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The annihilation widths of nP Pp bound states (protonium) are calculated in the %'entzel-Kramers-

Brillouin approximation for a totally absorbing sphere, including the coupling to nrl states. It is shown that
the annihilation occurs preferentially in one of the two possible isospin eigenstates, and that on the average it
is 100 times stronger than the radiative 2I'-1S transition. A simple formula. for the n dependence of the
annihilation widths is also given.

NUCLEAR REACTIONS. Protonium PP, calculated P-state I".

Recently we presented a black sphere model for
the linewidths of kaonic and antiprotonic atoms, '
in which the widths are calculated in the %KB ap-
proximation from the barrier penetration factor

I" =n 'mn'(2v) 'e ',
rl

I= ~(r)dr, K = (2mV, tT
—2mB)'~'.

R

The effective potential V,ff included only the Cou-
lomb and centrifugal potentials, and the integra-
tion in I started from an "absorption radius" 8
which was kept as a free parameter, -with a given
dependence on the nucleon number (the integra, tion
end point x, is the inner turning point of the Bohr
orbit). The main point of our present paper is that
for the P states of protonium, 8 can be calculated
from our knowledge of the long-range part of the
nucleon-antinucleon potential. %ith the PP and Nn

channels properly coupled and tensor forces in-
cluded, it turns out. that the total effective potential
becomes. attractive in all P-wave protonium states
at radii of about 1 fm. In the %KB approximation,
I' is then given by (I), where i~ is the local wave-
number in the presence of the full potentials, and
A is defined by w(B) =0. The imaginary part of the

PP optical potential is believed to be negligible at
distances larger than 1 fm. It therefore enters the
V/KB approximation only indirectly in the sense
that it eventually absorbs the wave which has pen-
etrated the potential barrier.

The use of the WEB approximation together with
an ingoing-wave boundary condition around 0.5 fm
has been previously advocated by Ball and Chew. '
More recent calculations have dropped the %KB
approximation but kept the boundary condition'
which means tha, t the approximation is still needed

locally around 0.5 fm, in order to define the mean-
ing of an ingoing wave in the presence of a poten-
tial. These authors considered only isospin eigen-
states, some of which have repulsive effective po-
tentials down to 0.5 fm. For such states, the ab-
sorption rates depend critically on the boundary
radius, and the model is inconsistent with a
smoothly rising ImV. For our P-wave protonium
states, on the other hand, this situation does not
occur when the Coulomb potential and the coupling
to the closed Hn channels are properly included.
It is then advisable to keep the %KB approximation
for the following two reasons:

Firstly, the dependence on the annihilation
boundary disappears completely. In fact, V(r) is
needed only for r &R, where R is 1-2 fm (see
Table I). Of course one cannot exclude the possi-
bility that reflection from the region x&A will
somewhat weaken the absorption. A measure of
this reflection is given by the real part of the com-
plex energy shift. For other antiprotonic atoms,
there are indications that this is a minor effect. '
But in principle, this could be different for pro-
tonlum.

Secondly, in the %KB approximation the coupled-
channel problem is reduced to equivalent one-
channel problems by a simple diagonalization of
the effective potential. The approximation here is
that the diagonalizing matrix U(x) in a given angu-
lar momentum state commutes with the kinetic en-
ergy operator. For the tensor force, the diagonal-
ization has been given by Christian and Hart, " but

for Pp atoms we must also include the coupling to
the nn states. In the L = J+ 1 states, we thus get
four coupled channels. It was just the proper cou-
pling between PP andnn states that went wrong i.n

a similar paper by Desai. ' As a result, Desai got
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TABLE I. The calculated annihilation widths of the 2P protonium states for various values
of the poorly known coupling constant combination Gp of Eq. (6). The most likely values of
Gp /47( are 35 or 25; the other values are only given for illustration. Also given is the inner
turning point R of the effective potential V,&f in the %KB approximation, and the dominant
isospin component in the annihilation.

Gp' /47r
R (fm)

Pi Pp 3p iP 3P
r (eV)

Pp 3Pz

35
25
15

5

1.24
. 1.13
0.95
0.45

1.34
1.26
1.13
0.90

2.39
2.39
2.38
2.37

1.53
1.48
1.43
1.36

0.029
0.024
0.016
0.004

0.032
0.028
0.022
0.014

0.194
0.193
0.193
0.192

0.045
0.042
0.039
0.035

P2/2m + Vc + Vp

V—Pn

V—
(2)

P'/2m + 26 m + V—„

where m = , m~, 6m—=m„—m~, Vc = o/r, and -V~
1

V Vp VQ is the Coul omb potential and V, the
diagonal part of the hadronic potential. After par-
tial-wave decomposition, diagonalization of II in
the WKB approximation gives rise to simple
"eigenpotentials. " For J=L or J=O, these are

V, =V, +2Vc+6m+ [(&m —2Vc)'+Vq —„']'~'. (3)

The long-range part of the nondiagonal potential
Vp

—„ is due to the exchange of charged pions Vp
—„

=2V

3 3
V, = ;'f' g g + —1-+ —+ —,S„e "r ', (4)

x =—m, r, f '= 0.079,

where S» is the usual tensor operator. In the case
of (3), V, is small compared with the isospin-
breaking part 5m —z V~; we can expand the square
root, getting

V (x»1) =V, +Vc —2V„'(6m--', Vc) ',
V, (x»1) = V, +26m+ 2V, '(6m--, Vc) '.

We see that U reduces to the Coulomb potential
for r-~. Therefore, if our initial state is a Cou-
lomb bound state, V is the appropriate potential.
Note also that we always have V, + V .

two different decay rates (one for each isospin)
for each PP state ' "L~ of given angular momen-
tum L, spin S, and total angular momentum J,
and in the end he simply took the average of these
two numbers.

