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A simple scattering model is used to test alternative methods for calculating decay lifetimes, or
equivalently, resonance widths. We consider the scattering of s-wave particles by a square well with a
square barrier. Exact values for resonance energies and resonance widths are compared with values
calculated from Wigner-Weisskopf perturbation theory and from the Garside-MacDonald projection operator
formalism. The Garside-MacDonald formalism gives essentially exact results while the predictions of the

Wigner-Weisskopf formalism are fairly poor.

tration tested on a soluble model.

E\ADIOACTIVITY Methods for calculating lifetime for decay by barrier pene-]

I. INTRODUCTION

There has been a long standing discrepancy be-
tween the calculated values of a-decay lifetimes
and the measured values notwithstanding the fact
that the relative values of the lifetimes for decays
to levels of the same nucleus agree rather well
with the calculated ratios.! Fliessbach? has sug-
gested that this discrepancy is due to the failure
of the theory to correctly include exchange between
the nucleons in the @ and the nucleons in the daugh-
ter nucleus. He has proposed a modification of the
Wigner-Weisskopf expression® for the decay life-
time to account for nucleon exchange. An altern-
ative approach for including exchange effects in
the theory of radioactivity has been given by the
author* and is based on the Garside-MacDonald
projection operator formalism.’

In light of the complexities of the many-body
versions of the decay formalisms and the drastic
approximations required for their implementation,
we felt that it would be worthwhile to check the
capability of the conventional theory to treat bar-
rier penetration and to see if there is any reason
to prefer the Wigner-Weisskopf (WW) method over
the Garside-MacDonald (GM) formalism. We have
analyzed the scattering of s-wave particles by a
square well inside a square barrier. By fitting a
Breit-Wigner resonance form to the energy depen-
dence of the exact phase shift we have determined
the exact resonance energy and exact resonance
width for a number of cases. The decay lifetime
is just 7 divided by the resonance width. These
were then compared to values calculated by means
of the WW method, the GM method, and two ap-
proximate versions of the GM method.

Most methods of calculating resonance energies
and resonance widths are based on either the WW
method or the GM method. A recent review of

several such methods is provided by Jackson and
Rhoades-Brown.® Some examples of work based
on the GM method are listed in Ref. 7. Some ex-
amples, of work based on the WW method are giv-
en in Ref. 8. Reference 9 is one of the few treat-
ments not closely related to either the WW method
or the GM method.

The GM method was found to give consistently
better results for both the resonance width and the
resonance energy. This is perhaps to be expected
inasmuch as the WW method does seem to require
rather drastic approximations in its derivation
while the GM method is essentially exact. The two
approximate versions of the GM method that were
tested were found to give good results for the re-
sonance widths.

In Sec. II the scattering model is presented and
the method for calculating the exact resonance en-
ergy and resonance width is described. The WW
method is given in Sec. III, and the GM method is
given in Sec. IV. The results of the calculation are
presented in Sec. V, and the conclusions are out-
lined in Sec. VI.

II. RESONANCES OF A SQUARE WELL
WITH A SQUARE BARRIER

Consider the scattering of a particle of zero an-
gular momentum by a square potential well with a
square barrier. The potential energy is taken to
be

V=-Vy, 0<vr<kEk,

=V, R,<7r<R,

=0, Ry<7. 1
The scattering phase shift is
6=-kR, - tan™ 'k, (2a)
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bk tanKR, + K tanhk(R ; - R,,)]

- 2b
X= - Krrtan(kR,) anhe (R, ~Ry)] * 20
K*=Fk*+ 2mA"2Vy, (2¢)
K2=2mA"2V g k2, (2d)

where
E=nrk2/2m (3)

is the energy of the particle. The collision func-
tion is defined by

8=e2*°=3‘,(1- i%)/(1+iX), (42)
8, = g%, 40)
6,=-kR . o

The transition amplitude is then given by
T=(1-8)/2i

=7, +8,2/(1+iX), (5a)
where

7,=(1-8,)/2i=-e"sins,, (5b)

X =—tan(6 - 5,). (5¢)

For the energy E sufficiently near a pole =, of
the reactance X, the reactance can be approxi-
mated by the sum of a pole term and a constant
background term.

