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In the usual models of high-energy bound-state to continuum transitions no account is taken of the

orthogonality of the bound and continuum wave functions. This orthogonality induces considerable

cancellations in the overlap integrals expressing the transition amplitudes for reactions such as (e,e'p),
(y,p), and (w, N), which are simply not included in the distorted-wave Born-approximation calculations

which to date remain the only computationally feasible heirarchy of approximations. The object of this paper
is to present a new formulation of the bound-state to continuum transition problem, based upon flux

conservation, in which the orthogonality of wave functions is taken into account ab initio. The new

formulation, while exact if exact wave functions are used, ofFers the possibility of using approximate wave

functions for the continuum states without doing violence to the cancellations induced by orthogonality. The
method is applied to single-particle states obeying the Schrodinger and Dirac equations, as well as to a
coupled-channel model in which absorptive processes can be described in a fully consistent manner. Several

types of absorption vertex are considered, and in the (m, N) case the equivalence of pseudoscalar and

pseudovector m NN coupling is seen to folio~ directly from wave function orthogonality.

NUCLEAR REACTIONS Orthogonality constraints on bound-continuum tran-
sitions. Applied to Schrodinger, Dirac, and coupled-channel wave functions,
describing (e, e'p), (p,p) and (n, N) reactions on nuclei at medium energies. New
form of DWBA. Equivalence of pseudoscalar and pseudovector coupling in (x,N).

Relativistic corrections vs high momentum components in (y,p).

I. INTRODUCTION

Reactions such as A(v, N)B or A(y, N)8 are inter-
esting because of the possibility that they can shed
light on the high Fourier components of nuclear
single-particle wave functions at momenta consid-
erably larger than the Fermi momentum k~-250
MeV/c. The amplitudes for such reactions have
the form

hence cannot be neglected, e.g. , in the spirit of
the long-wavelength approximation. ' The problem
is therefore to evaluate (1) with P large, but with

out neglecting k, or at least tb determine the lead-
ing contributions in a feasible scheme of approxi-
mation.

To make the above remarks more explicit, let
us consider the simplest possible case, where a
single nucleon bound in a potential is ejected into
a continuum state of the same potential. The am-
plitude is then

where the state IA) is usually the ground state of
the target, and the state I 8;p) is a continuum
state of the nuclear Hamiltonian asymptotic to a
nucleon with momentum p and the state IB) of the
residual nucleus, and with incoming wave boundary
conditions, The conditions under which these reac-
tions are performed at medium energies require
the momentum P to be large compared with k, by
virtue of energy conservation; that is,

z= (2M w+ w'}"
where

is the energy ur(k) introduced by the absorbed par-
ticle, less the nucleon binding energy b. On the
other hand, the momentum k is generally not small
on the scale of the initial nuclear state IA), and

Ag(k;()) fd'x()'(*=)5(( )e"', (4)

where 6 is some operator on nucleon position and
spin coordinates. If the absorbed particle is of
scalar character, then 6=1; as Amado and Wolo-
shyn have recently pointed out, ' A&(k; 1) must van-
ish in the limit of small k, by virtue of the ortho-
gonality of the bound and scattering wave functions.
That is, even though the wavelength of the final nu-
cleon is very small, we cannot simply replace the
state QI '*(x) by (e ' '

/(2v) ), thereby obtaining
the Fourier transform of the bound state,

A (&o)(k; 1) = g(p —k), (5)

since the rescattering part of P&
' (x) will contri-

bute something of order —iT(p) to AI(k;1), because
of the orthogonality. Similarly, we should expect
rescattering corrections to be important in, deter-
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II. NONRELATIVISTIC SINGLE-PARTICLE DYNAMICS

A. Scalar probe

We begin with the amplitude

(6)

where 4i& '(x) and 1)i(x) are solutions of the Schro-
dinger equations

[&'+ P' —2M V(x)]gy '*(x) = 0,
[&' —w' —2M V(x) )g(x) = 0.

