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A simple scattering model is used to test alternative methods for calculating decay lifetimes, or
equivalently, resonance widths. %e consider the scattering of s-wave particles by a square well with a
square barrier. Exact values for resonance energies and resonance widths are compared with values

calculated from %igner-Weiss|ropf perturbation theory and from the Garside-MacDonald projection operator
formalism, The Garside-MacDonald formalism gives essentially exact results while the predictions of the
%'igner-%eisskopf formalism are fairly poor.

MDIOAC'ZIVITY Methods for calculating lifetime for decay by barrier pene-
tration tested on a soluble model.

I. INTRODUCTION

There has been a long standing discrqpancy be-
tween the calculated values of e-decay lifetimes
and the measured values notwithstanding the fact
that the relative values of the lifetimgs for decays
to levels of the same nucleus agree rather well
with the calculated ratios. ' Fliessbach' has sug-
gested that this discrepgncy is due to the failure
of the theory to correctly include exchange between
the nucleons in the e and the nucleons in the daugh-
ter nucleus. He has proposed a modification of the
Wigner-Weisskopf expression' for the decay life-
time to account for nucleon exchange. An altern-
ative approach for including exchange effects in
the theory of radioactivity has been given by the
author' and is based on the Gm'side-MacDonald
projection operator formalism. '

In light of the comp$exities of the many-body
versions of the decay formalisms and the drastic
approximations required for their implementation,
we felt that it would be worthwhile to check the
capability of the conventional theory to treat bar-
rier penetration and to see if there is any reason
to prefer the Wigner-Weisskopf (WW) method over
the Garside-MacDonald (GM) formalism. We have
analyzed the scattering of s-wave particles by a
square well inside a square barrier. By fitting a
Breit-Wigner resonance form to the energy depen-
dence of the exact phase shift we have determined
the exact resonance energy and exact resonance
width for a number of cases. The decay lifetime
is just I divided by the resonance width. These
were then compared to values calculated by means
of the WW method, the GM method, and two ap-
proximate versions of the GM method.

Most methods of calculating resonance energies
and resonance widths are based on either the WW
method or the GM method. A recent review of

several such methods is provided by Jackson and
Rhoades-Brown. ' Some examples of work based
on the GM method are listed in Ref. V. Some ex-
amples, of work based on the WW method are giv-
e@. in Ref. 8. Reference 9 is one of the few treat-
ments not closely related to either the WW method
or the GN method.

The GN method was found to give consistently
better results for both the resonance width and the
resonance energy. This is perhaps to be expected
inasmuch as the WW method does seem to require
rather drastic approximations in its derivation
while the GM method is essentially exact. The two
approximate versions of the GM method that were
tested were found to give good results for the re-
sonance widths.

In Sec. II the scattering model is presented pad
the method for calculating the exact resonance en-
ergy and resonance width is described. The WW
method is given in Sec. III, and the GM method is
given in Sec. IV. The results of the calculation are
presented in Sec. V, and the conclusions are out-
lined in Sec. VI.

II. RESONANCES OF A SQUARE WELL

WITH A SQUARE BARRIER

Consider the scattering of a particle of zero an-
gular momentum by a square potential well with a
square barrier. The potential energy is taken to
be

V= —Vii„0(y'& A~

= VB, R~&r&R~

= 0, R~(y.
The scattering phase shift is

5 = -kA~ —tan 'X,
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k[g tanKA„+tftanlvt(Re —R„,)]
z[E+ e tan(AR~) tanlm(Ro —R~)] '

The background reactance was deduced from the
second derivative of I/X:

E =k'+2m' 'V~,

j(.
' = 2m' V —k',

where

(2c)

(2d)

, (1/X) = -Gx/I'o'.
dE E~

The widths I" and energies = calculated by means
of Eqs. (6), (7), and (2) will be referred to as the
exact" resonance widths and energies.

is the energy of the particle. The collision func-
tion is defined by

III. THE WIGNER-WKISSKOPF (WW) METHOD

6 = e'@ = 8,(I iX)/(1+ iX),
~2 j6II

a

5, = -kA~.

