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To take into account the expected partial transparency of nuclei during collisions at high energy, we
introduce a two-fluid dynamical model, in which coupled relativistic equations of motion are solved for
separate target and projectile nuclear fluids. The terms in the equations that couple the two nuclear fluids
are obtained from the cross section and momentum transfer for individual nucleon-nucleon collisions. At low
relative velocities the target and projectile fluids merge, in which case the conventional one-fluid dynamical
model is recovered. For a given nuclear equation of state and for given initial conditions, the equations of
motion are solved as functions of time for the nucleon number density, momentum density, energy density,
pressure, and velocity for each fluid. This is done in three spatial dimensions by means of a relativistic
generalization of a standard particle-in-cell finite-difference computing method for multiphase fluid-dynamics
problems. For each of several impact parameters, the velocity distribution at some large time is converted to
an energy and angular distribution for the expanding matter. Integration of these results over impact
parameter then gives the double differential cross section d20/dEdQ. For **Ne+ **U at laboratory
bombarding energies per nucleon of 250 MeV, 400 MeV, and 2.1 GeV, as well as for *“He + 2*U at a
laboratory bombarding energy per nucleon of 400 MeV, we compare calculated and experimental energy
spectra for outgoing charged particles at several laboratory angles. The calculations reproduce correctly the
experimental slopes at each angle, as well as the overall decrease in the experimental cross section when
going from forward to backward angles. However, for ’Ne 4 2**U at laboratory bombarding energies per
nucleon of 250 and 400 MeV, the calculated values at 30° are only one-third the experimental values. Also,
for *He + 2**U at a laboratory bombarding energy per nucleon of 400 MeV, the calculated values at all
angles are substantially smaller than the experimental values. As a prediction for future experiments, we also
use the theory in a context where our numerical approximations and simplifications (such as neglecting the
diffuseness of the nuclear surface) should be more reliable, to deduce results for 2*U + 2*U at
laboratory bombarding energies per nucleon of 250 MeV and 2.1 GeV. By means of a one-dimensional
calculation we also study the maximum compression and excitation that can be achieved in such collisions.
The maximum rest-frame compression is about 2.4 to 2.6 at a bombarding energy per nucleon of 250 MeV,
and is about 6 to 8 at a bombarding energy per nucleon of 2.1 GeV. The available energy is primarily in the
form of compressional energy, with little in the form of internal excitation energy. Significant rest-frame
compressions (greater than twice normal density for 250 MeV and greater than 3 times normal density for
2.1 GeV) are achieved for substantial numbers of nucleons and substantial time periods.

CLEAR REACTIONS *Ne+ 238U, E,./20=250 MeV, 400 MeV, 2.1 GeV; ‘He
28y, Epom/4=400 MeV; 28U+ 28y, E,,,/238=250 MeV, 2.1 GeV. Calculated
25 /dEdS: for outgoing charged particles. Relativistic two-fluid dynamical

model, nuclear equation of state, nuclear matter at high density and high excita-|
tion energy.
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I. INTRODUCTION

The description of a nucleus as a fluid drop has
been a useful tool almost from the beginning of
nuclear theory. It is natural then to study
nuclear collisions with the techniques of fluid dy-
namics. As in any such phenomenological ap-
proach, thegoal is to describe the response of a
system that contains many degrees of freedom by
means of a model which contains a few parameters
whose values are determined from comparisons
with experimental results. In the case of nuclei,
the parameters are interpreted in terms of
macroscopic or bulk properties of nuclear mat-
ter, expecially its equation of state.

Several attempts have already been made to

describe nucleus-nucleus collisions by means of

a conventional hydrodynamical model, '™° which
we refer to as a one-fluid model. In this model
both the target and projectile nuclei are treated
as drops of nuclear fluid which evolve according
to the laws of standard hydrodynamics. The
adjustable parameters in the model are associated
primarily with the nuclear equation of state, which
may be regarded as the unknown quantity to be
determined from comparisons with experimental
data.

An essential assumption in the one-fluid model
is that when two bits of nuclear fluid overlap, they
share their momentum and energy instantaneously,
coming to equilibrium as a single bit of fluid at
rest in the center-of-momentum frame of the
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two bits. While this assumption simplifies the
model, it is in contradiction with experimental
information from nucleon-nucleon collisions'®
and even nucleon-nucleus collisions.!™™® These
experiments suggest that at high energies, a
projectile deposits only a limited fraction of its
energy and momentum in a target. If this same
principle applies also to collisions of two bits of
nuclear matter, then the instantaneous equilibra-
tion assumed in the one-fluid model is incorrect
for large relative velocities.

In an attempt to take into account these results
from elementary-particle physics, we have
constructed a relativistic two-fluid model of
nuclear collisions, in which coupled fluid dy-
namical equations are solved for separate target
and projectile nuclear fluids. The model is
designed so that at high relative velocities the
projectile fluid deposits only a limited fraction
of its energy and momentum in the target fluid,
and vice versa, whereas at low relative velocities
the target and projectile fluids merge, in which
case the conventional one-fluid model is recovered.

We describe in Sec. II this two-fluid model, along
with the techniques that are used to solve it.
Some calculated results and comparisons with
experimental data are presented in Sec. III, and
our conclusions are given in Sec. IV.

II. TWO-FLUID MODEL

The equations of motion for the target and
projectile nuclear fluids express the conservation
of nucleon number, energy, and momentum, plus
the transfer of energy and momentum between
the two fluids. For a given fluid, the relativistic
equations of motion are analogous to those for
the conventional one-fluid dynamical model, 320
but contain, in addition, coupling terms that
describe the transfer of energy and momentum
from one fluid to the other when they collide.

As before, we neglect the surface energy, Coulomb
energy, nuclear viscosity, thermal conductivity,
and single-particle effects, as well as the pro-
duction of additional particles and the associated
radiative loss of energy from the system.