(7)

(8)

The orthogonality of the functions (It) and P is shown
as follows: Multiply Eq. (7) on the left by i(i(x) and

mining the large-p, fixed-k behavior of Eq. (4), or
Eq. (1), even when the operator 8 [or the integral

f d'xj(x)] is not a c number.
The object of this paper is to set forth a new

method for systematically approximating matrix
elements such as Eq. (1) or Eq. (4), without doing
violence to the cancellations imposed by the ortho-
gonality of the nuclear states. The method is
based on the cooi dinate-space representation of
the dynamical equations of the nuclear wave func-
tions, and is related to the method recently em-
ployed by Amado' to determine the high momentum
behavior of Hartree- Fock wave functions. In Sec.
II, I shall treat the simplest case, in which a, sin-
gle particle moves in a static, real potential, ac-
cording to the nonrelativistic Schrodinger equation.
The absorbed particle will be taken to have either
scalar or vector (photon) character, and I shall
exhibit explicitly the result reported by Fink,
Hebach, and Kummel, ' that wave-function ortho-
gonality suppresses strongly spin-flip (magnetic)
photoabsorption relative to the convective part of
the ampl. itude. In Sec. III, we shall consider the
same sort of thing applied to the Dirac equation,
with a view toward obtaining useful large-P ap-
proximations for (e, e'iO), (w', p), and (y, p) reac-
tions. An interesting point found in this connection
is that the recently reported result of Miller and
Weber, ' in which they found that the (p, m') ampli-
tude depends strongly on whether pseudovector or
pseudoscalar ~AN coupling is used, may be an arti-
fact of the use of (nonorthogonal) plane waves to de-
scribe the continuum. That is, Friar's recent re-
sult on the near equivalence of the two types of
coupling, obtained through judicious application
of commutation relations, ' is reproduced here as
a consequence of wave- function orthogonality. Fin-
ally, Sec. IV is dedicated to the problem of inel-
asticity. A simple coupled- channel model which
contains many of the ingredients of more realistic
systems is investigated in detail.

Eq. (8) by Q&
' (x) and subtract, thereby obtaining

the relation

4i&
' (x) p(x) = —(p'+ v') ' v ~ J(x),

where

(9)

J(x) = q(x) &41 '*(x) —4 y' '*(x)74(x) (10)

Clearly, since |)i(x) vanishes as (e "*/x) for large
x, the surface integral of J(x) over a sphere of ar-
bitrarily large radius, centered at the origin, van-
ishes, and we may therefore apply Gauss's the-
orem to write

&**0i' "("liI")= —(i'*+ ) f&*'*''i J( )

which expresses the orthogonality.
To obtain A&(k; 1), we multiply Eq. (9) by e'I'"

before integrating, so that

(12)

and we apply the identity

e' ' & J(x) -=& [e' '~J(x)] —ik. J(x)e'"'~,

together with Gausss' theorem, to find

A, (k;1)= (0*~ ')'f d' e"'ik J(x). (13)

We see that the right-hand side of Eq. (13) vanishes
as k-0, as it should. To make Eq. (13) useful for
practical calculations, we integrate once more by
parts and add and subtract ip to &, obtaining, a t
last,

vi(i(x) = -xmas(x); (16)

d'xe'"'~k. ~+ip y,'-'* x q x .
(14)

The virtue of the operator &+ip is that it projects
off the plane-wave part of P& '*(x). The motivation
for integrating by parts to remove &P(r) is that it
is the bound-state wave function whose structure
we hope to elucidate through the reaction amplitude
AI(k; 1); generally, we have a much better idea of
the gradient of the scattering state Q& '(x), by vir-
tue of its large momentum, than of the gradient of
the bound state. For example, the approximation

~P& ' (x) = ip(p' —2M-V(x))'~'4i& '*(x) (15)