(4a)

(4b)

(4c)

We seek an expression for the wave packet re-
presenting a metastable state. The wave packet tt)

is the solution of the time dependent Schrodinger
equation,

The transition amplitude is then given by

&=(I- 8)/»

g2 d2
ig —= — -2 + P' /=HE,et 2m dr' (8)

= r, + 8, X/( 1+iX),

where

(5a)
Initially, at t=0, g is equal to 4, the resonant
state. " The wave function 4 is taken to be a bound

state eigenfunction of B„where

y; = (1 —8,)/2i = - e~oo sin6„

X = -tan(6 —6,).
(Gb)

(5c)

For the energy E sufficiently near a, pole p of
the reactance X, the reactance can be approxi-
mated by the sum of a pole term and a constant
background term.

X=X+ o 1',/(E —=,).
Substituting Eq. (6a) into Eq. (5a) gives the Breit-
Wigner expression for the transition amplitude,

~= ~+

QADI.

+ Z
(6b)

where

t& = s,(I —ix)/(1+ ix),
y = E, + 6, X/(1+ iX),
I' = I'o/(1 + X '),
:" =-:-o —o XI'o/(1+ X ).

(6c)

(6d)

(Ge)

(Gf)

(I/X)e s, =0, (7a)

Equations (6e) and (6f) relate the resonance energy:and resonance width I' to the pole energy =p and
pole residue & I,. By superposing scattering
states with energies in the vicinity of:- one can
form a wave packet corresponding to a metastable
state of mean life 7 =A/r.

The pole and residue of the reactance were found
by searching for the zero of 1/X and then finding the
slope of 1/X at the zero.

Hp=H —U,

U= V„O&r&a,
=0, a, &r.

(9a)

(Qb)

&i& =a(t)4 + dEbe(t)ge,

Ho@ = Eo4&, (E, & 0),

Hole = EAe (E ~ o).

The initial condition requires that

a(t = 0) = 1, b e(t = 0) = 0.

(10a)

(lob)

(10c)

Let the normalization factors be chosen such that

(c lc»=1,

(4.le..& =6(E- E').

We note that

(y. I4» =0.

(12a)

(12b)

(12c)

In Eq. (10) we are ignoring the contribution of any
bound state of Bp other than 4.

Substitution of the wave packet P into the Schro-
dinger equation gives

Bp is identical to B except for the fact that a con-
stant potential energy equal to the barrier height
has been subtracted from H in the interior region,
r &A~. Thus 4 has the same shape in the interior
region as does the scattering eigenfunction g~ of
8 at resonance.

We express the wave packet tt) as a superposition
of the eigenstates of 8„

dE (1/X) = 2/I'o
E gp

(7b) aa,' = a(o &H
~
e& fez'a, .(e ~H +[y, .&, (13a)
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a&'a&&=&ale&+f dz &'.&&' &alg .&. &&&b)
For our model 4 and QE are the wave functions

for an s-wave particle interacting with a square
well 5',

Now let us set

(C Iffl+& = E.+(+ I Ul,+& =E„
&=«(E- E'),

so that Eq. (13) becomes

ijgCi=aEI+ dE'bE. O' U (f)E. ,

(14a)

(14b)

(15a)

W= —V~ —V~, 0 &r &R~

=0, R~&r. (22)

The required transition amplitude is easily eval-
uated.

&o IU~y, ) = v, f 'are&,
0

i)16 = a ( Q ~
U

~
C&+&Eb (15b)

a = exp(-i&I&t/)f),

b = A+~ g&r==- i-,'r,
A=ED+ V~,

(16a)

(16b)

(16c)

ln Eq. (14b) the continuum-continuum transition
amplitudes (Ps. ~

U ~Qs&, E' & E have been neglected.
Next we set

= —V'~ dr 4 (f) E
Rg

kRa+ 5o

g V e-&co&Re-Rgr)

(&(, sin8+ k cos8),
I((& + k

(23a)

(23b)

where the level shift &, the approximate resonance
energy A, and the resonance width I" are real.
Substitution into Eq. (15) gives 4m

ml2kR

(23c)
k

Ko

1 K
2 g

- I/2
1+ + —

2 +

~-~&l =e««& ds'y~ e U y, ,

+(c iUi4»- v, , (17a)

= Eb + e «'&qy
~

U ~4».

The solution of Eq. (17b) is

b = (+s &(e (8 fib —e lstlh))Uj@,
E g E

Combining this with Eq. (17a) gives

(17b)

(16)

'l ~g l
y fg E )f/Q

l&C iPl~ „~l'
b—

~f(g-E) g/5 (p —Ar6 (A —E) (20)

so that

-=E (P dE' + 4 UC', I 4IUI@

A E
(21a)

(21b)

where 6 denotes principal value. For sufficiently
large values of RB —R~ and V~ it is a good approxi-
mation to set (4'

~
U ~4'& equal to Vs.

