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A nucleon-nucleon transition matrix fitted to the 50-400 MeV differential cross section and polarization
data is presented, The transition operator obtained is a sum of spin- and isospin-dependent central, two-

particle spin-orbit, and tensor complex local interactions with Yukawa radial shapes. The application of the
transition operator is illustrated and discussed for medium energy nucleon-nucleus inelastic scattering. A
comparison is made of the inelastic scattering results with results obtained for electron, pion, and kaon
probes. The importance of exchange even at medium energies is stressed, The derived X-N transition

operator can be employed in microscopic polarization predictions and is appropriate for explicitly calculating

exchange effects.

NUCLEAR REACTIONS Deduced nucleon-nucleon transition matrix fr om two
o y . (p, p'), =; i(p, p'), E=134 MeV; calculated o(8). Com-

parison with electron, kaon, and pion results.

I. INTRODUCTION

Recent and anticipated data from the present
generation of proton accelerators have generated
considerable current interest in medium energy
proton- nucleus elastic scattering and reactions.
The new experiments should provide the oppor-
tunity for obtaining important additional informa-
tion regarding nuclear structure and proton-nu-
cleus reaction mechanisms. In fact, of course,
the basic challenge in interpreting the new proton
data results from the present simultaneous incom-
plete knowledge regarding the relevant nuclear
structure and the validity of standard approaches
in reaction theory such as the distorted wave im-
pulse approximation (DWIA). The expectation is
that by working in the energy region T~(tab) ~ 100
Me&, the sensitivity to distortion, multistep and
multichannel processes, off- shell extrapolations,
antisymmetrizatlon, etc. will be minimized. Thus
the standard approximations adopted in the appli- .

cation of multiple scattering forxnalisms may be
valid points of departure for interpreting the data.

There are several approaches for providing the
microscopic nucleon-nucleon input required in the
DULIA. One procedure is to adopt a potential gene-
rated from the nucleon-nucleon data and to con.—

struct the appropriate G matrix for scattering from
a nucleon bound in a many-fermion system. ' ' This
approach is, in our opinion, the most attractive.
However, it suffers because of ambiguities as-
sociated with the "fundamental potential" to be
adopted. In addition, generation of the appropriate
bound- continuum G matrix without further approxi-
mation in a form that can be used in realistic re-
action studies (inciuding polarization caicuiations)

is a formidable calculational problem.
Another approach is to use selected nucleon-

nucleus reactions to derive a phenomenologj, cal
"potential" to be used in other situations. The
latter approach presumes a level of confidence in
ones understanding of the many-body reaction
mechanism (and nuclear structure) that seems un-
warranted at present. An, intermediary proce-
dure is to parametrize the free nucleon-nucleon
data in terms of a pseudopotential or t matrix
with a, specified energy and momentum transfer de-
pendence which allows one to extrapolate to off-
shell kinematics. The main objectives of this pa-
per are to present such a t matrix, demonstrate
the quality of fit it generates to the two-body data,
Rnd to apply in a very simplified Rnd schematic
manner the pseudopotential to inelastic scattering
reactions. It is felt that the inelastic predictions
obtained may provide useful insight for future ex-
periments and analysis. The interaction intro-
duced herein is being currently applied as part of
a major experimental and theoretical study of
medium energy proton reactions at the Indiana
University Cyclotron Facility. 4

Our desire is to obtain a form for the N-N trans-
ition. operator that can be used in standard modern
computer codes for calculating nucleon-nucleus
reactions in the D%IA. In order to insure agreater
utility for the transition operator it is necessary

' that. it include rea1, istic spin-dependent pRr'Ss,
possess real and imaginary components, and be
constructed so that exchange effects can be ex-
plicitly calculated. ' Early in the search for an
acceptRMe pseudopotentiRl we assumed R conlplex,
explicitly energy- independent but momentum- de-
pendent form. The radial form, which fixes the
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momentum transfer dependence, was taken to be
that of a Yukawa shape, e '"/i(r (except in the case
of the tensor interaction —see the next section).
The total interaction was assumed to be a sum of
isospin-dependent pseudopotentials with standard
central and noncentral spin dependence. The de-
tails of the interaction and the quality of the fits
to the 50-400 MeV nucleon-nucleon angular dis-
tribution and pol.arization data are presented in the
next section

Since the reason for obtaining the transition
operator is for future application in medium en-

ergy nucleon-nucleus reactions, we have included,
in Sec. III, a simple application. of the interaction.
in (P,P') reactions on "0 and "Si. In Sec. III we

compare our qualitative results with predictions
for other medium energy probes.