K=%+3T,/(E-E,). (6a)

Substituting Eq. (6a) into Eq. (5a) gives the Breit-
Wigner expression for the transition amplitude,

e (6b)
where

8=3 (1 - iX1+iX), (6¢c)

T=7,+38,K/(1+iX), (6d)

r=r,/(1+X?), (6e)

E=E -3 X,/(1+%2). (61)

Equations (6e) and (6f) relate the resonance energy
Z and resonance width I to the pole energy =, and
pole residue 3 I o- BY superposing scattering
states with energies in the vicinity of = one can
form a wave packet corresponding to a metastable
state of mean life 7=7/T.

The pole and residue of the reactance were found
by searching for the zero of 1/% and then finding the
slope of 1/X at the zero:

(1/%) g.z,=0, (7a)

[;E am)]  -a/r,. (7b)

E=X,

The background reactance was deduced from the
second derivative of 1/X:

The widths T and energies = calculated by means
of Eqs. (6), (7), and (2) will be referred to as the
“exact” resonance widths and energies.

III. THE WIGNER-WEISSKOPF (WW) METHOD

We seek an expression for the wave packet re-
presenting a metastable state. The wave packet
is the solution of the time dependent Schrodinger
equation,

ﬁz 2
m@—<- d

== (- 50— 2;2—+V>¢=Hzp‘ (8)

Initially, at #=0, ¥ is equal to &, the “resonant
state.” The wave function ¢ is taken to be a bound
state eigenfunction of H,, where

Hy=H-U, (9a)
U=V,, 0<r<R,
=0, Ry<r. (9b)

H, is identical to H except for the fact that a con-
stant potential energy equal to the barrier height
has been subtracted from H in the interior region,
¥ <Kz Thus & has the same shape in the interior
region as does the scattering eigenfunction ¢, of
H at resonance.

We express the wave packet ¢ as a superposition
of the eigenstates of H,

Y=a(t)d +debE(t)q>E, (10a)

H®=E®, (E,<0), (10Db)

Hypp=E¢pg, (E>O). (10¢)
The initial condition requires that

a(t=0)=1, b.(:=0)=0. (11)
Let the normalization factors be chosen such that

(@|e) =1, (12a)

(Pplde)=0(E- E). (12b)
We note that

(¢z|®)=0. (12¢)

In Eq. (10) we are ignoring the contribution of any
bound state of H, other than &.

Substitution of the wave packet ¢ into the Schro-
dinger equation gives

i -a(d IH|<1>>+faE'bE,(q> lH|p.),  (13a)
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iﬁbE=a(¢E|HI<I>>+f dE'b, ¢ |H|dz). (13b)

Now let us set

(@ |H|®)=E,+(®|U|®)=E,, (14a)

(¢z|H|¢p)=ESE-E), (14b)
so that Eq. (13) becomes

ind=aE, + f dE'D (8 U650, (152)

inbg=al¢p,|U|®) +Eb,. (15b)

In Eq. (14b) the continuum-continuum transition

amplitudes (¢ . |U|¢ ), E'#E have been neglected.

Next we set
a=exp(-i§t/n), (16a)
§=A+A_-{34T=%_-iir, (16b)
A=E+V,, (16c)

where the level shift A, the approximate resonance
energy A, and the resonance width I" are real.
Substitution into Eq. (15) gives

A_iiroetst/n f dE'b 5@ |U|¢5.)

+H2|U|®)-v,, (17a)
ifb o= Eb g+ €464/Kp | U |®). (17b)
The solution of Eq. (17b) is
_$@glUI®) s s
bp=—g—g (€ - etEn). (18)

Combining this with Eq. (17a) gives
a-isr- fap 2o Ol @"U"” 21 (1 gremrem)

+H@1Uld)-v,. (19)

Now the assumption that A and I" are much smaller
than A is made. Then in the limit as ¢ becomes
very large,

1 - et6-ENt/R N ®

S~ G—f ~ M- E) (20)
so that

E-E +a)de,M @|vlsy, (21a)
r=2r[(@|Ul¢,) 2, (21D)

where @ denotes principal value. For sufficiently
large values of R, — R, and V it is a good approxi-
mation to set (& ]U ]<I>) equal to V.

For our model & and ¢, are the wave functions
for an s-wave particle interacting with a square
well W,

W=-V,-Vz 0<r<R,
=0, Ry, <7. (22)
The required transition amplitude is easily eval-

uated.