+(c IUlc» v, .

Now the assumption that & and I' are much smaller
than A is made. Then in the limit as t becomes
very large,

(23d)

k = (2mE/g2)(12

&( = (-2mE /I')'~'

K, =[2m(V + Vs+E,)/5']'i''.

(23e)

(2M)

(23g)

An alternative version of the WW theory was
tested. This version is in fact very similar to
what is often done in practice. The alternative
version of the WW theory consists in replacing the
square well scattering function fE that appears in
Eq. (21) and Eq. (23) by a scattering eigenfunction
gE Of the HamiltOnian H. H iS identiCal tO H aS giV-
en in Eqs. (8) and (1) except that the depth V~ of
the square well is increased by a small amount
which we arbitrarily chose to be 0.0201 (V~+ E,).
This choice increases the wavenumber inside the
well by one percent. Thus g E is essentially what
the exact scattering wave function gE would be "off
resonance. " To calculate the alternative version
of the WW transition amplitudes we use Eq. (23a)
with the square well phase shift 6, [Eq. (23c)] re-
placed by the off resonance value of the well plus
barrier phase shift 6 (Eq. (2a)].

The alternative version of the WW theory is hard
to justify in the context of the WW formalism since
the assumed orthogonality between the resonant
state 4 and the newly chosen continuum state gE
is lost. Nevertheless, we find that the alternative



2208 'rOBOCMAIV

version of the theory gives better results. Some
justification for the alternative version will be pro-
vided by the GM formalism result.

IV. GARSIDE-MacDONALD (GM) METHOD

It has been noted that the transition amplitude is
approximated by the Breit-Wigner expression
shown in Eq. (6b) in the vicinity of a, resonance.
It is seen that the scattering amplitude is the sum
of a resonant term and a nonresonant term. The
resonant term is very small off resonance if the
width of the resonance is very small. The GM
method constructs an expression for the transition
amplitude in which the resonant term is isolated
and identified.

According to the Gell-Mann and Goldberger two
potentials formula"

r= s;+s,v&y, lT, Iy, &, (24a)

E,+(4 IT, I4»==- (Sob)

The above equations provide two alternative ex-
pressions for the resonance width. Consistency
then requires

s 's.&c I T. I @~&@.I T. I4» = -lm(4
I
T. Ic». (31)

(32)

then the unitarity requirements,

ImV'=-V'V'* and ImV =-V V'*,

imply

Imps = -SINK*.

Thus
~

(33)

(34)

We will show that this consistency relation is valid
as a consequence of the unitarity requirement. If
we set

S =e'"o=1 —2iv'„0

T~= U+ UG~T@,

Gs = (E H, + ie) '.

(24b)

(25)

(26)

SR= Q/(1+ iQ), where Q =Q*.

As a matter of fact,

Q = (X —X)/(1+XX).

(35}

(36)

Here T is the transition operator and Eq. (25) is
the Lippmann-Schwinger equation. " A projection
operator method will be used to separate off the
nonrqsonant part of T. This nonresonant part is
defined by

TE = U+ UPGE T

P=1 —Q,

Q= 14»&4 I,

(27a)

(27b)

(27c)

Ts = Ts+ TsQ(E —Ho —TsQ) 'Ts.T+Tl &c( EE. (4 IT. I4&)'&c IT.. (28)

Upon substitution of this result into Eq. (24) one
finds

S,v(C I Ts I yr&&y~ I T le&

z E, -(c I T, lc»
(29a)

where the projection operator P acts to eliminate
the resonant state contribution from the Green's
function operator Gz. Now using Eq. (27a) to el-
iminate U from Eq. (25) gives the relationship we
seek:

Comparison of Eq. (29a) with Eqs. (32) and (35)
then leads to Eq. (31).

Equation (30b) provides us with the GM theory
expressions for the resonance energy and the de-
cay width:

=-=E.+He&C IT. IC»,

1'=-21m(C IT. 14'&,

(37a)

(37b)

( i f, PI )U(y (. IpUIC)
E —E'+ ia

where = has been replaced by A on the zight on the
assumption that 4 is small. To evaluate these ex-
pressions one must solve the integral equation for
the nonresonant scattering operator, Eq. (27).
Such calculations were done and were found to give
satisfactory results.