Several formulas needed in the inelastic scatter-
ing calculations are listed in the Appendix.

H. GENERATION OF THE MICROSCOPIC TRANSITION

OPERATOR

We have taken the analysis of MacGregor, Amdt,
and Wright' (MAW) as the source for the free
nucleon-nucleon phase shift and mixing parameters

. in the energy range 50-400 MeV. The MAW analy-
sis has been used to obtai~ a set of spin- and iso-
spin-dependent scattering amplitudes f «r»(B) at a
given energy in terms of 6(,. r(E) and q(,. r(F) where

6„r(E) [e(»(E)j is the {l,j)th partial wave phase
shift (mixing parameter) in the isospin channel T
and for the barycentric energy E. The transition
operator, ~, has been assumed to have the form

P~'=-,' [1—7-, 7., j, P'='= ,' [1—o„a,]-
P ~' = -,' [3+7-, . 7, j, P'=' = -.' [3+a, o, j.

Sy2 is the usual tensor operator

(2)

1

r=f, g gr„(r)P'P'
y=o s=o

1

+ g [V'„,(r)S„(r)+V', i. S]P',
T=o

where the Pr (P») are the usual isospin {spin) sing-
let and triplet projection operators

S„(r)-=3(o, ~ r)(a, ~ r) —c(, (r„~ r=
lr, —r, I

and L ~ S is the two- par tie le spin- orbit operator

V'~~= —g A~r' Y(i(.~'r),
i

whel e

(6)Y(x) =e "/x.

The r'Y(i(r) form was assumed for the tensor
interaction because this allows an analytic ex-
pres8ion for the Fourier transform, and is well
suited for use in present day reaction codes.

Using the expression given by Eq. (1) for 'T, one
can now proceed to generate the antisymmetrized
M,~. matrix elements defined below. If the symbol
T is used to denote the total isospin and the sub-
script i (j) specifies the final (initial) total spin
and spin Z projection S«(S«), then the differential
cross section, for the case where the final spin
projection is not measured, can be written

where

f, = Q A. A'r Q a(M(q.
T

In Eq. (8) above the symbol Xr denotes the pro-
bability amplitude that the two nucleons have total
isospin T and a& is the probability amplitude for
initial spin S and total spin Z projection S,'. The
M, &

matrix is related to the matrix element of V'

given in Eq. (1) via

(8)

i S=-2(r, r,)x(p, p, ) (o, +o,).
Both Gaussian and Yukawa radial forms were

assumed and it was found that superior fits were
obtained adopting a superposition of Yukawas. The
assumed radial forms were therefore finally taken
to be

q —Q g && Y(l(r»)r

Mr, . = —
2 „,(, ([4». (r,)4 «, (r, ) —(-1)»'rO «, (r,)e», (r, )]y(SS,),4(TT,)

~

v'
~
4» (r, ) C «(r, ) y(SS,'},.q (TT,)),

(~)

where y(@}are normalized two-particle spin (iso-
spin) wave functions, i(, is the reduced mass, ff,
and K, are the particle initial and final momenta,
respectively, in the barycentric frame, and

(r) = eix r (10}

It is important to note that the ~ operator is de-
fined to operate between antisymmetric states.
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TABLE I. A summary of the strengths and ranges obtained for the various terms appearing
in the transition operator given by Eq. (1). The parameters were obtained by fitting the free
nucleon-nucleon data as discussed in Sec. II. The constant to was'determined to be -S3 MeV.
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This is in contrast to a t matrix defined to be
RntlsyInmetl ized' froIIl fits to the two-body dRtR.

The differences arising from the two approaches
will be discussed in the next section.