(the "local WKB" approximation) seems ab initio
more reasonable than, say,
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yet something like Eq. (16) is the best we can do
in the absence of detailed knowledge of i()(x). If
we take Eq. (15) seriously, we obtain for (14)

A (k. 1)
-2Mk P/P

(p —k) + ~

d~x e~~ «(II)N~
) x V x y x (17)

Equation (17) is suitable for further approximation;
however, it is interesting to note that if (P&

' (x) is
now replaced by a plane wave, we find in the limit
of large p

Ay(k; 1)—
())(p k),

which, for potentials of reasonable shape, expres-
ses the leading large-p behavior of Al(k;1). We
see that the orthogonality has greatly reduced the
amplitude from the plane-wave Born approxi-
mation, Eq. (5), in fact by the factor (k'/
2M'&(k))'~3

B. Nonrelativistic ( y, p ) reaction

The nonrelativistic amplitude for (y, p), under
the same assumptions obtaining in IIA, is propor-
tional to

e (~ —&) a kxe
Ay k,

2M
+ ~~ 2M

d3+ 4
(-H'( )

i)6 jT e ( )q ~ &'7 V')

0 ~ kx~
2M

where the photon polarization q is transverse,
q ~ k=0. The convective amplitude is of course not
affected by orthogonality per se, since [as in Eq.
(13)) the gradient coupling ensures that the radial
integrals will involve different partial waves, which
are not in general orthogonal. (That is, the orthogon-
ality of different partial waves is taken care of by
their angular dependence, and not by their radial
dependence. ) We may thus write, in the same spir-
it as was used in going from Eq. (14) to Eq. (17),

(
(v —&) . e'p p+k+K

Ay k;g ~ =i
2M p (p k)3+ x3

d'xe'" «Q&
' x Vx gx . 20

On the other hand, since the operator cr ~ k x & does
not mix orbital angular momenta, we may expect
some cancel1.ation in the magnetic photoabsorption
term, resulting from radial wave-function ortho-
gonality. We find, by means of the same manipu-
lations as employed previously, that

dk

+g kp ][Lp d x8 (I|)p x V x (T k x & — V x, 0 ~ k x
(p —k '+ ~' (21)

Equation (21) makes clear that a considerable can-
cellation takes place, compared with the plane-
wave approximation. The ratio of magnetic to con-
vective (y, P) cross sections, treating Eq. (19) as
though P&

' ma, y be replaced with a plane wave, is

(fc" (i),,k/p)'
do~ sin'e (22)

On the other hand, when the orthogonality of the
wave functions is taken into account, the ratio (22)
is reduced by factors such as (k/p)' or (V, , /V, )',
where V, is the strength of the nucleon, spin-or-
bit potential and V, is the strength of the central
potential. The net result is to reestablish the con-
vective term as the dominant contribution to (y, p)
at medium energies, particularly in the 1s or 1p
shell nuclei, in agreement both with experiment'
and with the calculations of Fink et al. '

III. SINGLE-PARTICLE STATES SATISFYING

THE DIRAC EQUATION

A. Scalar probe

We suppose the bound and continuum states to be
eigenstates of the Dirac Hamiltonian

Fl= in ~ &+-P[M+ U(r)]+ V(r), (23)

where we have assumed a central potential which
is of mixed character under Lorentz transform-
ation: PU(r) is a scalar, whereas V(r) is the
fourth component of a 4 vector. Then we shall be
interested in amplitudes of the form

k,(k; 6) = fd *"':dl "(&66*(e (24)

Clearly, B&(0; 1) vanishes identically. To proceed
further, we must attempt to eliminate the off-di-
agonal matrix k ~ n. Writing

i&(P( )3 ~ nn ~ k+ (P 't[P(M+ U)+ V- E3]n ~ k=0 (27)

where 8 is a 4 x 4 matrix and g and Q are Dirac
spinors. The amplitude B;(k; 1) is obtained by not-
ing that (HP=E, P)