R
@ |UI¢E>=VBf0 arag,

=—V8f drég,
R

B

~ko( Rg=Ry)
JAV,e T E W (ko siné + k cosé) ,

(k2 + B?)

(23a)
6 =kRy+5,, (23b)
50=_kRW+tan'1<-1f—O ta.nKoRW>, (23c)

2 1/2

w /M wm  o mi )]

(23d)
k=(2mE/R?Y?, (23e)
ko= (-2mEy /1?2, (23f)
K,=[2m(V, + Vg + E;)/B?]M2. (23g)

An alternative version of the WW theory was
tested. This version is in fact very similar to
what is often done in practice. The alternative
version of the WW theory consists in replacing the
square well scattering function ¢ ; that appears in
Eq. (21) and Eq. (23) by a scattering eigenfunction
sz of the Hamiltonian H. H is identical to H as giv-
en in Eqgs. (8) and (1) except that the depth V,, of
the square well is increased by a small amount
which we arbitrarily chose to be 0.0201 (V,+E,).
This choice increases the wavenumber inside the
well by one percent. Thus z-p g is essentially what
the exact scattering wave function ¢ ; would be “off
resonance.” To calculate the alternative version
of the WW transition amplitudes we use Eq. (23a)
with the square well phase shift 6, [Eq. (23c)] re-
placed by the off resonance value of the well plus
barrier phase shift 6 | Eq. (2a)].

The alternative version of the WW theory is hard
to justify in the context of the WW formalism since
the assumed orthogonality between the resonant
state ® and the newly chosen continuum state ¢,
is lost. Nevertheless, we find that the alternative
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version of the theory gives better results. Some
justification for the alternative version will be pro-
vided by the GM formalism result.

IV. GARSIDE-MacDONALD (GM) METHOD

It has been noted that the transition amplitude is
approximated by the Breit-Wigner expression
shown in Eq. (6b) in the vicinity of a resonance.

It is seen that the scattering amplitude is the sum
of a resonant term and a nonresonant term. The
resonant term is very small off resonance if the
width of the resonance is very small. The GM
method constructs an expression for the transition
amplitude in which the resonant term is isolated
and identified.

According to the Gell-Mann and Goldberger two
potentials formula®

T=T,+8Ko:|T5l05), (24a)
8= e =1 _ 217, (24b)
Tg=U+UGgTg, (25)
Gp=(E—Hy+ie)™. (26)

Here T is the transition operator and Eq. (25) is
the Lippmann-Schwinger equation.'' A projection
operator method will be used to separate off the
nonresonant part of 7. This nonresonant part is
defined by

T,=U+UPG,Ts, (27a)
P=1-¢9, (27b)
Q= |exe], (27¢)

where the projection operator P acts to eliminate
the resonant state contribution from the Green’s
function operator G,. Now using Eq. (27a) to el-
iminate U from Eq. (25) gives the relationship we
seek:

Ty=Te+TpQ(E-Hy— ToQ)'Ty

=Tg+ Ty |®)E-E,—(®|T,|®)yXe|T,.  (28)
Upon substitution of this result into Eq. (24) one
finds

88 1T 16 X, T4 18)
E-E,—(&|T &) ~’

T=To+ 8z Tplop. (29b)

This provides a separation of the transition oper-
ator into a nonresonant part and a resonant part.
Equation (29) is exact while Eq. (6b) is valid only
in the immediate vicinity of a resonance. Compar-
ison of these two equations indicates that in the
vicinity of a resonance

78® | T | 0 )02 | Tx |®) = B 4T, (302)

T=T4

(29a)

Ey+(® | T5|®) == —isT. (30D)

The above equations provide two alternative ex-
pressions for the resonance width. Consistency
then requires

580 | Tx | 020z | T2 |®) =—Im(@ [T ®).  (31)

We will show that this consistency relation is valid
as a consequence of the unitarity requirement. If
we set

=T +89M, (32)
then the unitarity requirements,

ImT =-77* and Im7=-TT*, (33)
imply

ImIN = - IMAT*. (34)
Thus,

M=Q/(1+iQ), where @=Q*. (35)
As a matter of fact,

Q= - X)/(1+%X). (36)

Comparison of Eq. (29a) with Eqs. (32) and (35)
then leads to Eq. (31).