Now making the coordinate transformation

l„,(q, P)= Q A", [W (q)S„(q)

q ~r(q, p)= Q A~[Zr(q}q

(15b)

deflnlQg

P=K,+K,', q=K, —K,',
and making use of the assumed radiRl forms for ~
given by Eq. (5), one can easily carry out the con-
figuration spRce integrations fox' the light hand
side of Eq. (9}yielding

rs rsi «
a (q&ia ~ TS 2+( 2'2)2&

-32 7T g
a(q) ~12 [q2+ (~12.)2]21

(15c)

(16a)

",(X(SS,),.g (rr, ) i(f'}
i q(SS,'),e(rr, )},

(13}
where (apart from a momentum conserving 6 func-
tion) '

(14)

where

g (q p) p ~r8 [yr2(q +F8)

—(-1)"1"."(p J1.")]

S„(q)—= 3(o; q)(o, ~ q) —(o; ~ o2),

8m'
a(q) +2 [q2+ (~2 )2]2

'

(16b)

(16c)

Note the noncentral (spin-orbit and tensor) terms
in Eq. (14) operate only between triplet states.
With these definitions the nuclear amplitudes M~,
Rx'e eRslly CRlculRted fol R given totRl spin RQd lso-
spin state. The nuclear amplitudes so obtained are
then combined with the Rntisymmetrized Coulomb
amplitudes. Then using the phase shifts and mix-
ing parameters listed in MA% the "expeximental"
amplitudes are generated and the parameters p.

and A are determined by fitting the nucleon-nu-
cleon dRtR.
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FIG. 1. Comparison of proton-proton angular distri-
bution data with theoretical results obtained using the
interaction discussed in Sec. II. The theoretical results
are denoted P% on the figure. (a) Beference 7; (b) Bef.
8 for 98 MeV data, Bef. 9 for 95 MeV data; (c) Bef. 9;
(d) Ref. 10; (e) Bef. 11; (f) Bef. 12.

flip amplitudes. The T = 1 noncentral interactions
have small imaginary components and adequate
fits to the differential cross section could be ob-
tained choosing the tensor and spin-orbit contribu-
tions real. However, to obtain reasonable fits to
the polarization data it is crucial to include an
imaginary term in the tensor interaction. %'ith
all the other T=1 interactions determined, the
T = 1 triplet scalar interaction was determined by
fitting the non-spin-flip amplitudes. It is also im-
yortant that the triplet scalar interaction be com-
plex to obtain adequate fits to the polarization data.
The parameters obtained are listed in Table I.

The procedure used to fit the T = 0 data was simi-
lar to that used for the T =1 case. The singlet
amplitudes were fitted directly by comparison with
the MA% analysis. Since the triplet T =0 central
interaction does not yield a zero contribution at
90', the double spin-flip amplitudes were used to
determine the ranges and strengths of the tensor
interaction. The single spin-flip amplitudes were
used to determine the T =0 spin-orbit interaction.
As before, the non-spin-flip amplitudes were then
used to determine the triylet scalar interaction.
A summary of the results for the T=O interaction
is given in Table I. In Figs. 1-4 a comparison of

The method used for fitting was a simple least
squares routine. %'e do not claim to have found a
unique "best fit" but only that the parameters to
be given generate a reasonable fit over a wide
range of energies as wiQ be seen in the figures
discussed below.

The more important result is the quality of our
fits to the actual angular distribution and polariza-
tion data (and not the fit to the MAW analysis}.
Therefore, the figures shown are our calculated
RngulRr dlstl lbutlons Rncl polRrlzRtlons using the
pseudopotential compared with the experimental
ClRtR.

The procedure used to fit the T = 1 data was as
follows: First the singlet amplitudes were fitted
directly using the MA% analysis. This deter-
mined the real and imaginary strengths and the
appropriate ranges. It was found that a sum of
two (each complex) Yukawas was sufficient for a
superior fi't. Then the fact that only the tensor and
spin-orbit interactions can contribute to the 90
c.m. energy-dependent differential cross section
was used to determine their strengths and ranges.
The ratio of real and imaginary parts of the non-
central interactions was determined by the spin-

——PW 180 MeV—PW 220 MeV

'200 M

IO-

l I I I I i j j I & i i I g I & I—PN 100 MeV
~ o Data 99' 108.5d MeV

IO 30 50 70 90 II0 l30 l50 I70
ec.m (deg)