A. High relative velocities

When the relative velocity of the two fluids is
large compared to the Fermi velocities of the
nucleons comprising each fluid, the relativistic
equations of motion for fluid 1 are written as

ON,/ot+V«(V,N)=0, 1)
aM,/6t+V- (‘.ﬁﬁl): =Vp, =D, (v, ¥, =v57,)
-D,v\V, , (2)

and
3E, AtV (W E)==V - @Tp) =D, (v,-7>5)
-D,y,; (3)

those for fluid 2 are obtained by interchanging
the subscripts 1 and 2. Here N;, M;, E;, and ¥,
are the nucleon number density, momentum den-
sity, energy density, and flow velocity, respect-
ively, of fluid i in the calculational frame (which
we take to be the laboratory frame), and p; is the
pressure of fluid i in its rest frame. The com-
putational-frame quantities are related to rest-
frame quantities by® 420

Ni=vn;, (4)

M=y, 2e; + PV, (5)
and

E;=v;%(e;+ pi) —bi» (6)

where n; and €; are, respectively, the nucleon
number density and energy density of fluid ¢ in
its rest frame and y; = (1 - v,;%)~%/2, with velocities
measured here and throughout the paper in units
of the speed of light. The pressure p; of fluid
i is related to n; and €; through the nuclear
equation of state, which is discussed in Sec. IIC.
The coupling terms are derived by considering
the energy and momentum transferred to a free
target nucleon at rest when it is struck by a free
projectile nucleon, and then Lorentz transforming
the results to an arbitrary computational re-
ference frame. These coupling terms are re-
solved into parts that correspond to the conserva-
tion of total energy and momentum for the two-
fluid system and parts that correspond to the
radiation of energy and momentum away from
the system. The former involve the conservative
drag function

D, =N\ Ny, 0K/Y, (7
and the latter involve the radiative drag function

D, =N Ny, olK/(Y+1) -K' /Y] X?/Y, (8)
where?!

U =[ @, =72)" = @, x7,)7 /2. 9)

In the nonrelativistic limit, »,, is the magnitude
of the relative velocity of the two fluids. However,
for relativistic velocities v,y no longer has this
interpretation.

In Egs. (7) and (8), the product N,N,v,, gives
the Lorentz-invariant Mgller flux factor for two-
body collisions, 2! and ¢ is the total cross section
at the given relative velocity. The quantity « is
defined so that AV is the mean longitudinal mo-
mentum transferred to a nucleon at rest by an
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incident nucleon of velocity ¥, while K'v? is the
mean energy transferred to the struck nucleon.
Clearly, a two-nucleon collision imparts trans-
verse momentum to the struck nucleon. Averaged
over many collisions, this transverse momentum
vanishes, but the associated transverse kinetic
energy is included in the mean energy transfer
K'v®. The quantities X and Y are defined by

X =YYV (10)
and
Y= (X%+1)Y2, (11)

In the rest frame of one fluid, the invariant
quantity X is simply the momentum divided by the
mass of a nucleon moving with the other fluid.

In order that there be net energy loss rather
than net energy gain, the radiative drag function
D, must be positive, which means that A and K’
must satisfy the inequality

K'(X)<KX)Y/(Y+1). (12)

For two-nucleon collisions, K’ has also a lower
bound because the lowest-mass state with quantum
numbers of a baryon is a nucleon, namely

K'X*/ Y2+ my> (K2X?/ Y2 +m2)Y?, (13)

where m, is the nucleon rest mass. The specific
choices used for K and K’, as well as o, are dis-
cussed in Sec. IID.

The above drag terms describe friction between
the two fluids entirely in terms of two-body col-
lisions between nucleons moving with the velocity
of fluid 1 and nucleons moving with the velocity
of fluid 2. This is reasonable only if the relative
velocity of the two fluids is large compared to the
Fermi velocities of the nucleons comprising each
fluid. By neglecting the Fermi velocities, we are
underestimating the collision rate between fluid-
1 nucleons and fluid-2 nucleons, and hence, the
strength of the coupling between the two fluids.

In addition, the above formulation assumes that
the friction is independent of the degree of ex-
citation of either fluid, i.e., that excited nucleons
have the same cross section and accept the same
energy and longitudinal momentum as ordinary
nucleons when struck by other nucleons. This
assumption is made primarily to avoid introducing
unnecessary adjustable parameters into the theory,
but at least for very-high-energy collisions

(=15 GeV) it is supported by experimental data

on the production of 1.4 GeV N*’s in proton-nucleus
collisions.?? A possible later refinement would

be to permit the product 0 K to vary with the
internal energy of the fluids.
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B. Intermediate and low relative velocities

When the relative velocity of the two fluids is
less than the Fermi velocities of the nucleons
comprising each fluid, the target and projectile
fluids merge, and the conventional one-fluid
dynamical model is recovered. We accomplish
this transition by using an averaging procedure
during the early stages of each time step. As
discussed more fully in Sec. IIE, these early
stages consist of integrating modified versions
of Egs. (1)-(3) forward in time. The modified
versions include only the explicit 8 /6 terms and
the drag terms. Whenever the relative-velocity
variable X of Eq. (10) is less than an upper cri-
tical value X,, we perform these early-stage
integrations in two different ways; then we use a
weighted average of the two different results as
input for later calculational stages of the time
step.

In the first way of performing the early-stage
integrations, we use the two-fluid formulation
but multiply each of the drag functions D, and D,
by «(X), where «(X) varies continuously through
intermediate velocities from «w=1 at X=X, to
a=0at X =X,, with X, the lower critical value
at which the two fluids merge into one fluid.
Therefore, when the two fluids merge, the explic-
it drag of one component on the other disappears.
This first stage of integration leads to intemediate
values p; and V; for the two fluids considered
separately.

