 214.
-0.03 251. 30.7

21.3

12 ~ 3
0.06 171.
0. 16 68.8

0.23 22. 1

2., 5

3.4
3, 13
1.92
0.62

0.27
0.32
0.39

5.56
0.90

2. 30-

0.62
0.011 -0.00540.032 -0.011

0.85 -0.0010 -0.0073 -0.0058 -0.0088

0.011
0.26
1,73
3.02
1.69
0.b".

9, 16
0.035
0, 21 x 10
0.26 x 10
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40 50

Fig. 1. Cross section o in mb for 'H,
El transitions 4 isospin 3/2
state vs photon energy Z in MeV,
for Volkov potential. TKe dash-
dot line shows Born approximation;
the dashed line shows a single
h. h. (both from Myers ); the
solid line shows two coupled h. h.
from Table I.

The sum rule for the moment ol is pro-
portional to the ground state expectation
va. lue of the kinetic energy; the approxi-
mate value of 290 MeV mb in the Table is
from Myers''. We also reproduce Myers'
values of 2100 MeV mb for Born approxima, —
tion and 338 MeV mb for. an uncoupled h, h,
Our present value of 342 MeV mb is 18/o
above the approximate sum rule value.
This discrepancy (much larger than the 3%
above for the integrated cross section) is
due in part to (i) approximations in the
sum rule value, (ii) approximations in
Gauss-Gegenbauer quadrature, and (iii)
sensitivity of ol to value of o(E ) at
high photon energies, where the truncation
at grand orbital 3 is likely a poor ap-
proximation. (Note that the highest en-
ergy in Table I contributes substantially
to ol. Figure 1 shows that the curve for
2 h. h. is lower than that for 1 h, h. up to
40 MeV; but the former curve is higher at
201.7 MeV. )

We use the same numerical techniques to
find the eigenphase solutions of Eq. (28)

for the continuum wave function with the
spin-dependent Vx potent ial. The phase
parameters 6 , 5 and c. are given for ten
photon energy'es fn Table III along with
tan 6l for a single h. h. We combine our
continuum eigenphase solutions with
Ballot's numerical results for the ground
state wavefunction of 'He to find the four
overlap integrals, Eq. (34) and the total
cross section, Eq. (35). In Fig. 2 we
compare three cross sections all using
Ballot's ground state wave function for
the Vx potential: i) Born approximation",
using a free partial wave with grand
orbital one, shown dash-dot; ii) a single
h. h. for the V potential" shown dashed
and iii) the present work using 2 h. h.
shown. as a solid line. Figure 2 shows
the same general features as Fig. 1 for
the spin-independent case: the very broad
peak in Born approximation is narrowed
and shifted towards lower energy when we
use a single h. h. for an attractive po-
tential. There is a smaller shift when
we use a second h. h. Cross sections for
2 h. h. agree with those for 1 h. h. to
better than 10% for photon-energies of
less than 100 MeV.

We use our 10 cross sections for 2 h. h.
to give the moments o I, and crp presented
in Table IV. We compare with the moments
in Born approximation and with a single
h. h. " The three va. lues of a I agree,
within round-off errors, as they must.
They also agree with the sum rule value, "
based on the rms radius. We evaluate the
integrated cross section ap Using the
O' Connell-Prats' approximation for a
symmetric ground state. We truncate the
ground state wave function at the lowest
partial wave, up((). This truncates the
hypermultipole expansion of $],V((g)
V2(g). Our value op = 29.5 MeV mb for
2 h. h. is 2% above the sum rule value
ap = 28. 8 MeV mb.

V. Conclusions and Discussion

In this paper we extend the calculation&
of FI " and Myers'' by including another
hyperspherical harmonic in the expansion
of the continuum wave function.