FIG. 2. Same as for Fig. 1 except the comparison i,s
for neutron-proton angular distributions. (a) Beference
13; (b). Bef. 14; (c) Bef. 15; (d) Bef. 15; (e) Bef. 17; (f)
Bef. 18.
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Fig. 4. Same as for Fig. 3 except the comparison is
for neutron-proton polarization. The 215 and 308 MeV
data are uncorrected for binding effects of the deuteron.
(a) Reference 21; (b) Ref. 22 (95 MeV), Ref. 23 (100
MeV); (c) Ref. 19; (d) Ref. 11.

FIG. 3. Comparison of proton-proton polarization data
with theoretical results obtained using the interaction
discussed in Sec. G. The theoretical results are denoted
PW on the figure. (a) Reference 8; (b) Ref. 10; (c) Ref.
11; (d) Ref. 19; (e) Ref. 19; (f) Ref. 20.

selected differential cross section and polarization
data for free two nucleon scattering is compared
with the results actually obtained using the inter-
action discussed above. The quality of the fits ap-
pears quite good over a significant range of ener-
gies and angles and thus the produced interaction
should provide a reliable transition matrix as in-
put for calculation of medium energy nucleon-
nucleus reactions (including polarization') in the
DWIA. The interaction should also be useful as
input into multiple scattering formalisms for the
purposes of calculating the lowest order optical
potential and higher order corrections.

III. INELASTIC SCATTERING

Historically, there have been several applica-
tions of the DWIA to medium energy inelastic pro-
ton scattering. While the results for the differen-
tial cross section predictions, ""when compared
with experiments, have been encouraging, the ac-
curacy of the polarization predictions has been
somewhat disappointing.

There has been an absence of high-quality data
and so the true situation with respect to the de-
tailed validity and utility of microscopic calcula-
tions in the energy region above 100 Me& remains
uncertain —especially with respect to polarization
studies. IIigh-quality data will be forthcoming
shortly and we present results in this section to
point out some potentially interesting areas of
study —both with respect to nuclear structure and
the medium energy proton-nucleus reaction itself.

We have utilized the plane wave impulse approxi-
mation (PW1A} to study inelastic proton scattering
on ~ Q at 156 Mey and on "Si at 134 Mey. The
basic expression for the differential cross. section
is given by

—= ——„Z„Z,—g ~

T~', (17)
do 2m' ky 1
dn hc k,. ~ ' 2

where k, (k/) is the initial (final) proton wave num-
ber in the center-of-mass system and E refers to
the appropriate proton energy in the same system.
We have assumed in obtaining Etl. (17) an unpolar-
ized initial proton beam, an initial nuclear J,.=0
target, and that the final proton spin is not detec-
ted. The proton projectile has been treated non-
relativistically in the actual model calculations.

The initial nuclear target wave functions were
assumed to be the closed shell configurations
(ls)~(1p)~2(1d5/2) for 2 Si and (1s)4(lp)~~ for ~ O.
The single particle orbitals were taken to be har-
monic oscillator eigenfunctions with oscillator
parameter b=(k M/&u '~}'=1.80 fm for "Si and 1.77
fm for "Q. The final nuclear states reached via
the one step process are obtained by diagonalizing
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FIG'. 5. Inelastic proton scattering on ~6O for T&(lab)
= 156 MeV. Only T =0 final excited states with appre-
ciable cross section are shown. The spin of prominent
peRks is indicated. NormR1 parity (non nolmRl parity)
states are denoted by dashed (solid) lines. The predic-
tions are based on the PODIA, the particle-hole model,
and the transition operator discussed in the text. The
effects of distortion. should reduce the predicted cross
section. by approximately a factor of 2. The symbol E
(3}denotes states whose differential cross section is
enhanced (reduced) by at least a factor of 2 by inclusion
of the exchange terms. The symbol ('?) designates a state
contal. Mng Rn RppreelRble spurious component.
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FIG, 6. Same as Fig. 5 except only T= 1 final states
with appreciable cross section are shown.
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a residual interaction in a Hilbert apace consisting
of particle-hole states of 0 and 1)t~ excitation (the
Tamm-Dancoff approximation) for "Si and 1 and
25~ excitation for O. The residual intel action
adopted eras a Serber- Yukavra potential arith para-
meters adjusted to fit low energy n-p scattering
data. This interaction has pI'eviously yielded a
satisfactory spectrum of T=1 states strongly ex-
cited in inelastic electron scattering on '8Si and
"O."'" Details of the wave functions (energies
and amplitudes) will be furnished on request.