In the second way of performing the early-
stage integration, we define the total-fluid
quantities

N=N,+N,, (14)
M=M,+M,, (15)
and
E=E,+E,. (16)

The quantities p and ¥V for the total fluid are then
determined by solving the early-stage relativistic
equations of motion for the one-fluid dynamical
model.* For the next stages of the time step
[where we take into account the previously
ignored terms of Eqs. (1)-(3)], the pressure and
velocity of the ¢th fluid are taken to be

@i> =up;+(1- Ol)NiP/N am
and
(Vi)=a-\7i+(1—a)‘\7. (18)

In other words, the models that apply at high
relative velocities and at low relative velocities
are simply interpolated smoothly at intermediate
velocities.
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C. Nuclear equation of state

In order to study the effects of the two-fluid
assumptions, we have begun by keeping fixed all
other quantities in the previous one-fluid calcu-
lations, *''° including in particular the nuclear
equation of state. This equation of state is ob-
tained from the effective two-nucleon interaction
that consists of an attractive Yukawa function
multiplied by a quadratic momentum-dependent
term.?® This leads to a rest-frame energy per
nucleon €/ of the form

2/3 5/3
s=m0+a<1l—> —bn—+c<n—> +1—, (19)
n 7y 7, n, n

where m, is the nucleon rest mass, n,=3/4mr,*
is the equilibrium value of z, and I/n is the rest-
frame internal excitation energy per nucleon. In
this equation and below, the various quantities
that appear refer either to the combined nuclear
fluid for the entire system, or ta fluid 1 or fluid
2 separately.

For the specific choices® of 1.2049 fm for 7,
and -15.677 MeV for the nonrelativistic energy
per nucleon at equilibrium (excluding rest energy),
the values of the three constants that appear in
Eq. (19) are a=19.88 MeV, b=69.02 MeV, and
c=33.46 MeV. The resulting value of the nuclear
compressibility coefficient 9r,% 2(e/n)/3n?, is
294.8 MeV. These particular constants refer to
symmetric nuclear matter with zero Coulomb
interaction. If account were taken of the neutron
excess and Coulomb interaction present in heavy-
ion collisions, then the compressibility coefficient
would be reduced slightly.

The pressure p is obtained from the relation-
ship p =n® (e/n)/an|s, with differentiation at
constant entropy S. The relationship between
I/n and the nuclear temperature is taken from a
nonrelativistic Fermi-gas model for the thermal
motion of the nucleons relative to the hydro-
dynamic flow, for which n% (I/n)/an|g=31. This
is the exact result for a nonrelativistic Fermi-
gas model, instead of being true only to second
order in the nuclear temperature, as is often
implied. Finally, the pressure is given by

p=[3a(/n)™* —b(n/ne)?+ Fcln/ng)**Ing+ 31
=[=Emom/ng) = 3b(n/n)* + c(n/ng)?|ny + 3¢ .

(20)
Because of the (n/n,)%® term in Eq. (19), our
expression for the energy per nucleon leads to a
sound velocity v,= @p/d€|s)*/? that exceeds the
speed of light for n/n,>5.32, if the internal ex-
citation energy is zero. This is of course phy-
sically impossible, which means that within a

fluid-dynamics description, the true energy per
nucleon at very high densities increases less
rapidly with increasing n/n, than does that given
by Eq. (19). In fact, the requirement that the
sound velocity not exceed the speed of light means
that for very high densities the energy per nucleon
can increase no faster than n/n, to the first power.

In a heavy-ion collision the pressure is positive
during the initial compression stage and negative
during the later expansion stage, at which time
the driving forces attempt to form the matter into
small clusters of near-equilibrium density. These
clusters would be physically meaningful if pro-
perly calculated, but we are unable to do this in
our model because we are neglecting the surface
energy, Coulomb energy, and single-particle cor-
rections, and because the finite-difference solution
of the equations does not resolve them. Never-
theless, we know that in the true situation these
particles will cluster to zero pressure, and we
accordingly set the pressure to zero when it
would otherwise be negative.

D. Choice of coupling functions

In the calculations reported here we use the
energy-conserving form for the coupling terms,
in which the radiative drag coefficient D, is
zero. If we set

K'X)=[1-wX)] KX)Y/(Y+1), (21)

then energy conservation is equivalent to using the
maximum value of K’ allowed by Eq. (12), namely
the value with w(X)=0. The use of this energy-
conserving form corresponds to the instantaneous
reabsorption of any particles that are produced
during the collision process. This means that
those degrees of freedom associated with particle
production are taken into account only implicitly
through the nuclear equation of state, which ac-
cordingly should be softened to yield a lower
pressure than that obtained with purely nucleonic
degrees of freedom. When there is radiation of
energy and momentum from the system, w(X) is
greater than zero. An upper bound on w(X),
determined from Eq. (13), is

wX) <1-K(Y+1)/[(K*X2+m2Y) 2 m, Y] .
(22)

We determine the function K(X) by considering
the mean longitudinal momentum transfer per
collision in the limits of low and high relative
velocities and by interpolating smoothly at in-
termediate relative velocities. For isotropic
elastic scattering of indistinguishable nucleons at
nonrelativistic velocities, the mean longitudinal
momentum transfer is one-fourth the incident
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momentum, which means that K(X)—3m, as
X -0. At first thought, one might have expected
that K(X)~3im, as X-0. However, if the incident
projectile nucleon loses more than one-half its
momentum, it is naturally identified as the out-
going target nucleon. Therefore, the meaningful
range of longitudinal momentum transfer is only
from zero to one-half the incident momentum.
Because the momentum transfer is linear in the
cosine of the center-of-mass scattering angle,
its average value is simply the middle of its range.
At the other extreme of high relative velocities,
the target nucleon is excited during the collision
from its ground state with energy m, to an ex-
cited state with energy m* and transverse momem-
tum ¢ . This produces a longitudinal momentum
transfer of 3(m**+q ;> ~m,%)/m,, independent of
projectile excitation. For an excited state whose
energy is m*=V2m, (a typical value), neglecting
the small effect of transverse momentum, one
finds that K(X)~%m, as X~. To reproduce
these two limits, as well as the threshold for
pion production at X= 1, we choose