-i'7 4y' "(x)nl(x)=(E, -E.)4i' "(x)(((x), (25)

so that

3(k;()= (3 ee) ' f6' 66 ( )k ~ 6(x)e'"'. (66)
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-i n ~ ka ~ &g+ a k[P(M+ U)+ V- Eo]())= o,

we find

(Eo+ Eo 2V)—go )'Z' ~ k())=i/;( )tk ~ (&- &)() —V ~ [P& 'tk

xone],

so that

j|,o jfX'*x"'(,' "(x)tx X()(x) = ' fX
Eo+Eo- 2V(x

f& R

x (())
( '~(x)k ~ (v —v)(l)(x)+ p&

' (x)k x o())(x) ~ &

Substituting Eq. (30) into Eq. (26), we see immediately how Bi)(k; 1) reduces to A;(k; 1) upon nonrela-
tivistic reduction.

B. Photoabsorption

The relativistic photoabsorption amplitude is proportional to Bi)(k; n ~ e) (in the absence of anom-
alous magnetic moments), which we see from Eqs. (28) (30), is given by

&& X

xx(x; O = ' fx * *x (,' "(x)x (x - x)('( ) x '* ( x' "( )x ('( )
Eo+ Eo —2V x Eo+ Eo 2V x-

(26)

(29)

(30)

(31)

(u(k)+ E, = E, (34)

we find, upon repeated application of the Dirac
equations for Q&' ' and $, that the amplitudes may
be cast in the forms

In the nonrelativistic, limit, Eo+Eo-2M, M» I VI,
Eq. (31) reduces to Eq. (19) except for the anom
alous magnetic moment of the proton, which must
be put in by hand. (See, e.g. , Friar. ')

C. Pion absorption (n+, p) or (g,p)
The two kinds of mNN coupling in common use

are related by the equivalence theorem, "up to a
point: Let us compare pseudoscalar (PS) and
pseudovector (PV) coupling, for which the ampli-
tudes (assuming the nuclear potential lacks a sym-
metry term) are proportional to

PS: G d'xQ& '~ x 3y'g x X&~' x (32)

and

PV: --- — d xy$ xPy P[-iQ'&, —(d k' qxx ' x

(33)

where yj'(x) is the coordinate-space pion wave
function. Using the fact that energy conservation
requires

Equations (35) and (36) reproduce Friar's result. o

It is perhaps worth remarking here that it is un-
reasonable to approximate the pion wave function
yj'(x) by a, plane wave, even near threshold, des-
pite the fact that the low-energy on-shell pion-nu-
cleus cross section is miniscule. The reason is
that the amplitudes (35) or (36) are so sensitive to
the off-shell behavior of the pion-nucleus scatter-
ing amplitude that even far from the 3-3 resonance
this is the dominant part of the amplitude. " How-
ever, supposmg that one couta replace )(~&'(x) by
e'"'", we see that, were it possible to 'neglect the
potentials U and V in comparison to the mass, both
(35) and (36) would vanish as k-0, as a conse-
quence of wave-function orthogonality. With re-
alistic potentials, as described in the next section,
there can be substantial differences between PS
and PV, although probably not as extreme as
those found by Miller and Weber' in evaluating (32)
and (33) directly with (j).,' replaced by a Dirac plane
wave (orthogonalized to () by projection).

Finally, it should be noted that, to the extent the
"small" Dirac components can be neglected, a
matrix element of the form

X&' xPs: iC d'xy,'-" x g~q x V
Eo+ Eo —2V x)

PV: zo d'xy, '-~~ x)

„x-~ -„) x((&+o( )/xOx)'(x))
Eo+ Eo —2 V(x)

(35)

(36)

will undergo still more cancellations, and is ex-
pected to be of order (I,/p or (V, , /V, ), exactly as
we found for Eq. (21).