Equation (30b) provides us with the GM theory
expressions for the resonance energy and the de-
cay width:

Z=E,+Re® |T, |®), (37a)

C=-2Im® |T, |®), (37b)

where = has been replaced by A on the right on the
assumption that A is small. To evaluate these ex-
pressions one must solve the integral equation for
the nonresonant scattering operator, Eq. (27).
Such calculations were done and were found to give
satisfactory results.

An alternative form of Eq. (37) is found by re-
placing T by the formal solution of Eq. (27):

(@ |7,|®)=(® |U+ UP(E - H,— PUP +i€)"'PU |®)

B , UP1$. Xy | PUI®)
*@’U+ IdE E—-E'+ie

=@ |v+o I ag UP! b 5 X g | PUIB)

E_F
~in@ |UP |§oX b5 | PU |®). (38)
Here qE e is the solution of
(E-Hy,- PUP)$,=0 (39)

and de’ means a sum over discrete spectrum
eigenstates as well as an integral over the contin-
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uum. Next substitute Eq. (38) into Eq. (37):

(®|UP1$,.Xéy | PU|®)
A—- El ’

(40a)

E = Ey+(® IUlda)mIdE'

r=2m® |UP|,Xb, |PU|®). (40b)

Inasmuch as P commutes with H, it will be true
that P¢;E equals ¢, except if there is a bound state
with E=E,. If such an eigenstate ¢, exists, then
Or,+ A® with A an arbitrary constant is also an
eigenstate with eigenvalue E,. Let A be chosen so
that the resultant state is orthogonal to #. Then

2209

the projection operator P may be deleted from Eq.
(40):

E=Ey+(® |U|<I>)+0$dE' W ,
(41a)
r=2nl@|U|é,) |2 (41b)

This form of the GM theory result is very sim-
ilar to the WW theory result shown in Eq. (21). In
the GM result the contribution to the resonance en-
ergy of possible bound eigenstates of the nonreson-
ant Hamiltonian are included. The principle differ-

TABLE 1. Level shifts and resonance widths for s-wave resonances of a square well with a square barrier. The shifts and widths
for a series of barrier thicknesses calculated by several methods are compared. The methods are the exact method (EX), the
Wigner-Weisskopf method (WW), the alternative Wigner-Weisskopf method (AW), the Garside-MacDonald method (GM), and
the alternative Garside-MacDonald method (AG). The mass of the incident particle is m =1.0 u. The well radius is Ry, =3.5 fm.
The barrier height is V4 =40.0 MeV. The other parameters are V,, = well depth, Rz — Ry, = well thickness, N = number of nodes
in the resonant state wave function and A = approximate resonance energy. The quantities calculated are A == — A = level shift,

and I' = resonance width. Energies are in MeV and lengths are in fm. The notation 4 —n means 4 x 10",