K(X)=1m, <1 ‘ﬁ%ﬁ) . (23)

This function reproduces the mean experimental
longitudinal momentum transfer per collision for
free nucleon-nucleon scattering at all relative
velocities'® with an accuracy of about 20%. To
verify this at intermediate velocities, it is
necessary to take into account the more complica-
ted kinematics of finite projectile energy, which
make the longitudinal momentum of the struck
target sensitive to projectile excitation and trans-
verse momentum transfer, as well as to target ex
citation. These relevant quantities may be in-
ferred from the tables in Ref. 16.

For the interpolating function a(X) that deter-
mines the transition from two separate fluids at
high relative velocities to a single fluid at low
relative velocities, we use at this stage the first-
degree spline function

0, X<X,,
(‘X_Xl)/(Xu "'Xl)y X].SXqu’ (24)
1

alX)=
, X,<X.

The lower critical value X, is taken equal to the
Fermi velocity vz, whose value is 0.26781 for
our choice of constants, * and the upper critical
value X, is taken equal to 2v,. The calculated
values of d% /dEdQ are relatively insensitive to
the specific choices of X, and X,, as was veri-
fied by performing one calculation also with X,
=0.50; and X, = 1.5v,.
Finally, the total nucleon-nucleon cross section

o is represented by the empirical formula

_ 10 -37 10
o—<40+m+€2)mb, (25)
with
E=mX/GeV. (26)

For a target nucleon at rest, £ is the momentum
of the incident nucleon in units of GeV. Equation
(25) reproduces the average value of the experi-
mental proton-proton and neutron-proton total
cross sections'®?* over the entire range of interest
with an accuracy of about 10%. The cross section
o enters the calculation only within the products

Ko and K'o.

E. Solution of equations of motion

To solve the above equations, we have gener-
alized to the case of two separate fluids the re-
lativistic particle-in-cell finite-difference com-
puting method?® that was used to solve the equations
of motion for the one-fluid model. This gener-
alization incorporates many of the techniques that
have been developed for solving multiphase fluid-
dynamics problems at nonrelativistic velocities.?®
To facilitate comparisons with experimental re-
sults, the calculations are performed in the
laboratory reference frame.

As before, we subdivide the space in and around
the nuclei into cells with dimensions 6x, 6y,
and dz. Both fluids are represented by discrete
computational particles which move through these
cells. The finite-difference approximations to
spatial derivatives are expressed as cell-to-cell
differences of averages over each cell.

A given collision corresponds to an initial-
value problem, for which initial and boundary
conditions are prescribed. The calculation then
advances the field variables through a sequence
of cycles, with a time interval /. We generate
the solution for enough elapsed time to determine
the ultimate distribution (in energy and direction)
of the outgoing matter.

The layout of the computational mesh and the
numerical-solution procedure resemble closely
techniques that have been described previously.?
Therefore, we discusshere only those new features
that are introduced by the presence of two separate
fluids. Each calculational cycle proceeds through
four phases.

Phase 1 consists of three steps. In the first
step, we add to the momentum and energy in
every cell the amounts

6M, = ~wRX% % ,/(Y+1), (27)
6M, = ~wRX?y,%,/(Y+1), (28)
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0E,= —wRX%y,/(Y+1), (29)
and

8E,= —wRX%,/(Y+1), (30)
where

R=a(X)D,5t . (31)

This step is operative only for dissipative interac-
tions, having w#0.

In the second step of phase 1, we add to the
momentum and energy in every cell the amounts

OM, =Ry, =77, (32)

SM,=R(y ¥, —v5%5) (33)

8E,=R(y;~7), (34)
and

OE,=R(y,=72) . (35)

These equations describe the conservative exchange
of momentum and energy between the fields,
which can be calculated either explicitly as shown,

or implicitly. In the implicit case, the calculations.

can proceed even with infinite coupling (the one-
fluid limit). In the explicit case this step of the
calculation becomes unstable with strong coupling
and/or with a large time step per cycle.

With implicit coupling, we define for fluid ¢ the
quantities

a;=1/1vi(e; +,)] (36)
and
bi=vi/lvi%e;+p:i(vi® - 1)]. (37

Denoting by a tilde the new value of a quantity,
we write Eqs. (32)-(35) in the alternative form

i\./11=l§/.II+R(azlf7lz-a11:_/’Il) , (38)

1;712 =M, + R(aj[, - azl;_/’lz) , (39)

E,=E,+R(b,E,~b,E), (40)
and

E,=E,+R(b,E, -b,E,). (41)

These equations can be solved algebraically in
pairs, with results that are bounded as R—~.
However, this formulation is only partially
implicit, which gives rise to a potential dis-
advantage. In particular, the values of a; and b,
are determined from the results of the previous
cycle, and experience shows that the coupling
between fields can accordingly be inaccurate in
some circumstances. Weighing the advantages
and disadvantages of both procedures, as deter-
mined by numerical testing, we have concluded
that the explicit procedure is better, and have

performed all calculations reported in this paper
with that technique.

The third step in phase 1 converts the total-
fluid quantities of Eqs. (14)-(16) to total-fluid
pressures and velocities, and uses these to de-
termine the pressures and velocities in each field
by means of Eqs. (17) and (18). These new values
replace the ones from the previous cycle for all
purposes in the rest of the current cycle.