We find excellent convergence in the
model calculation of a Volkov potential

Table
Comparison with Sum Rules, Volkov Potential

Moment

ap

Born

1.43 mb

47. 6 MeV mb

2100. MeV mb

Uncoupled

1.43 mb

21.1 MeV mb

338 MeV~ mb

Coupled

1.40 mb

20, 5, Mev mb

342 MeV2 mb

Sum Rule

1.43 mb

19.9 MeV mb

290 MeV~ mb (approx. )

a. See Myers''.
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Roq(fm) Bq3(fm)8 8E (MeV) tan c Boq(fm) H, ~~(fm)tan oT(mb)

0, 00212
0, 0347
0, 186
0.515
0.854
0.941
0.689
0, 327

8.13 0.128 0.143 0, 0082 -0, 20 59, 3 -0, 6
-0.90
-1,-01

8.81 0, 248 0.277 0, 0151 -0.160 81.3
9, 91 0.384 0.440 0-, 0257 -0.114 85, 6

11.63 0.544 0.640 0.0362 -0.080 72, 8

0.21
0.67
1.19
1.52
1.38
0.760
0.174

13.1
10.4

0.876 0.0494 -0.0443 49.80.736 -0.62
-0.265
-0.040

7.35
4, 43
2. 22

0.065 -0.0074 27, 4

0.094 0.036 11.6
18,68 0.960 1.14
26. 29 1,142 1.30
41.09 1.151 1.254 0.141 0, .100
76.22 0, 880 . 0.965 0.223 0.247

201.00 0 ' 370 0.590 0.223 0, 830

0, 0136 0.770
0, 658 -0.0113 0.0706 -0.0722 0.0834
0.0168 -0.0191 -0.0131 -0.0193 0.00500

Table III
Phase Shifts, Overlap Integrals and Cross Section for V Potential.

assumed to have pure Wigner character,
First, Fig. 1 shows that the values of the
total photoeffect cross section at a spec-
ified energy show rapid convergence when
we consider Born approximation, h. h. and
two coupled h. h. Second, Table II shows
a corresponding rapid convergence in
values of tbe moments oo and o1, , Third,
Table II also shows .that the value of vo
has almost converged to the Thomas-Reiche-
Kuhn value, missing by only 3% if we use 2
coupled h. h.

Convergence is equally rapid for our use
of the spin-dependent Vx potential, zero
in two nucleon states of odd parity: see
Fig. 2 for the rapid convergence of tbe
total cross section at a given energy.
The agreement to 2% between the integrated
cross section for 2 h. h. and an approxi-
mate sum rule value is as satisfying as
the excellent agreement noted above for
tbe Volkov potential.

Since this Vx potential is in rough
agreement with potentials chosen by other

theorists ~3 and may well be similar to
the potential in the real world, a brief
comparison with calculations and experi-
ment is in order. Figure 3 shows tbe
Gibson-Lehman calculation for final iso-
spin 3/2 8tates Rs R dRshed curve, 'Rnd our
cross sections for 2 b. b, as a solid curve.
Considering the different potentials used,
the overall agreement between the calcula~
t3.ons 3.8 8Rt3.8fRcjory. The f3gure Rlso
shows three d3.fferent Sets of measureGlents
on three-body break-up, which include a
small contribution from isospin 1/2
states: (i) Gorbunov as x'8 with standard
error'8, (ii) Gerstenberg'" as squares, and
{iii) Berman as circles. The experimental
results disagree with each other above
20 MeV. Our calculation agrees with
Gorbunov almost within experimental accu-
racy up to 50 NeV. We can also compare
our o 1 and oo values for 2 h, h. with

(.0

E

b
0.5

IO 50

E y(MeV)

1

40

Fig. 2.

30 40f0 20
E &(MeV)

Cross Sec t3.on 0 in mb for He,
El transitions 7o isospin 3/2
state vs photon energy E in MeV,
i' or Vx potential. The dish-dot
line shows Born approximation;
the dashed line shows a single
h. b. (both from Fabre"); the
solid line shows two coupled b. h.
from Table III.

Fig 3 Cross section o' in mb for He
pbotoeffect vs photon energy E
in MeV. The x's show experimetits
on three-body breakup by
Gorbunov8, the circles show
Berman'. 8 results and the squares
show Gerstenberg's' . The dashed
curve shows calculations by
Gibson , the solid curve is from
Table III for h, h. (Both calcu-
lations are for isospin 3/2 final
state. )
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Table IV

Moments for V Potentialx

Born R h. h, , 2 h. h,

l, ll mb

Sum Rule

1.1 mb

28. 8 MBV mb

R. 866 Fabre.

Gorbunov 8 vR1UB8 fGr thr66-body bx'BRk-Up .
Our a-I value is 20% below the experimental
1.42 + 9, 07 mb; RDd Gux' G VR1U6 3.8 32%
below Gorbunov'8 43, 6 + 2.7 MBV mb.