N=1 V=108 A=107
Rgz—R,  A(EX) A(WW) A(AW) A(GM) I'(EX) r(wWw) I'(AW) I'(GM) I'(AG)
2.0 —0.255—-1 —0.630-2 -0.690-2 —0248—1 0.171—1 0353—1  0.141—1  0.164—1  0.161 1
3.0 —0.166—2 —0364—3 —0451—-3 —0.166—2 0.113—-2  0456—2  0.112—-2  0.113-2  0.112-2
4.0 -0.109-3 —0.196—4 —0294—4 —0.106—3 0.740—4 0457—3  0.740—4 0.753—4  0.745-4
5.0 —0.750-5 —0.937—-6 —0.192—5 —0429-5 0483—-5  0.389—4  0483—5 0482—5  0.486—S5
6.0 -0.879-6 —0.351—-7 —0.890—8 0.316-6 0.292-5  0316-6 0304—6  0.307—6
7.0 0206—-7 0.197-6  0206—7 0.214—7  0207-7
8.0 0.135-8  0.120-7 0.135-8 0.127-8  0.131 -8
9.0 0.874—10 0.655-9 0879—-10 0.883—10 0.839-10
10.0 0.527—11 0312-10 0.574—11 0556—11 0.561 —11
N= V=80 A=3.75
Rg—Ry,  A(EX) A(WW) A(AW) A(GM) I'(EX) F(WW) I'(AW) I'(GM) I'(AG)
2.0 -0.266—1 —0.872—-2 —0902-2 —0265—-1 0.380—1 0688—1 0304—1  0359—1 03471
3.0 —-0.191-2 -0596—-3 —0648—3 —0.189-2 0.274—2 0757—-2 0270—2 0265-2 02652
4.0 —-0.137-3  0398-4  —0466—4 —0137-3 0.197-3  0561—3  0.197-3  0.199-3 01963
5.0 —0963-5 0259-5  —0335-5 —0954—5 0.142—4 0283—4  0.142—-4  0.140—-4  0.142-4
6.0 -0.507-6 0.163—6  —0.228—6 0.000 0.102—-5 0809-6 0.102-5 0948—6  0.101 =5
7.0 0.731-7  0326—-8 0.731-7 0.766—7  0.746—7
8.0 0.525-8  0.135-8  0.525-8  0485-8  0.505 -8
9.0 0.377-9  0.487-9  0377-9  0388-9  0.377-9
10.0 0.270~10 0.663—10 0.271—10 0.249—10 0.258—10
N=2 Vy =40.0 A=9.40
Rg—Ry  A(EX) A(WW) A(AW) A(GM) I'(EX) r(WwW) I'(AW) I'(GM) I'(AG)
2.0 -0.622—1 0348—1  —0374—1 —0283—1 0.192-0 0.157—0 0.167—0  0.194—0  0.192—0
3.0 —0.541-2  0294-2  —0332-2 -0217-2 0.172-1 0911-3 0170-0 0.170—1 0.172—1
40 —0478-3  —0.246—-3 —0296-3 —0201-3 0.154—2  0445-3  0.153—2  0.152—2  0.152—2
5.0 —-0.405-4 —0202-4 —0.263-4 —0.148—4 0.137-3  0.158—3  0.137-3  0.142—3  0.138 -3
6.0 -0.167—5  0.165-5  —0230-5 -0477-6 0.122—4  0.159—-4  0.122—4 0.116—4 0121 -4
7.0 0.108—5  0560-6 0.108—5  0.106—5  0.106—5
8.0 0.963—-7 0271—10 0963—-7 0967—7  0.966 -7
9.0 0.857-8 0476-8  0.857-8 0.834—8  0.798 -8
10.0 0.759-9  0.101-8  0.762—-9  0.765-9  0.760—9
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ence between the two formalisms is that in the WW
theory continuum eigenstates of H, are used where-
as in the GM theory the continuum eigenstates of
A =H,+ PUP are used. In both cases the continuum
eigenstates are orthogonal to the resonant state ®.
However, for energies slightly off resonance, the
eigenstate of A will be very nearly identical to the
eigenstate of the exact Hamiltonian H while the
eigenstate of H, will be quite different. If being
similar to the exact continuum wave function off
resonance is more important in this analysis than
maintaining strict orthogonality to the resonant
state, then the GM formalism provides some just-
ification for what we have called the alternative
version of the WW theory.

The transition amplitude appearing in Eq. (41)
can be evaluated in the same way as the WW theory
amplitudes were evaluated. The result is given by
Eq. (23) with the H, phase shift 6, replaced by a
phase shift calculated from A =H,+ PUP. There is
an approximation involved in doing this. In getting
the expression shown in Eq. (23a) it was assumed
that the asymptotic form of ¢ is valid down to a
radius of Ry. This is true for ¢; but only approxi-
mately true for 4; g because the range of PUP ex-
tends slightly beyond R .

The GM theory resonance energy and resonance
width were evaluated by first solving the integral
equation for the nonresonant transition operator.
For evaluation of Eq. (37) the following expressions
were used

- ,(bx | UPlG )T,
ol L e G

(E-Hy)¢z=0. (424)

We will refer to this as the GM theory method. To
evaluate Eq. (41) we used Eq. (23) with the phase
shift 6, replaced by 5, where

5 =tan” ‘(——Im;r,“ > +6,, (43a)
ReT,

o IUPI ) A

T5=(¢|U]on +3: dE’ (—"’13\—_5,‘?;% 5. (43b)

Equation (43a) is derived by setting

T=_ef sind (44)
in Eq. (29b) and finding that

(95 |T5l9=-e'® sin - 5,)/7

=T (45)

This second method of doing the GM theory calcu-
lation will be called the alternative GM theory
method. The alternative GM theory method

and the alternative WW theory method are both ap-
proximate versions of the GM theory.