The analytic expressions given in the Appendix
combined @faith the parameters listed in Table I
have been used in the inelastic calculations. Typi-
cal results of lnelastlc scattel lng calculations~ Us-
ing the P%IA, are shown in Figs. 5-8. Of course
the use of plane waves is not adequate for com-
paring quantitatively vrith 100-200 MeV inelastic

j
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FIG. 7. Same as Fig. 5 except for inelastic proton
scattering on ~8Si for T&(lab) = 134 MeV. Only T= 0 final,
excited states with appreciable cross section are shown.
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FIG. 8. Same as Fig. 7 except only T= 1 final states
with appreciable cross section are shown.

where V, is given by the real part of the medium
energy optical potential (assumed constant in the
radial range of interest).

As is characteristic in Such calculations, high
spin states tend to dominate the direct nuclea, r
response at high momentum transfer. This phe-
nomenon is attributable to the basic properties of
Bessel functions of higher order and angular mo-
mentum selection rules. Previous predictions in-
volv1ng electron, "p1on,"proton, "and A "probes
have shown that there are important overlaps as
well as differences between the nuclear response
to inelastic scattering at intermediate energy of
these elementary projectiles. In pax'ticular high
spin states dominate the inelastic spectrum at

proton: scRttex'1ng data. In fact~ from pl evlous
experience we expect, for -150 MeV protons, an
overall reduction factor of -2 with only minor
changes in the angular distribution between the
DVfIA and PRIX for states strongly excited by the
direct term in the transition operator. The minor
change in the angular distribution can be largely
accounted for, by increasing k& and k, to account for
the effect of the real part of the optical potential
VlR

large q for all the probes; however, the parity and
isospin of the dominant high spin states vary con-
siderably deyending on the probe.

In the foQowing we restrict the discussion to.
J= T =0 nuclear ground states. In the case of
electron scattering at medium and high momentum
transfer, high spin non-normal parity (spin-flip)
T= j final nuclear states are strongly excited be-
cause of the dominance of the isovector magnetic
moment in the ixnyoitant transvexse multipoles. "
Qn the other hand, high spin'normal parity T=O
states are predicted to be strongly excited in low-
medium energy inelastic K'-nucleus scattering be- '

cause the basic K' n«leon interaction is predomi-
nantly 8 wave Rnd doIQlnated by the two-body T= j.
channel. For pions, due to the basic spin Rnd iso-
syin properties of the pion-nucleon interaction,
high spin non-norma, l parity T = 0 states Rre px'e-
dicted to be relatively strongly excited at large
momenhtm tx'ansfer.

The predictions fox the various probes depend
on nuclear Structure and a model for the reaction
mechanism, Clearly, since each probe has its
eharaeteristie limitations and associated theoreti-
cal uncertainties, experiments using all the probes
on the same nucleus, varying the probe energy,
leading to both the same and different states will
be extremely useful in disentangling nuclear struc-
ture and reaction mechanism urieeitainties. Me-
dium energy proton inelastic scattering and charge
exchange play a. central role in such a program.

Because of the stxength and short range of the
effective tensor operator in the transition matrix
Eg. (1) and because this operator is predominantly
isovector in the target isospin space, one predicts
that T =1 non-normal parity relatively high spin
states a,re strongly excited at lax ge momentum
transfer (see Figs. 5-8 and Ref. 32). This pre-
diction has been verified by a recent experiment
at IUCF. ' Thus the accuracy of the predictions
for these states in proton scattering can be com-
pared with the results from inelastic electron
scattering where such states (see discussion above)
are strongly excited.