In phase 2, the pressure gradients acting on the
two fields are used to change the momentum and
energy of each, independently of the other, ac-
cording to

6M, = —(Vp)ot, (42)

6M, = - (Vp,)6t, (43)

OE,= -V~ (pV,)0¢, (44)
and

OE,= =V« (p,v,)0t . (45)

The appropriate finite-difference expressions are
given in detail in Ref. 25.

In phase 3, the computational particles des-
cribing the configuration of each field are moved
with the velocities of that field, and tt_lg correspond-
ing convective changes of N,, N,, M,, 1\-/12, E,,
and E, are calculated for all particles moving
from one cell to another.?®

In phase 4, we solve Egs. (4)-(6) for n;, €,
bi, and ¥; for each fluid, using exactly the same
procedure as in Ref. 25.

III. CALCULATED RESULTS

A. Time evolution of the matter distribution

In the two-fluid model, the target and projectile
are partially transparent to each other by an
amount that depends upon the coupling between
the two fluids. This is illustrated in Fig. 1 for
the reaction *°Ne + 23®U at a laboratory bombarding
energy per nucleon of 250 MeV and an impact
parameter that is one-half the sum of the target
and projectile radii. Each column presents a
side view of the matter distribution evolving in
time for a given value of the coupling. The initial
frame in each case shows a 2*®U target bombarded
from above by a *Ne projectile, which is Lorentz-
contracted in the incident direction.

The target is represented by light points, and
the projectile is represented by heavy points.
These points, or computational particles, are
aligned so that in the direction perpendicular to the
page only a single point is visible initially.
However, as the impulse resulting from the
collision propagates throughout the system, this
alignment is destroyed and additional particles
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20Ne+ 238y
Epom/20=250 MeV
Time Impact Parameter=0.5(Ry*R,)

(102 g)

@ [ -
0.0
5.
13.5

[ J
\
25.3
Zero Two - Fluid One- Fluid
Coupling Model Model

FIG. 1. Calculated time evolution of the matter dis-
tribution in the collision of 2Ne with 238U for three
different values of the coupling between the two fluids.
The left-hand column gives the result for zero coupling,
where the target and projectile pass through each other
without interaction. The middle column gives the result
for a finite coupling taken from free nucleon-nucleon
scattering, which corresponds to the present two-fluid
model. The right-hand column gives the result for in-
finite coupling, which corresponds to the previous one-
fluid model (Ref. 14). The impact parameter is 0,5 (R,
+R,)=0.5 (1.2049)(A,'/%+4,/% fm, and the laboratory
bombarding energy per nucleon is 250 MeV.

come into view. For the target we use 2°=8
particles per computational cell, whereas for

the smaller, Lorentz-contracted projectile we use
3%=27 particles per cell. The radius of the target
spans six cells, which means that the cells are
1.244 fm in each dimension. For the reaction
illustrated in Fig. 1, this leads to 4420 computa-
tional particles for the half space in which the
calculation is performed. Only half the problem
is actually zoned, as we take advantage of the
symmetry plane. For this reaction, the time
step per cycle is taken to be 3.369x 10"%* s,

For zero coupling, the target and projectile
pass through each other without interaction, as
shown in the left-hand column of Fig. 1. For a
finite coupling taken from free nucleon-nucleon
scattering, corresponding to our present two-
fluid model, the target and projectile deform,
compress, and excite each other during their

20N +238y
E pom/20=250 MeV
Time Two- Fluid Model
(102 g)
® @ @
00
» » ®
5.1
135 %&g
3 »
i
253 af
| o
o 05 09

Impact Parumeter/(R,'Rp)

FIG. 2. Calculated time evolution of the matter dis-
tribution in the collision of 2®Ne with 23U for three dif-
ferent impact parameters. The laboratory bombarding
energy per nucleon is 250 MeV.

interpenetration, as shown in the middle column.
However, their deformation, compression, and
excitation are less than those corresponding to
the infinite coupling of the one-fluid model, as
shown in the right-hand column. During the later
stages of the process the results for the two-
fluid model and the one-fluid model are qualitatively
very similar, although the matter emerging in
the backward direction is somewhat less for the
two-fluid model than for the one-fluid model.

For this same reaction, we show in Fig. 2
the dependence of the results calculated in the
two-fluid model upon the impact parameter. In
nearly central collisions, the projectile deposits
most of its kinetic energy and momentum in the
target, which leads to a violent explosion of the
system. At the other extreme, in peripheral
collisions the projectile is fragmented into a
portion that proceeds roughly straight ahead at
its original velocity and another portion that
deposits its kinetic energy and momentum in the
target. This disturbs the target much less
violently than in nearly central collisions, and
its deformation, compression, and excitation
are therefore much less.

The analogous solutions for a bombarding energy
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FIG. 3. Calculated time evolution of the matter dis-
tribution in the collision of 2*Ne with 23U for three
different impact parameters. The laboratory bom-
barding energy per nucleon is 2.1 GeV.

per nucleon of 2.1 GeV are shown in Fig. 3.
Because of the higher bombarding energy, the
Lorentz contraction of the projectile is more
extreme and the entire process occurs more
rapidly than before. The remaining features of
the collision are qualitatively similar to those at
the lower bombarding energy.

B. Numerical uncertainties

In any finite-difference solution of the equations
of fluid dynamics, there are errors associated
with the numerical approximations used. A
principal goal is to minimize these errors, sub-
ject to the constraints of available computer time
and memory. For problems in three spatial
dimensions, these constraints become expecially
severe because the computer time increases at
least as fast as the fourth power of the number
of finite-difference cells per dimension. Thus, a
compromise is always required between the need
for high resolution, on the one hand, and the
limitations of the computer, on the other hand.