An alternative form of Eq. (37) is found by re-
placing T by the formal solution of Eq. (27):

&4 IT. I4&=(C IU+UP(E H, PUP+it) '—PUI+—&

F= r, +s,v(y, lT, ling. (29b) (@ I

s, UP I (t)s, &((t)s, I PUI (f)&

g
This provides a separation of the transition oper-
ator into a nonresonant part and a resonant part.
Equation (29) is exact while Eq. (6b) is valid only
in the immediate vicinity of a resonance. Compar-
ison of these two equations indicates that in the
vicinity of a resonance

vs.&4 I T.I yg&y. I T. IC» = & k 1, (30a)

(38)

(39}

iw(4
I
UP

I @-&((t)
I
PU

I 4&.

Here Q~ is the solution of

(E —HG —PUP)I4 = 0

andgdZ' means a sum over discrete spectrum
eigenstates as well as an integral over the contin-



17 COMPARISON OF METHODS FOR CALCULATING DECAY. . . 2209

uum. Next substitute Eq. (38) into E|I. (37):

„,(@)UPIj,,&(j,, IJ Vie&

the projection operator P may be deleted from Eq.
(40):

(4Oa)

(40b)

Inasmuch as P commutes with Ho, it will be true
that PQE equals p~ except if there is a bound state
with E=E,. If such an eigenstate f~ exists, then

Jh Ep

Ps + A4 with A an arbitrary constant is also an
0

eigenstate with eigenvalue E,. Let A be chosen so
that the resultant state is orthogonal to 4. Then

(4»)

(41b)

This form of the GM theory result is very sim-
ilar to the WW theory result shown in Eq. (21). In
the GM result the contribution to the resonance en-
ergy of possible bound eigenstates of the nonreson-
ant Hamiltonian are included. The principle differ-

TABLE I. Level shifts and resonance widths for s-wave resonances of a square well with a square barrier. The shifts and widths

for a series of barrier thicknesses calculated by several methods are compared. The methods are the exact method (EX), the

Wigner-Weisskopf, method (Ww), the alternative Wigner-Weisskopf method (AW), the Garside-MacDonald method (GM), and

the alternative Garside-MacDonald method (AG). The mass of the incident particle is r» =1.0 u. The well radius is Rw =3.5 l'm.

The barrier height is VH =40.0 MeV. The other parameters are Vw = well depth, R& —Rw = well thickness, N = number of nodes

in the resonant state wave function and A = approximate resonance energy. The quantities calculated are 5 =:-—A = level shift,
and I = resonance width. Energies are in MeV and lengths are in fm. The notation A —» means A &&10 ".

N=]
Ra —Rw

Vw =10.8
h(EX) h(WW)

A =1.07
A(A W) h(G M) I'(EX) I.(Ww) I (AW) I.(GM) I (AG)

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

—0.255 —I

—0.166 —2

-0.109 —3
—0.750 —5
—0.879 —6

—0.630 —2
—0.364 —3
-0.196 -4
—0.937 —6
-0.351 —7

--0.690 —2
—0.451 —3
-0.294 -4
-0.192 —5
—0.890 —8

—0.24& —
1

-0.166 —2

-0.106 —3
—0.429 —5

0.171 —
1

0.113-2
0.740 -4
0.483 —5

0.316 —6
0.206 —7

0.135 -8
0.874 —]0
0.527 —11

0.353 —1

0.4~6 —2

0.457 —3

0.389 —4

0.292 —5

0.197 -6
0.120 —7

0.655 —9
0.312 —10

0.141 —1

0.112 —2

0.740 —4

0.483 —5

0.316 —6
0.206 —7

0.135 —8

0.879 —10
0.574 —11

0, 164 —1

0.113 —2

0.753 —4

0.482 —5

0.304 —6

0.214 —7

0.127 —8

0.883 —10

0.556 —1]

0.161 —1

0.112 —2

0.745 —4

0.486 —5

0.307 —6

0.207 —7

0.131 —8

0.&39 —]0
0.561 —11

N=1
Ra —Rw

w =8.0
A(EX) 5(WW)

A = 3.75

A(A W) 5(GM) I (EX) I (Ww) I (Aw) I (GM) I'(AG )