D. Estimating the relativistic corrections

In order to estimate the differences between,
say, Eq. (26) and Eq. (14), or between Eq. (31) and
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Eq. (19), we need a model of the potentials U(x) and

V(x). The nonrelativistic reduction of the bound-

state Dirac equation, via the elimination of the
small components of the wave function, leads to
the two-component spinor equation (Z, =M-B}

[8 + U(x)+ V(x)]u(x)

-o . &[2M-8+ U(x) —V(x}] 'g Vu(x) =0, (38)

and so, clearly, U(x)+ V(x) must have something
like the shape of a Woods-Saxon potential of depth

50 Me V, if they are to reproduce the nonrelativ-
istic phenomenology. Letting

U(x) = Uof(r),

V(x) = Vg(r),

f(r) = [I+exp[(r —II)/a] j ',
(39)

we see (U, + V,)[1+(U, —V,)/2M] = -53 MeV. On
the other hand, we see that Eq. (38) also contains
a spin-orbit interaction of the approximate form

—(U, —V) - -1 1
2M [1+(Uo —Vo)/4M] r dr

so from the empirical low-energy nucleon-nucleus
spin orbit interaction strength, "we have

Uo- ~o
1+ (Uo —Vo)/4M

(40)

so that Uo 295 MeV and Vo 222 MeV
If these values are applied to scattering, we find
the effective potential in a Schrodinger equation
for the Pauli spinor w'ave function to have a well
depth

=-53+0.24(E~- M) MeV. (41)

Equation (41) agrees rather well with the central
part of the real potential found in optical model
fits to nucleon-nucleus elastic scattering at ener-
gies up to 150 MeV"; several authors" have point-
ed out that this is not fortuitous, so we probably
ought to regard this Dirac equation model for sin-
gle-nuclear wave functions as not completely fool-
ish.

Let us now inquire how the presence of V(x) in
Eq. (30) introduces corrections to the nonrelativ-
istic form, Eq. (14). We concentrate on the grad-
ient terms, and ignore the small components, in-
tegrating by parts to obtain, to lowest order in
V(x)/M,

-k ((p k)' « )'f—d'* '"''«k'.' ' ( ) k( ) ((p k)'+«'] ''k d "«'«!''k(«) k(«).

(42)

Of the corrections in Eq. (42), the dominant one is
evidently that involving k VV(x)/M. Since, for a
central potential, VV(x) mixes partial waves just
as V —V' does, we do no violence to orthogonality

effects Per se by comparing this correction with
the leading term" in plane-wave approximation.
Thus, following the local WEB approximation and
then setting (f)&

' (r) = =(e '+~/(2v)' '), we find

Uo+ Vo

2 ~«

+ It)(p k) ' +i(2()) ' '[(p —k)'+v'] 'M ' d'xk xe'" ~'~v'(~x~)(t(x).238 Uo+ Vo

It is easy to see that the first and third terms of Eq. (43) are indeed the dominant ones. At energies
typical of photoabsorption, electrodisintegration, or meson absorption, i.e.«k 100 MeV/c, p 430
MeV/c, we find the ratio of the first and third terms to be approximately

M R2i(1+ V,/M)(U;/V, + Z,/M)
P I p k I [R'+ (ma)']'"

(43)

x cot( ~p —k (ff -kfw)[cos( ~p —k ~8+ cos '[R/[R'+ (za)']'1'j)] ', (44)
I

where the potential was assumed to have a Woods-
Saxon shape with radius R and surface thickness a,
as in Eq. (39). The terms tend to be out of phase
by a, factor i, so their squares must be added to

get the differential cross section. Moreover, their
angular oscillations tend to be out of phase, as is
clear from the trigonometric factors in Eq. (44),
so that the smaller will fill in the minima of the



2156 J. V. NOBLE 17

larger. Disregarding the (oscillatory) trigonomet-
ric factors in (44), we see that the smaller (third)
term is about 10-20% (in strength) of the larger
(first) term. The third term gradually becomes
more important with increasing energy &d(k), be-
coming domin'ant for (d 200 MeV.