In the present investigations, the required
sacrifice of accuracy is fairly severe. With six
computational cells across the initial radius of
the target nucleus, we lose significantly in the
resolution of such details as shock structure,

compressional spikes, surface effects, and co-
alescence into several-nucleonfragments. Because
three-dimensional calculations with appreciably
greater resolution are too costly to perform, we
have compared the results of several one-dimen-
sional calculations with both coarse and fine
resolution. These one-dimensional calculations
correspond to collisions of two slabs of nuclear
matter whose thicknesses are finite but which
extend to infinity in the two transverse directions.

Some of our present conclusions about numeri-
cal accuracy agree with our previous PIC-method
experience for one-fluid studies.'® %25 This
includes, for example, the tendency toward
striation when the flow speeds are very low, as
illustrated in the lower right-hand frame of Fig.
2. However, we also observe effects that are
peculiar to the two-fluid model. In particular, a
finely resolved two-fluid calculation produces a
relatively gradual buildup of a narrow compres-
sional spike in each material, in contrast to a
broader shocked region in a one-fluid calculation.
Although at the current stage of our investigations
we can comment only in a preliminary way,
the occurence of such fine-scale interaction
profiles is of great interest and significance for
at least four reasons:

(1) In nucleus-nucleus collisions, the narrow
regions of high compression are somewhat nar-
rower than expected on the basis of a one-fluid
dynamical model. This reduces somewhat the
probability of producing nuclear matter in a
phase that is different from the ordinary phase.

(2) Two-fluid flow at relativistic speeds possibly
exhibits some of the classic instabilities observed
in nonrelativistic two-fluid flow, such as in a
fluidized dust bed.?”?®* Thus, a study of such
flows has potential interest beyond the context
of the present investigation, as well as having
implications relative to the nature of the breakup
in nucleus-nucleus collisions.

(3) The presence of narrow compressional
spikes is discouraging from the viewpoint of an
accurate numerical resolution of the collisions.
Consider the formation and subsequent reexpansion
of (a) a very narrow region of high density and
pressure and (b) a relatively broad region of
somewhat lower density and pressure. The first
of these represents the accurate solution of a
three-dimensional calculation, whereas the second
is what occurs in a coarsely resolved calculation,
where one computational cell is appreciably
larger than the cross section of a compressional
spike. The energy and angular distributions of
the outgoing matter must differ to some degree
inthese two cases. We speculate that if the nuclear
equation of state were linear in the compression,
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the two cases would produce closely similar
results. However, our nuclear equation of state
is strongly nonlinear, and we have no convincing
evidence regarding the extent of the discrepancy
between our poorly resolved approximation and
the accurate solution.

(4) We have subjected the well-resolved one-
dimensional calculations to a symmetry test,
with encouraging results. With the target at rest
in the collision of two slabs of matter whose
thicknesses correspond to 23U nuclei, we examine
the midline representation of the collision. After
performing a Lorentz transformation to the
center-of-mass system, we found an excellent
degree of symmetry about the collision point.
This test result, along with a late-time three-
dimensional symmetry test result for the coarsely
resolved uranium-uranium system to be dis-
cussed later, are necessary, if not sufficient,
indications that the calculations are numerically
reliable.

As these remarks indicate, much remains to be
done before our calculations are fully understood,
with regard to both their numerical accuracy and
their physical implications. Nevertheless, it
is worthwhile to compare our present results
with experimental data and to see what can be
learned. It is to this task that we now turn.

C. Comparison of calculated energy spectra
with experimental data

For a given impact parameter we construct
from the velocity vectors at some large time the
double differential quantity d®Npn./dEdQ for the
outgoing matter. The small amount of matter
that already has passed through the top and side
boundaries of the computational mesh is also
included. In an effort to improve the numerical
accuracy, we average the results of the last 11
cycles out of a total of 150 cycles, but this
averaging has little effect. The accuracy of our
results is limited primarily by statistical errors
arising from the finite number of computational
particles employed and by striation and other
finite-difference errors in the numerical solutions
themselves.

To obtain the double differential cross section
A% /dEAS for the outgoing matter, we integrate
the values of d?N,,.;/dEdQ over impact parameter
by use of a five-point trapezoidal approximation,
taking into account the linear weighting with
impact parameter. Under the assumption that
the charge is distributed uniformly throughout
the entire matter, we then obtain the double dif-
ferential cross section d% /dEdQ for outgoing
charged particles by multiplying d%,,, /dEdQ by
(Z:+Z,)/ (A +A,).

%0,
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FIG. 4. Comparison of calculated and experimental
energy spectra for outgoing charged particles from the
collision of ?*Ne with 2%¥U, The histograms give the
calculated results, and the points give the experimental
results (Ref. 29). The solid points in the left-hand
column, where the laboratory bombarding energy per
nucleon is 250 MeV, are expected to be accurate to
within 35% and include contributions from outgoing pro-
tons, deuterons, tritons, He particles, and ‘He par-
ticles. The open points in the right-hand column, where
the laboratory bombarding energy per nucleon is 2.1
GeV, are uncertain by a factor of 2 and include contri-
butions from outgoing protons, tritons, 3He particles,
and ‘He particles (but not deuterons).

The resulting values of d% /dEdS: for *°Ne + 2%*U
at laboratory bombarding energies per nucleon
of 250 MeV and 2.1 GeV are shown in Fig. 4 in
the form of energy spectra at five laboratory
angles ranging from 30° to 150°, Some idea of
the numerical accuracy of the calculations can
be obtained from the fluctuations in the histograms,
which are obtained using angular bins of 10°
width. These calculated results are compared
with the recent experimental data of Gosset et
al.?® for outgoing charged particles. The experi-
mental results for a bombarding energy per
nucleon of 250 MeV include contributions from
outgoing protons, deuterons, tritons, *He parti-
cles, and “He particles, whereas those for a
bombarding energy per nucleon of 2.1 GeV include
contributions from protons, tritons, *He parti-
cles, and “He particles (but not deuterons).