2.0
3.0
4.0
5.0

7.0
8.0
9.0
10.0

—0.266 —1

-0.191 —2
—0.137 -3
—0.963 —5
—0.507 —6

-0.872 —2

-0.596 —3

0.398 —4

0.259 —5

0.163 —6

—0.902 —2
—0.648 —3
—0.466 —4
-0.335 —5
—0.228 —6

—0.265 —1

—0.189 —2

-0.137 —3
—0.954 —5

0.000

0.380 —
1

0.274 —2

0.197 -3
0.142 -4
0.102 —5

0.731 —7

0.525 —8

0.377 —9
0.270 —10

0.688 —]

0.757 —2

0.561 —3

0.283 -4
0.809 -6
0.326 —8

0.135 -8
0.487 —9
0.663 —10

0.304 —1

0.270 —2

0, 197 -3
0.142 —4

0.102 —5

0.731 —7

0.525 -8
0.377 —9
0.271 —10

0.359 —l

0.265 —2

0.199—3

0.140 —4

0.948 —6
0.766 —7

0.485 —8

0.388 —9
0.249 —10

0.347 —1

0.265 —2

0.196 —3

0.142 -4
0.101 —5

0.746 —7

0.505 —8

0.377 —9
0.258 —10

N=2
RB —Rw

Vw =40.0
a(EX) a(ww)

A =9.40
b (A W) A(GM) I.(EX) I-(ww) r(AW) r. (GM) I (AG)

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0

—0.622 —1

—0.541 —2
—0.478 —3
—0.405 —4
-0.167 —5

0.348 —1

0.294 —2
—Q.246 —3
—0.202 —4

0.165 —5

—0.374 —1

—0.332 —2
—0.296 —3
—0.263 —4
—0.230 —5

—0.283 —I

—0.217 —2
—0.201 —3
-0.148 —4
—0.477 —6

0.192 -0
0.172 —I

0.154 —2

0.137 -3
0.122 —4
0.108 -5
0.963 —7

0.857 —8

0.759 —9

0.157 -0
0.911 —3

0.445 —3

0.158 -3
0.159 -4
0.56Q —6
0.271 —10
0.476 —8

0.101 -8

0.167 -0
0.170 —0
0.153 -2
0.137 —3

0.122-4
0.10& -5
0.963 —7

0.857 —8

0.762 —9

0.194 —0
0.170 —1

0. ] 52 —2

0.142 -3
0.] 16 -4
0.106 —5

0.967 —7

0.834 —8

0.765 —9

0.192 -0
0.172 —1

0.152 —2

0.138 —3

0.121 —4

0.106 —5

0.966 —7

0.79& —8

0.760 —9
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ence between the two formalisms is that in the WW

theory continuum eigenstates of H, are used where-
as in the GM theory the continuum eigenstates of
H =H, +PUP are used. In both cases the continuum
eigenstates are orthogonal to the resonant state 4.
However, for energies slightly off resonance, the
eigenstate of H will be very nearly identical to the
eigenstate of the exact Hamiltonian H while the
eigenstate of 8p will be quite different. If being
similar to the exact continuum wave function off
resonance is more important in this analysis than
maintaining strict orthogonality to the resonant
state, then the GM formalism provides some just-
ification for what we have called the alternative
version of the WW theory.

The transition amplitude appearing in Eq. (41)
can be evaluated in the same way as the WW theory
amplitudes were evaluated. The result is given by
Eq. (23) with the H, phase shift 5, replaced by a
phase shift calculated from H =H, +PUP. There is
an approximation involved in doing this. In getting
the expression shown in Eq. (23a) it was assumed
that the asymptotic form of p~ is valid down to a
radius of Re. This is true for Pz but only approxi-
mately true for QE because the range of PUP ex-
tends slightly beyond A~.

The GM theory resonance energy and resonance
width were evaluated by first solving the integral
equation for the nonresonant transition operator.
For evaluation of Eq. (37) the following expressions
were used

(42a)

(42b)

(E —Ho) ps = 0. (42d)

Equation (43a) is derived by setting

~= -e@sin6

in Eq. (29b) and finding that

(y, ~r, ~yg= e'&""&sin(i a,)jm

=TE

(44)

(45)

This second method of doing the GM theory calcu-
lation will be called the alternative GM theory
method. The alternative GM theory method
and the alternative WW theory method are both ap-
proximate versions of the GM theory.