Next, we estimate the effect of dropping the
small Dirac wave- function components within the
framework of the model defined by Eqs. (23) and
(39). We see that a small component ({&~(x) is re-
lated to its corresponding "large" component g~(x)
through the Dirac equation, which gives

ff, ~n) =&„~n),

h is the single-nucleon Hamiltonian

g2
h= — + V(r),

(48)

(49)

(r ~4',) = Q ()„(rj ~ n), (50)

and v is the channel-coupling potential. If we ex-
press the initial and final nuclear states as linear
combinations of intrinsic states,

({)z(&&) = —z[E+ ('11 + U(x) —V(x)] 'o V(t)~ (x). (45) (@
~ ~

~) = Q (n
~ y „' '*(r), (51)

The first term of Eq. (42) would then contain an ad-
ditional factor of approximately

P' —2MU, —2E~V
( )

(Eq+ M+ U, —V,) (2M —B + U, —V,)

in addition to terms of order k' and of order V[U(x)
—V(x)], analogous to the second and third terms in
Eq. (42). The additional factor (46) is roughly
1.14, for the case we have been considering [k 100
MeV/c = &d(k), P 430 MeV/c].

Although the above analysis for B,.(k; 1) pertains
to inelastic longitudinal electron scattering form
factors, it is evident from Eq. (31) that a similar
analysis will hold for the convective term in photo-
absorption, with the difference that (k p)p is re-
placed by e p in the first term of (43), the second
term vanishes because of the orthogonality of k
and e, and in the third term (k x)/[(p- k)'+ &&'] is
replaced by i ~.. The ratio of the first and third
terms will still be given by (44). The preceding
remarks about the relative effect of these terms,
and particularly its energy dependence, are es-
pecially relevant to the recent analysis of "0(y,p)
data in the energy range from 60 to 200 MeV, by
Findley and Owens, " and Matthews et al."

then we expect the amplitude to absorb a scalar
particle of momentum k to be of the form

(52)

The second term of Eq. (52) represents the possib-
ility that the scalar particle can be absorbed by the
potential, perhaps accompanied by a transition
from state n to state n'. We suppose the probability
amplitude for this to happen is given by M»„(k),
where the transition form factor F»„(k) has the not
unnatural property

F„,„(k= 0) = 5»„, (53)

and is an appropriately continuous function of k.
The dynamical equations for ({&„(r) and (P„' '*(r)

are [we assume v(r) has only off-diagonal matrix
elements]

IV. EFFECTS OF INELASTICITY

In order to investigate the effects of inelasticity
without becoming lost in complexities, let us con-
sider a single nucleon moving nonrelativistically
in a potential which has intrinsic degrees of free-
dom. The Hamiltonian is

= (E, —&„)({).(~& (54)

H=H, +a+ v, (47)

where H, is the Hamiltonian of the intrinsic states By virtue of Eqs. (54) and (55), we find

(E& —E()Q& ' (r)({&„(r)=——V [({&„(r)V(t)& ' (r) —(t)& & (r)V({&„(r)]

(56)+ g[(t)&&*(r)({&„(r)(Im~v(r) ~n) —(p& ' (r)({) (r)(n~v(r) ~m)].
mAn

When we sum over n and integrate, the potential term drops out, leaving the volume integral of a, diver-
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pence, which vanishes, as before. Thus,

(57)

A similar relation to Eq. (56), for P(, ' (r)(„(r), is easily found by similar manipulations. By means of (56)
and its equivalent with n'+n, we may show that

(58)

We see that Eq. (58) explicitly vanishes at k = 0,
precisely as we should have expected from Eq.
(52), (53), and (57). Exactly as in Eq. (14),
however, the cancellations which are implied by
wave-function orthogonality have taken place, so

~, k+

that subsequent approximations will not do vio-
lence to them. Although Eq. (58) is in principle
exact to all orders in &, we can identify various
terms with the leading diagrams in perturbation
theory, according to their behavior in the limit of
small v. The part of the first term in (58) with
n =0 corresponds to the lowest-order diagram,
Fig. 1(a). The terms in the sum with n xO are a
vertex renormalization, Fig. 1(b).