V. RESULTS OF THE CALCULATION

The results of three series of calculations are
reported here. The three series are distinguished
by the value of the approximate resonance energy
A=E + Vg, the values being 1.07 MeV for series

(® |f‘A |&) =1, (42a) a, 3.75 MeV for series b, and 9.40 MeV for series
@ UPl ¢ )f c. The mass of the incident particle was taken to
t,=(® |U|®) +I dE’' —A—E,—%EE- s (42b) be 1.0 u. The cases within each series are disting-
TABLE II. Level shifts and resonance widths for s-wave resonances of a square well with a square barrier. Comparison is made

of the shifts and widths calculated from transition operators evaluated using several choices for NMP = the number of Gaussian
points used to discretize the integral equation. The methods used are the Garside-MacDonald method (GM) and the alternative

Garside-MacDonald method (AG). The mass of the indident particle is m =1.0 u. The well radius is R, =3.5 fm. The barrier
height is V3 =40.0 MeV. The other parameters are Vy, = well depth, Ry — R, = well thickness, N = number of nodes in the
resonant state wave function, and A = approximate resonance energy. The quantities calculated are A == — A = level shift and I' =
resonance width. Energies are in MeV and lengths are in fim. The notation 4 —n means 4 x 107"
N=2 Vy =40.0 A=94
Ry—Ry=2 Ry—Ry =5 Ry—Ry, =8
NMP A(GM) I'(GM) I'(AG) A(GM) I'(GM) I'(AG) I'(GM) I'(AG)
20 -0.262 -1 0.190 -0 0.191 -0 -0.114 -4 0.138-3 0.138-3 0.927 -7 0.920 -7
28 —-0.283 -1 0.190 -0 0.192-0 -0.148 -4 0.142-3 0.138-3 0.967 -7 0.966 — 7
36 —0.280 -1 0.191 -0 0.191 -0 -0.143 -4 0.138-3 0.136 -3 0.987 -7 0.959 -7
44 -0.272 -1 0.188 -0 0.190 -0 -0.148 -4 0.140 -3 0.137-3 0.962 -7 0.954 -7
56 —0.301 -1 0.194 -0 0.191 -0 -0.119-4 0.133-3 0.136 -3 0.958 -7 0.966 — 7
68 -0.285 -1 0.191 -0 0.191 -0 -0.114 -4 0.134-3 0.136 -3 0.970 -7 0.966 -7
80 -0.292 -1 0.190 -0 0.190-0 -0.114 -4 0.135-3 0.136 -3 0.961 -7 0.965 -7
A(EX) =0.622 -1 A(EX) =-0.405—-4 INEX) =0.963 -7

I'(EX) =0.192-0

I'(EX) =0.137-3
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uished by the choice of the barrier thickness Ty
=Ry - Ry, which ranged between 2 and 10 fm. This
produced for each series a range of values for
resonance widths that went from about 0.1 to about
10""MeV. The calculated values for the level
shifts proved erratic for values less than about
10"% MeV and so are shown for the smaller barrier
thicknesses only. The results are displayed on
Table 1.

The widths given by the WW theory are generally
in poor agreement with the exact widths. The
widths given by the other three methods—the al-
ternative WW theory, the GM theory, and the al-
ternative GM theory—are in good agreement with
each other and in good agreement with the exact
widths. No very striking improvement is observed
for the smaller widths as compared with the larger
widths. The alternative WW theory widths seem
to be slightly better than the GM theory widths ex-
cept for the smallest value of the barrier thick-
ness.

The relatively poor value of the alternative Ww
theory width at barrier thickness 2 fm is a conse-
quence of the failure of our well depth alteration
to get a completely nonresonant scattering wave
function because the resonance width is very large.
On the other hand, the fact that the GM theory and
alternative GM theory do not do quite as well as
the alternative WW theory for the other widths is
a consequence of a certain amount of instability in
the matrix inversion scheme used to solve the in-
tegral equation for the transition operator. This
instability is demonstrated in Table II where some
GM theory and alternative GM theory resonance
widths and energy level shifts are given which were
calculated from transition operators evaluated us-
ing different numbers of Gaussian points to dis-
cretize the integral equation. It is seen that as the
number of Gaussian points assumes various values
between 20 and 80 the calculated width oscillates
back and forth around the correct value by as much
as 6%. This instability may be related to the lack
of smoothness of the square well and square po-
tential barrier.