Compax"ison with other calculations and
with exp6x'3. meQts could be 6xteQded 3.Q f3.ve
mays. First, we should evaluate the sum
rule fox' o I for a spin-dependent force fox
compax'ison with oux values in Table III,
RDd we should evR1Uat6 Go with f6w6r Rp-
px'GX3. mRt3. GQS. Second, we shGUld U86 th6
h. h. expansion for other choices of the
two-nucleon potential, including coulomb
RIld teIlsox' fox'cBS. Thix'd, . we shoUld Use
Eq. (33) for the differentia. l cross sec-
tions to make comparisons with the energy
distributions (whi, ch amounts to the depen-
dence on the angle 4 in momentum space)
i'ound in other oaloukatione and in experi-
ment. 0'6 should include E2 transitions
RDd their 6ffect GD RDgulRx' distribut3. 0nsg
Fourth, we should evaluate the ground
state Stark effect to determine the tri-
nucleon polarizability and hence6 o
Fifth, we should study El transitions. to
isospin 1/2 states.

WB can also apply h. h, expansions to
sevex"Rl different problems, Rs f013.ows,
(i) Use of 3 or more h. h, for the con-
t3.Iluum wave fUnctiGIl. (3.3. ) FUx'thex' cRlcU-
lations of thx'ee-body to thx'ee-body scat-
tex'3. rig RDd 0f col respoQd3 Qg viriai co-
ef f 3.C3.6Q ts . (3.3.3. ) Photon Rbsox'pt3. 0Q Rt

low energy by ' C leading to three alphas,
by treating this nucleus as R 3-n sys-
stern''. (iv) The low energy photoeffect
of I i (as a N-N-e system) and of Be (as
R N-ct-Q) system). (v) The decRy of tel mesoQ
inta three pions. (vi) Photopion produc-
t3.0D fx'Gm the deUtex'Gn, us3. ng good con-
tinuum wave functions for the m-N-N f inal
state. (vii) Photopion. production from H
Rnd He p U83.ng good coD t 3 QUUm wav6 fUn. c-
t3.GD fGx' the 3-QBU t ron RQd 3-proton sy8-
tems, respectively. (viii) Analysis of the
classical three-body problem by finding
the classical limit of the quantum
mechanical h. h. expansion.

Ke are grateful to Karen O'. Myers fox'
discussion of her work on the Volkov po-
'teDt3. al Rnd GD SUm rU168„ Rnd to L.
Maximon for discussj. on of eigenphase
solutions.

Let us consider three mathematical en-
tities (1), (2), and (3) that obey the
orthonormal rule:

(i[j&
3.J

%6 cRIl write thx'66 Gx'thonox'mRl combiDR-
t1ons Rs follows:

Combinations

S(iv)

(1/~2) I:(+ +)-(-,-) l

'(1/~2)t(+, -)+(-,+)j
(1/~2)/(+, +)+(-,-)]

(0,+)

(0, -)
(+ 0)
(- 0)

(0, 0)
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{0) = (1/~3)t(1) + {2}+ (3)]
(+} = {1/~6) t2(3) — (1) — (2)]

( —) = (1/v 2) t {1) — {2)] (I)
When we describe a spin state of a system
of three nucleons for a specified projec-
tion of total spin S , )i& gives the spin
state. For example for S = l/2, )i&
S.n. nk, where n designateR spin up and 8k'
designated spin down. Of course the, same
notation holds for isospin. For example,
for T = l/2, )

i& = n. p.p, where p isz ' i j k'
proton with positive isospin, and n is a
neutron. Then (0) stands for a spin
state that is completely symmetric for

exchange of any pair, and has S = 3/2; or
(0) stands for a completely symmetric
isospin state with T = 3/2. The states
designated (+) or (-} have mixed symmetry
and S = 1/2 {or T = 1/2). The former is
symmetric for exchange of entities {1)
and (2); the. latter is antisymmetric for
this exchange.

Using Eq. (I) we form the nine possible
combinations of spin and isospin. We
designate a combination of isospin (a) and
spin (b) by the symbol (a, b). The overall
symmetry for the spin-isospin wave function
is given in the right column: "a" is a com-
pletely antisymmetric, s is completely
symmetric; m+ has mixed symmetry, symmetric
or antisymmetric for interchange of 1 hnd
2.
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