The term involving [l(, F(k)] corresponds, in
leading order, to Fig. 1(c), which can be regarded
as another sort of vertex correction. Finally, if
the commutator [v(r ), F(k)] does not vanish, the
latter term of (58) gives rise to diagrams like
Fig. 1(d). To give a concrete example of a circum-
stance in which this commutator will not vanish,
let us consider longitudinal electroproduction, with
the nucleus regarded as a proton outside an exci-
table "core'* of charge Z. The core form factor is
given by

x)'(k)= ,zf d're'"'[p( -')+T,(F)), (59)

(b) (c)
where the operators p(r) and T,(r) satisfy commu-
tation relations

[T;(r), p(r')] =0, i=1, 2, 3,
[T;(r ), T&(r')] = 6(r —r')e„.„T~(r ) . (60)

(cI )

FIG. 1. (a) Lowest order graphs for absorbing a spin-0
particle of energy ~ and momentum k, including the
effects of initial-state correlations as well as final state
rescattering (with inelasticity). (b) Dispersive correc-
tion to the absorption vertex, required for consistency
with initial-state correlations and final-state rescatter-
ing effects. (c) Correction to the absorption amplitude,
which is present if the excitable "core" can interact
with the external "probe" independently of the valence
nucleon. (d) Possible additional corrections to (c),
which could result, e.g. , in electrodissociation (e,
e'p), if the p-core interaction is charge dependent.

The interaction v(r) will in general have a charge-
dependent part

v (r) = vo[p(r) —(Ojp(r)]0)]+v, T(r) v, (61)

which will not commute with the isovector part of
XF(k). If we regard the operators p(r) and T;(r)
as particle-hole operators in the "core" subspace,
we see that they excite both collective states as
well as continuum states and in this way generate
a quite realistic spectrum. The commutator then
has the form of a local operator in the valence-
particle space, which is at the same time a par-
ticle-hole operator in the core space:
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A[v(r), F(k)] =-,' v, e' '"((r, +i T)[T,(r) —iT,(r)]
—(r, —i r,)[T,(r) +i T,(r)]},

(62)

hence the form of Fig. 1(d).

V. SUMMARY AND CONCLUSIONS

By judicious application of the divergence theor-
em, I have derived a new method for expressing
certain reaction amplitudes which are of particular
interest in medium energy nuclear physics. The
virtue of the new f ormulation is that it takes into
account the orthogonality of initial and final nuclear
states ab initio, and, therefore, represents in

many cases a better starting point for approxima-
tions than the schemes presently in use. I have
illustrated the use of the technique for nonrelativ-
istic and relativistic one-body problem, as well as
in a simple model of a many-body system. Clearly
the latter represents a fertile area for further in-

vestigation, and one which is absolutely essential
to the formulation of a theory which consistently
includes absorptive mechanisms in the nuclear
dynamics. Certainly, it is not possible to draw
completely definitive conclusions about pion or
photon absorption without including absorptive ef-
fects, although I do not expect the qualitative con-
clusions drawn herein to be greatly altered there-
by.

In the process of illustrating the new method, I
have rederived some familiar results, e.g. , the
equivalence theorem and the suppression of the
magnetic term, relative to the convective term, in

(Z, p). I have also derived some new and potentially
interesting results, particularly with reference to
relativistic corrections in the single-body model
of (y, P), which should be investigated further be-
cause of their application to the question of the
necessity for, e.g. , two-step intermediate-b,
mechanisms to explain the higher energy (y, P)
data of Matthews, et al. '
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