Using the DWIA and the transition operator given
in this paper and keeping only the direct term,
then the only T = 0 states that are predicted to be
strongly excited are a few well known low lying
normal parity states. However, inclusion of the
exchange term changes this picture considerably.
Figures 5 and 7 show several prominent non-nor-
mal parity T=0 states whose cross section has
been significantly enhanced by the inclusion of ex-
change. One such state, a 6 T=O state, predicted
'to be strongly excited in inelastic proton scattering
on "Si, has recently been seen experimentally. ' Jt
is quite interesting that such states can be seen in
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both inelastic proton and pion scattering (see above
discussion —such states are got expected to be
strongly excited using other medium energy ele-
mentary probes). The reaction mechanism is, at
this time, somewhat more uncertain for the pion
probe than for the other projectiles discussed and
thus comparison of the pion results with results
obtained for protons for the T= 0 non-normal par-
ity states should be helpful.

In order to make maximum use of the inelastic
proton scattering data for many of the T=0 states
it is important to accurately calculate the effects
of exchange. In the schematic calculations reported
in this paper, standard approximation techniques
have been used to evaluate the exchange term (see
AppeIlcllx). The Rppl'oxlnlRtloll Rclop'teel ls to IgI1GI'e

the bound nucleon momentum variable in the Four-
ier transform of the two-nucleon t matrix. It can
be shown that this approxi. mation is equivalent to
that which is automatically contained in the use of
antlsymmetl ized t matl lees RQd hence to a common
form of the impulse approximation obtained by re-
placing t with tg(q) 5'(y), its on-shell value at the
projectile energy (E) and asymptotic momentum
transfer (q). We have carried out model calcula-
tions where the exchange term is evaluated exactly
(using plane waves) and have found, in typical
cases, that the magnitude of the exchange term
can differ by 30% from that obtained using the
Petrovich' approximation technique. %e have also
carried out model calculations without approxima-
tion vrhere the plane waves have been eut off inside

a certain radius to simulate the effects of absorp-
tion. Not surprisingly we find the ratio of the di-
rect to exchange term to be a relatively sensitive
function of the cutoff radius with 30/~ differences
resulting from a change of the cutoff radius from
2.5 to 3.0 fm. Since the final result (direct+ ex-
change) for a given angular distribution associated
with a particular particle-hole state can be signifi-
cantly altered by the use of the approximate tech-
niques it is necessary to include distortion and
evaluate the exchange term exactly at intermediate
energies.

As a general rule (see Figs. 5-8) we find that
for T =1 particle-hole states the exchange term
I'educes tile totR1 RIlgulRI' dlstrIbution by ~20%%uII.

For T =0 states the exchange term is extremely
important with non-normal parity states (normal
parity states) being substantially increased (de-
creased) by the inclusion of the exchange term.

In conclusion, we have developed a transition
operator for use in medium energy nucleon-nucleus
reactions. The operator provides a good fit to the
two-body angular distribution and spin-flip ampli-
tude data in the region 50—400 MeV. The operator
can be used in calculations where the effects of
polarization and exchange are to be studied and
can be used in standard modern distorted wave
Born approximation (DWBA) codes. Finally we have
shown the results of model calculations for proton
inelastic scattering and have compared these re-
sults with those predicted for other medium energy
probes.

APPENMX

UsIng standard angular momentum addition techniques the expressIon for the T matrbc l. see Ecl (17)~ may
be written

T(' g~ Ms ~i Tx, TI)= + ~ p'I'„' ~ (jp&p jh-&h l~~%)(-&)'" ""+(gtpl-tI ITpTg, )(-&)'~'-'h
~p&h . v&vb P h

"Z (fp»pl gpljp~p) + (4»Ilghljhu~) +
Nips p

yg'h8'h gI~ gp (2 I 2gh SI SIg (ggyggp SI Spg)

Q(~gtI-'&I, lTI TIg)(,'t~ ,'tplTITIg-)(k-q, +, pp lt(S„TI, Sgg-SIg) lk„eI ")anti, (Al)
FIg

P & l P y If EZ IS

where P, ; is the admixture amplitude for the pure j (jh) ' particle-hole configuration in the configuration
mixed state with total angular momentum 4&, isospin 7&, and excitation energy E.