V. RESULTS OF THE CALCULATION

The results of three series of calculations are
reported here. The three series are distinguished
by the value of the approximate resonance energy

Ep + Vg the values being 1.07 Me V for series
a, 3.75 MeV for series b, and 9.40 MeV for series
c. The mass of the incident particle was taken to
be 1.0 u. The cases within each series are disting-

We will refer to this as the GM theory method. To
evaluate Eq. (41) we used Eq. (23) with the phase
shift 5p replaced by 5, where

A

(43a)

TABLE II. Level shifts and resonance widths for s-wave resonances of a square well with a square barrier. Comparison is made
of the shifts and widths calculated from transition operators evaluated using several choices for NMP = the number of Gaussian
points used to discretize the integral equation. The methods used are the Garside-MacDonald method {GM) and the alternative
Garside-MacDonald method (AG). The mass of the indident particle is»f =1.0 u. The well radius is Rw =3.5 fm. The barrier

height is &8 =40.0 MeV. The other parameters are &w = well depth, RH —Rw = well thickness, N = number of nodes in the
resonant state wave function, and A = approximate resonance energy. The quantities calculated are b =:-—A = level shift and I' =
resonance width. Energies are in MeV and lengths are'in fm. The notation A —» means A &&10 "

NMP 5(GM)

V =400
RH Rw=2

1.(GM) I (AG) h(G M)

4 =9.4
Rg —Rw =5

I'(G M) I (AG)
RB —Ri] =8

I (G M) I'(AG)

2'0

28

36
44

56
68
80

-0.262 —
1

—0.283 —I

—0.280 —
1

—0.272 —1

—0.301 —
1

—0.285 —1

—0.292 —
1

0.190 -0
0.190 —0
0.191 —0
0.188 -0
0.194 -0
0.191 —0
0.190-0

0.191 -0
0.192 -0
0.191 -0
0.190-0
0.191 -0
P. 191 -0
0.190-0

-0.114 —4
-0.148 —4
—0.143 —4
-0.148 -4
-0.119—4
—0.114 —4
-0.114 -4

0.138 -3
0.142 —3

0.138 -3
0.140 —3

0.133 -3
0.134 —3

0.135 —3

0.138 —3

0.$ 38 —3

0.136 —3

0.137 —3

0.136 —3

0.136 —3

0.136 —3

0.927 —7

0.967 —7

0.987 —7

0.962 —7

0.958 —7

0.970 —7

0.961 —7

0.920 —7

0.966 —7

0.959 —7

0.954 —7

0.966 —7

0.966 —7

0.965 —7

h(EX) -0.622 —1

I (EX) =0.192 —0
h(EX) = —0.405 —4
I'(EX) =0.137 —3

I (EX}=0.963 —7
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uished by the choice of the barrier thickness T~
=R~- R~ which ranged between 2 and 10 fm. This
produced for each series a range of values for
resonance widths that went from about 0.1 to about
10 "MeV. The calculated values for the level
shifts proved erratic for values less than about
10 ' MeV and so are shown for the smaller barrier
thicknesses only. The results are displayed on
Table I.

The widths given by the WW theory are generally
in poor agreement with the exact widths. The
widths given by the other three methods —the al-
ternative WW theory, the GM theory, and the al-
ternative GM theory —are in good agreement with
each other and in good agreement with the exact
widths. No very striking improvement is observed
for the smaller widths as compared with the larger
widths. The alternative WW theory widths seem
to be slightly better than the GM theory widths ex-
cept for the smallest value of the barrier thick-
ness.

The relatively poor value of the alternative WW
theory width at barrier thickness 2 fm is a conse-
quence of the failure of our well depth alteration
to get a completely nonresonant scattering wave
function because the resonance width is very large.
On the other hand, the fact that the GM theory and
alternative GM theory do not do quite as well as
the alternative WW theory for the other widths is
a consequence of a certain amount of instability in
the matrix inversion scheme used to solve the in-
tegral equation for the transition operator. This
instability is demonstrated in Table II where some
GM theory and alternative GM theory resonance
widths and energy level shifts are given which were
calculated from transition operators evaluated us-
ing different numbers of Gaussian points to dis-
cretize the integral equation. It is seen that as the
number of Gaussian points assumes various values
between 20 and 80 the calculated width oscillates
back and forth around the correct value by as much
as 6%. This instability may be related to the lack
of smoothness of the square well and square po-
tential barrier.

The level shifts that result from the GM theory
calculation give good agreement with the exact
level shifts for the cases in series a and series b
while the WW theory and alternative WW theory
level shifts do not. On the other hand, for the
cases of series c the level shifts given by the
three theories are in rough agreement with each
other but are about half the exact value. We are
at a loss to explain this outcome.