The former experimental results are expected to



17 RELATIVISTIC TWO-FLUID MODEL OF NUCLEUS-NUCLEUS... 2089

ld N T T T

‘4He +238U

Ebom/4 =400 Mev .

PROTON LABORATORY ENERGY SPECTRUM d%o/dE dS.(mb/MeVsr)

150° "
. [ I6h .,
105 100 200 0 100 200 300

PROTON LABORATORY KINETIC ENERGY (MeV)

FIG. 5. Comparison of calculated and experimental
energy spectra for outgoing charged particles from the
collision of ¥Ne (left-hand column) and *He (right-hand
column) with 23¥U, The laboratory bombarding energy
per nucleon is 400 MeV. The histograms give the cal-
culated results, and the solid points give the experi-
mental results, which are expected to be accurate to
within 35% and include contributions from outgoing pro-
tons, deuterons, tritons, SHe particles, and ‘“He par-
ticles (Ref. 29).

be accurate to within 35%, whereas the latter are
uncertain by a factor of 2. Particles heavier

than protons were not detected experimentally

at energies as high as those for protons. To ob-
tain the relatively small high-energy contributions
from these heavier particles, we extrapolated

the logarithm of the measured yield linearly in
energy.

At a bombarding energy per nucleon of 250 MeV,
the calculations reproduce correctly the experi-
mental slopes at each angle, as well as the over-
all decrease in the experimental cross section
when going from forward to backward angles.
However, the calculated values at 30° are only
one-third the experimental values. At a bom-
barding energy per nucleon of 2.1 GeV, the cal-
culations reproduce correctly the experimental
data to within their uncertainties for 30°and 60°
at all energies and for 90°at low energies. How-
ever, for 90°at high energies, the calculated
values are only one-fourth the experimental values.

Compared to the previous results calculated

with the one-fluid model, '**® the present results
calculated with the two-fluid model are somewhat
smaller in the backward directions. This is
because in the present calculations the target and
projectile are partially transparent to each other,
which reduces the compressional energy and
excitation energy that is available for ejecting
particles backward during the later expansion
stage. In the forward directions, the results

of the two models are approximately the same,
although even here the values calculated with the
two-fluid model are slightly smaller than those
calculated with the one-fluid model, to within

the numerical uncertainties of the calculations.
The reason for this is that with zero coupling

the only forward component is the whole pro-
jectile; with small coupling the projectile is
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FIG. 6. Calculated energy spectra for outgoing
charged particles from the collision of ?’Ne with 23U
at five different impact parameters. The laboratory
bombarding energy per nucleon is 250 MeV. The lab-
oratory angle is 30° in the left-hand column and is 60°
in the right-hand column.
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dispersed and the target contributes only low-
energy outgoing particles.

Similar comparisons are presented in Fig. 5 for
the reactions Ne + 23U and *He + 2**U at a bom-
barding energy per nucleon in each case of 400
MeV. The experimental data® include contribu-
tions from outgoing protons, deuterons, tritons,
He particles, and ‘He particles, and are expected
to be accurate to within 35%. For *°Ne + 2*U
the calculations reproduce correctly the experi-
mental slopes at each angle, as well as the overall
decrease in the experimental cross section when
going from forward to backward angles. However,
the calculated values are slightly below the ex-
perimental values in the backward directions and
are only one-third the experimental values in the
forward directions. For *He+ 2%®U, the calculated
values at all angles are substantially smaller
than the experimental values.

In an attempt to understand the discrepancy
between the calculated and experimental results
in the forward directions, we show in Fig. 6 the
dependence of the energy spectra at 30°and 60°
upon impact parameter for **Ne+ 28U at a lab-
oratory bombarding energy per nucleon of 250
MeV. At 60°the spectra decrease approximately
exponentially with increasing energy for all im-
pact parameters. However, at 30° there are also
small peaks in the energy spectra near 250 MeV.
For moderate and large impact parameters these
peaks arise from projectile fragmentation, but
for nearly central collisions they are associated
instead with the expansion of the projectile fol-
lowing its compression and excitation as it passes
through the target.

D. Predictions for 238U + 238y

As seen in the previous subsection, the accuracy
with which the two-fluid model describes the ex-
perimental data increases as we progress from
the light projectile *He to the somewhat heavier
projectile *°Ne. This is probably because *°Ne
has more degrees of freedom and also a smaller
surface region compared to volume region than
does “He. However, it could also be associated
with the larger total kinetic energy and momentum
transferred to the target from a 2°Ne projectile
compared to a *He projectile, since our particular
finite-difference method of solution does not be-
have as well in the perturbed stagnation resulting
from small impulses. This could also explain
why for **Ne + 2*®U the two-fluid model works
better when the bombarding energy per nucleon
is 2.1 GeV than when it is 250 or 400 MeV.

For these reasons, we expect the two-fluid
model to become increasingly satisfactory as the
size of the projectile increases. We therefore
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show in Fig. T the caluclated energy spectra for
collisions of 2**U with *®*U at bombarding energies
per nucleon of 250 MeV and 2.1 GeV.

These distributions may be considered as
theoretical background estimates, in the sense
that they are based on straightforward extra-
polations of conventional ideas concerning nuclear
physics. While agreement between theory and
experiment would not necessarily mean that the
conventional picture is correct, dramatic dis-
agreement should lead to new information. Apart
from possible numerical inaccuracies, the main
uncertainty in these results is their sensitivity
to the choice of the nuclear equation of state, since
we have yet to vary that. Thus, it is conceivable
that the original goal of this program—experi-
mental determination of the nuclear equation of
state at high density—may be realized when data
on #%U+ 28U (or comparable) collisions become
available.

The main qualitative difference between the
calculated cross sections for **Ne+ *®U and for
284+ 2387 is as expected. The latter are larger
and decrease less rapidly with increasing proton
energy, showing that a **U projectile imparts
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FIG. 7. Calculated energy spectra for outgoing

charged particles from the collision of 23U with 2%y,

The laboratory bombarding energy per nucleon is 250

MeV in the left-hand column and is 2.1 GeV in the
right-hand column.
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more energy than a **Ne projectile to the nucleons
in a 28U target.