The proper treatment of protonium states must
start from the coupled channel Schrodinger equa-
tion II&=E) in the space of PP and nn states

Ic(Pp)(

tq(nn) I

With II g =Eg, the isospin content of g is a func-
tion of r. At distances where the exchange of
charged pions is negligible, g is 2 '~'(~I=1)
+ ~I=0)). As r is decreased into the region of
charged pion exchange, tI rotates towards one of
the two isospin eigenstates. When the inner turning
point is reached, V~ and ~m are already negligible
with respect to V„and from here on g is practic-
ally a pure isospin eigenstate. From our remarks
following Eti. (6) it follows that y has the isospin
of the most attractive potential in this region. It
turns out to be I=O for the states 'P„'P, and I= 1
for 'P, . We thus get "dynamical" isospin selection
rules for the annihilation channels, which are valid
only within the accura, cy, of the WKB approxima-
tion.

For the spin-triplet states with L = J+ 1, one has
to diagonalize a 4X4 effective potential matrix.
Since pion exchange is responsible both for the
tensor force and for the charge exchange, all four
degrees of freedom come into play in the same r
region, and the diagonalization must be made nu-
merically. The four eigenpotentials never cross
each other (see Fig. 1). The eigenpotential which
contains the P-wave atomic PP bound state is the
most attractive one and turns into the I= 0 poten-
tial for small r (this shows that our isospin selec-
tion rule is not restricted by the number of coupled
channels). In Fig. 2 the wave function for this
eigenpotential is decomposed into amplitudes of
given orbital angular momentum and isospin.

In the actual calculation, we include ~ and cr, ex-
change in V„with a common mass m, in addition
to ~ exchange:

V, = (4mr) 'Go'-e ~" +V, , G, '—= G~'+G~'. (6)

Since I' is rather insensitive to Go within reason-
able limits (G,'/4m = 20-40), there is little point in
improving V, at the present stage. There are also
some long-range effects such as the, atomic fine
structure and the pion mass difference which will
slightly change I'.
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%e do not give any widths for the 1S states be-
cause the %KB approximation can hardly be
trusted in this case. The 2P widths are col].ected
in Table I. For comparison, the radiative 2P-1$
width is 3.V && 10 ' eV. It is likely that all 2P hy-
yerfine states are statistically populated, in which

case the average probability of radiative deexcita-
tion of the 2P states is 1.1%. If reflection from the
region beyond the inner turning point would de-
crease the annihilation widths uniformly, by as
much as a factor 2, then the radiative deexcitation
probability would reach 2.2%. In contrast, the 3D

annihilation width is very small compared with
the 3D-2P radiative width. ' Thus, in the absence
of Stark mixing, the annihilation is dominantly
from the 2P level.

Since Desai's average 2P annihilation widths are
of the same order of magnitude as ours, his esti-
mates of Stark mixing:and predicted dominance of
8-wave capture in liquid hydrogen are hardly af-
fected by our results. One should note that the
'P, width is almost an order of magnitude larger
than the other P-state widths.

For fixed I, the dependence of l on the princi-
pal quantum number n is obta. ined as follows: The
integral in (1) can be split into two pieces I=I,+I„

R

~(r)dr, I, = ~ (r)dr,

'where 8, is large enough tha. t the hadronic poten-
tial can be neglected in I, and small enough that
the energy E can be neglected in I, (this corres-

r(fm)

FIG. 1. Eigenvalues of the effective potential matrix
V for the P~-~F

&
channel as a function of ~. . The eigen-

potentials may be characterized by their behavior at
infinity: (a) -pp, p wave; (b) nn, p wave; (c) nn, f
wave; (d) -nn, f wave. In the neighborhood of the turn-
ing points, (a) and (c) correspond to isospin zero states
and (b) and (d) to isospin one states.

FIG. 2. Decomposition of the eigenstates of the poten-
tial U(a) of Fig. 1 into states (1-,1) of orbital angular
momentums. and isospin I. For small values of l, the
state (p, 0) dominates, although a substantial amount
of (f, 0) is present. Annihilation from small. values of
~ will preferentially lead to isospin zero final states.

ponds to putting n =~ in I,). The n dependence fol-
lows then from the evaluation of I, (Ref. 1):

I, = A. ln( 1'+ A. —y/X) + n ln(2 —y/n —Y)

—Y ——,(n+ X) ln(n' —)P) +X lnnA/y,

A. =1 +g, y= mA„Y= (A. —2y+y'/n')'

Using now y/A. «1, we find

(8)

which differs but slightly from the n ' dependence
assumed by Desai. Estimates ba, sed on perturba-
tion theory are drastically different, however, be-
cause they assume that the wave function goes as
r' in the annihilation region. Obviously, (9) ap-
plies to all kaonic and antiprotonic atoms which
have Zemi, «l+ z, with 8, = A in the case of
heavier atoms. It cannot be used for pionic atoms,
however.

Finally, we wish to criticize the normal optical
potential calculations for the linewidths of anti-
protonic atoms. Many nuclei of these atoms have
zero isospin, in which case pion exchange is com-
pletely eliminated if the optical potential is aver-
aged over the nuclear wave function. If nuclear
excitations are taken out of the optical potential
and treated explicitly, this is.no longer the case.
Because of the importance of pion exchange for the
annihilation widths, nuclear excitation should
therefore be essential. In fact, at least for "deu-
tronium" Pd, the closure approximation could give
better results than the normal optical potential
calculation.
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