The alternative GM theory calculation of the lev-
el shift was not performed because it would have
been too time consuming.

At this point we can make a remark about the ap-

TABLE III. Resonance widths and resonance energies f'or
.~-wave resonances of a square well with a square barrier.

Comparison is made of the resonances energies and widths

calculated using several different choices for .K = the approxi-

mate resonance energy. The values of:- = the resonance en-

ergy and I = the resonance width are calculated by the exact
method (EX), the Garside-MacDonald method (GM), and

the alternative Garside-MacDonald method (AG). The mass
of' the incident particle is 1,0 u. The well radius is Rz =3.5
I'm. The barrier height is VB =40.0 MeV. The other parame-

ters are Vii = well depth, Rz —R~ = well thickness, N =
numbers of nodes in the resonant state wave function, and

."t = approximate resonance energy. Energies are in MeV and

lengths are in I'm. The notation A —» means A X 10 ".

V~~ =10.8 RH —R(i =3.0
=(GM) I (GM) I (AG)

1.074 18 1.070 02

1.0733 34 1.07002
1.072 51 1.070 02
1.071 68 1.07002
1.07085 1.07002
1.070 02 1.070 02
1.069 19 1.070 02
1.068 36 1.070 02

1.067 53 1.070 02
:-(EX)= 1.07002

0.112903 —2

0.112 862 —2

0.112824 —2

0.112 784 —2

0.112 744 —2

0.112 705 —2

0.112667 —2

0.112 624 —2

O. I 12 585 —2

I'(EX) =0. 1

0.112005 —2

0.111 965 —2

0.111919—2

0.111876 —2

0.111835 —2

0.111788 —2

0.111 741 -2
0.111 704 -2
0.111658 —2

13 239 —2

'4 =2 "&& =4)0 Ro Rii =20
:"(GM) I (GM) I CAG)

9.460 83
9.429 73
9.398 63
9.367 52

9.33642
9.305 32
9.274 22

9,370'90

9.370 60
9.370 28

9.369 96
9.369 64

9.369 32
9.36900

0, 193 655 —0
0.193971 —0
0.194 270 —0
0.194 566 —0
0.194 853 —0
0.195 128 -0
0.195 389 —0

0.192 611 —0
0.192 411 —0
0.192 263 —0
0.192 080 —0
0.191 893 -0
0.191 697 —0
0.191 496 -0

:-(EX)= 9.33642 I'(EX) =0.192 296 —0

&' = 2 I,i =40.0 RI) —R, )
= &.0

:-(GM ) I'(G M) I'(AG )

9.398 67
9.398 65
9.398 63
9.398 61
9.398 59
9.398 57
9.398 53

9.398 61

9.398 61

9.398 61

9.398 61

9.398.61

9.398 61

9.398 61

0.142 217 —3

0.142 217 —3

0.142 220 —3

0.142 221 —3

0.142 220 —3

0.142 218 —3

0.142 218 —3

0.138 317 —3

0.138 316 —3

0.138 317 —3

0.138 316 —3

0.138 316 —3

0.138 317 —3

0.138 316 —3

:-(EX)= 9.398 59 I'(EX) =0.136624 —3

proximation made in Eq. (37) of replacing the ex-
act resonance energy = by the approximate energy
A. It is assumed that our expressions for the
width I' and level shift & =:—A are essentially
constant for variations of the energy of the order
of magnitude of & about the value A. We have ver-
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ified this for all cases by evaluating our expres-
sions for I' and & for a range of energy values.
This is illustrated for a couple of cases in Table
III.

VI. CONCLUSIONS

For resonances in the scattering of a partile by
a square well with a square barrier we find that
the standard form of the Wigner-Weisskopf (WW)
theory does poorly in predicting resonance
widths and resonance level shifts. The resonance
width predicted by W%' theory is much improved
if the continuum function used in the calculation
is taken to be approximately equal to the exact scat-
tering wave function off resonance. This is done
in the alternative%%theory. The resulting reso-
nance level shifts remain poor.

The only formalism that was found to do well for
both widths and level shifts was the Garside-Mac-
Donald formalism wherein the level shift and the
width are taken to be the real part and (-2x) the
imaginary part respectively of the expectation val-
ue of the off resonance elastic scattering operator
with respect to the resonant state.
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