The level shifts that result from the GM theory
calculation give good agreement with the exact
level shifts for the cases in series a and series b
while the WW theory and alternative WW theory
level shifts do not. On the other hand, for the
cases of series c the level shifts given by the
three theories are in rough agreement with each
other but are about half the exact value. We are
at a loss to explain this outcome.

The alternative GM theory calculation of the lev-
el shift was not performed because it would have
been too time consuming.

At this point we can make a remark about the ap-

TABLE Ill. Resonance widths and resonance energies for
s-wave resonances of a square well with a square barrier.
Comparison is made of the resonances energies and widths
calculated using several different choices for A = the approxi-
mate resonance energy. The values of = = the resonance en-
ergy and I' = the resonance width are calculated by the exact
method (EX), the Garside-MacDonald method (GM), and
the alternative Garside-MacDonald method (AG). The mass
of the incident particle is 1.0 u. The well radius is Ry, =3.5
fm. The barrier height is V3 =40.0 MeV. The other parame-
ters are Vy, = well depth, Ry — R, = well thickness, N =
numbers of nodes in the resonant state wave function, and
A = approximate resonance energy. Energies are in MeV and

lengths are in fm. The notation 4 —n means 4 x 10 ™.
N=1 V=108 Ry-R,; =30

A =(GM) 1'"(GM) I'(AG)
1.07418 1.07002 0.112903 -2 0.112005 -2
1.073334 1.07002 0.112862 -2 0.111965 -2
1.07251 1.07002 0.112824 -2 0.111919-2
1.07168 1.07002 0.112784 -2 0.111876 -2
1.07085 1.07002 0.112744 -2 0.111835-2
1.07002 1.07002 0.112705-2 0.111788 -2
1.06919 1.07002 0.112667 -2 0.111741 -2
1.068 36 1.07002 0.112624 -2 0.111704 -2
1.06753 1.07002 0.112585-2 0.111658 -2

Z(EX) =1.07002 I'(EX) =0.113239-2

N=2 1, =400 Ry, -R, =20

A =(GM) 1 (GM) I'(AG)
9.46083 9.37090 0.193655-0 0.192611 -0
9.42973 9.37060 0.193971 -0 0.192411 -0
9.39863 9.37028 0.194270-0 0.192263 -0
9.36752 9.36996 0.194566 —0 0.192080 -0
9.33642 9.369 64 0.194853 -0 0.191893 -0
9.30532 9.369 32 0.195128 -0 0.191697 -0
9.27422 9.36900 0.195389 -0 0.191496 -0

Z(EX) =9.336 42 I'(EX) =0.192296 -0

N=2 V=400 R,-R, =50

A Z(GM) 1'(GM) I'(AG)
9.39867 9.39861 0.142217-3 0.138317-3
9.39865 9.39861 0.142217 -3 0.138316 -3
9.39863 9.39861 0.142220-3 0.138317-3
9.39861 9.39861 0.142221 -3 0.138316 -3
9.39859 9.398.61 0.142220 -3 0.138316 -3
9.39857 9.39861 0.142218 -3 0.138317-3
9.39853 9.39861 0.142218 -3 0.138316 -3

=(EX) =9.39859 I'(EX) =0.136624 -3

proximation made in Eq. (37) of replacing the ex-
act resonance energy = by the approximate energy
A. It is assumed that our expressions for the
width I" and level shift A=%_ A are essentially
constant for variations of the energy of the order
of magnitude of A about the value A. We have ver-
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ified this for all cases by evaluating our expres-
sions for I" and A for a range of energy values.
This is illustrated for a couple of cases in Table
1.

VI. CONCLUSIONS

For resonances in the scattering of a particle by
a square well with a square barrier we find that
the standard form of the Wigner-Weisskopf (WW)
theory does poorly in predicting resonance
widths and resonance level shifts. The resonance
width predicted by WW theory is much improved
if the continuum function used in the calculation
is taken to be approximately equal to the exact scat-
tering wave function off resonance. Thisisdone
inthealternative WWtheory. The resulting reso-
nance level shifts remain poor.

The only formalism that was found to do well for
both widths and level shifts was the Garside-Mac-
Donald formalism wherein the level shift and the
width are taken to be the real part and (-2X) the
imaginary part respectively of the expectation val-
ue of the off resonance elastic scattering operator
with respect to the resonant state.
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