The matrix elements of the t operator (direct and exchange) are given by

(k~, +,pit(s„T„s„-s )lk;, 4,„"}(anti)=t„„„—(-1)I' It., +t . —(-1)"' I

Xhx Icos +4ugg —(-1)"' ' ~exI.g ~

We have not considered the exchange I.S contribution. By straightforward manipulation we find

4gto r'g lq'+(u' )'1 'pIpp, II, (q)
jp'z

g p, ]



SPIN-DEPENDENT /V-1V t MATRIX .FOR INTERMEDIATE. . .
x

TS

~ex seel
= 63, 2 4gfo g TS [kf +(Pi ) ] P I p'l h ( q) sXZS j'g ] p,

A' q'
Oiste'ns ST t STZ Spg Sig t Sig I S&Z, O O ~ Ti [ 2+( Ti)2]3 tplh,

245

(A3b)

(A.3c)

fex tens bsi, l [(cos 8eoi 3)(bshe bsiz o)bsiz si sin 8elsi bsiz sig eg

+i&2 (os, o =s-=et —5s, =et-s„=o)cos8„sin82, ]

Tj 2
12 f p,X96%fo~ Ti [(k 2 + ( T))2]3 pip, lh&n f + ~i2

(A3d)

[note that 8 „=angle ki makes, with the Z direction 8„=8+sin (ki sin8/q) where 8 is the scattering
qAf f & qkf

angle]

tots Ls ~p
6gfo Zl T~j I 2 t Ti s212 bs&, t [(Px 2 Py)bus g ~ t + (Px + 2 Px)t3sz, t]

Vi iQ' +&9 J. j j
(A3e)

where the constants to, A„and p, , can be obtained from Table I, p
-=k, —kf, and &Sg =—Sy z' Slz For the

scalar and tensor terms the symbol

m, mh(q)

is defined by-(note oscillator orbitals have been adopted)

I 2/2
Pmlo P (q) = 6 4g(-l)mow g exP — [I'(32, + 1,+ —,')I'(Tin+f2+ -2')] ll'2

qb)z /L f, l thL l, 2L+1

1'((l'+i+ L+3+2m+2m')/2)" Z Z r(m'+l, +3/2)1"(m+l +32/2)

x E[(L —l —lh —2m —2m) '/2, L + 3/2, q'b'/4 ],

where E(tzs P, r) is the usual hypergeometric function defined by

u u(tg+1) r'
E(o, P, r) =1+—r+

P P(P+1) 2'
+ e ~ ~

Of course in the general case p(q) is defined as

(A4)

(A5)

pm smh(q)—
I

d r @mom(r)e'2'e@mh(r)
ly

(A6)

The expressions for p„and p needed for evaluating the direct two-particle spin-orbit contribution,
t«, ~~, may be obtained from the expression

p=—[(k,k& Sin8/q) p, timh(q)+PCS(y)]X+ [-PZS(X)]1',

where
'1

P (x) —= bt I t(ti] P'dP tkg 2*(tl+P)sit™h(P)Psin&, dtdP

(A7)

'(AB)

and

pzs (y ) —= 6
t t,(ill(mh —m, )] p'dp 4'", 2*(q + p) 4't h(p)p sin8, did p

1

skm —tlsm„( on o

y
(A9)
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The expressions (A3), (A4), and (AB) have been
obtained for the case q =2 which has been a.ssumed
in the calculations.

The exchange contributions have been obtained
using an approximation previously adopted by
Petrovich' in earlier studies of nucleon-nucleus
inelastic scattering. We have assumed an infin-
itely heavy nucleus in this paper. The essence
of the approximation adopted for the scalar term
is to replace the quantity (P —k&)', where P is the
bound nucleon momentum variable which is inte-
grated over, by k&' when this quantity appears in

the Fourier transform of the two-nucleon t matrix.
Note that for bound nucleons and medium energy
nucleon projectiles (E,) 100 MeV) P/k& ( 2. In ad-
dition the two-nucleon t matrix is a slowly varying
function of momentum compared to the momentum
distribution of the bound nucleons. For the tensor
term, by studying the appropriate momentum over-
lap integral we have verified that the maximum
overlap occurs for momenta P'=——,'(k;+k&) = k&=k&
and have used this approximation in evaluating the
elementary two-nucleon t matrix for the tensor
exchange term.
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