In the absence of experimental data, we have
two checks on the numerical accuracy of the cal-
culations, in addition to the above qualitative
remark. The first is forward-backward symmetry
in the center-of-mass frame of the invariant
differential cross section

(E+mo)d%/d%p =p~'d% /dEAQ , (46)

where p is the momentum of a proton with kinetic
energy E and mass m,. Careful examination of
the calculated cross sections for U+ 2%y at
Ey,,/238=250 MeV shows that the symmetry is
good to an accuracy of about 20%. In view of the
coarseness required for a practical numerical
calculation, this agreement is better than an-
ticipated.

Our study of this symmetry leads us to endorse
the view of many others, that in place of E and
6 more appropriate variables are the rapidity

y=1n[ my+ E + p cosb)/(m 2 + p? sin®0)*/?]  (47)

and the transverse momentum normalized to
mass®®

v=p sing/m,. (48)

In the nonrelativistic limit, these quantities
become the velocity components parallel to the
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FIG. 8. Lorentz-invariant inclusive differential cross
section for outgoing charged particles from the colli-
sion of ¥y with 28U versus rapidity y and normalized
transverse momentum v, defined by Eqs. (47) and (48),
respectively. The laboratory bombarding energy per
nucleon is 250 MeV. The numbers in the plot give the
values of 4.5+In[(p"'d%c /dEdS)/(mb/MeV?sr)],
rounded to the nearest integer, for all values greater
than zero. The dashed vertical line is the expected
axis of reflection symmetry, corresponding to the
center-of-mass rapidity. The arrows indicate the tar-
get and beam rapidities.

beam and perpendicular to the beam, respectively.
However, the rapidity has the advantage of being
linear even in the relativistic regime. That is,
the rapidity of a particle measured by an ob-
server moving in the direction of the beam is
simply the rapidity measured in the laboratory
frame minus the rapidity measured by the ob-
server,

Yops = tanh ™y, . (49)

Thus, in a plot of invariant cross section versus
y and v, the requirement for center-of-mass-
frame symmetry becomes

O(yC+A) V) =0‘(3’c —A) V)' (50)

Such a plot for *°U+**U at E,/238=250 MeV
is shown in Fig. 8. Aside from demonstrating
the symmetry of the calculated cross section, this
figure shows how points corresponding to rec-
tangular bins in E and 6 are distributed on a
y —v grid. Evidently, it should be easier to
analyze comparisons between experiment and
theory when both are plotted versus y and v in-
stead of E and 6. However, this approach does
pose practical difficulties in transforming experi-
mental data.

A second theoretical check on our calculation is
a comparison of the results with those in the
firestreak model of Myers.?! In that model,
narrow imaginary tubes are drawn parallel to the
beam direction. Projectile and target segments
in each tube do not interact with material in
neighboring tubes. Instead, the matter in each
tube comes to equilibrium, making a hot medium
which decays by isotropic emission in the center-
of-mass frame of that tube. Thus, the dynamics
are simplified considerably relative to our model,
facilitating not only the prediction of cross sec-
tions, but also the inclusion of the nuclear sur-
face diffuseness. The firestreak results for
238+ 2387 collisions are relatively insensitive to
the surface diffuseness and are in good agreement
with the hydrodynamic results.** This suggests
that both calculations give fairly accurate back-
ground estimates and that the gross features are
determined largely by energy and momentum
conservation.

At the lower bombarding energy per nucleon
of 250 MeV, the accuracy of the agreemerit
between the two-fluid dynamical model and the
firestreak model is about 20%.3%*3® At the higher
bombarding energy per nucleon of 2.1 GeV, the
agreement is not as good. For outgoing protons
with energy per nucleon 2200 MeV, firestreak
calculations with and without assuming pions in
equilibrium with the nucleons differ from each
other by factors as large as 3 or 4, whereas the
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FIG. 9. Test of isotropy and thermalization of out-
going charged particles from the nearly head-on colli-
sion of 238U with 23U, for which the impact parameter
b=0.1byp5=0.1(R,+R,). The laboratory bombarding
energy per nucleon is 250 MeV in the lower portion of the
figure and is 2.1 GeV in the upper portion. In each case,
the natural logarithm of the invariant double differential
distribution p~ 'd2N/dEdSQ is plotted versus the center-
of-mass kinetic energy for two different angular ranges.
The solid straight line in each case gives the Maxwell-
Boltzmann distribution obtained by equipartitioning the
initial collision energy among the three translational
degrees of freedom of each nucleon in the system. This
leads to a nuclear temperature of 39.6 MeV in the lower
portion of the figure and 234 MeV in the upper portion.
The corresponding mean kinetic energies per nucleon
are indicated by the arrows. Note that the energy
scales are different for the lower and upper portions of
the figure.

results of the no-pion assumption generally agree
with those of hydrodynamics to within a factor

of 2,333 Because the inclusion of pion degrees
of freedom in the two-fluid model would cor-
respond to a softer nuclear equation of state than
that used here, the trend of the comparisons with
the firestreak results is qualitatively reasonable
and strengthens the hope that the equation of
state has a significant effect on the inclusive
proton spectra.

However, there remains a serious question: To
what extent may the integration over impact
parameter mask significant discrepancies?
Because the most interesting effects should occur
for nearly central collisions, we focus on them.
For a head-on collision, the firestreak model,
like the earlier fireball model, ***® predicts
complete isotropy of emitted protons in the 238U
+ 28] center-of-mass frame. In Fig. 9 we pres-
ent our results for impact parameter b =0.1b,,,, .

As seen in Fig. 9, for a bombarding energy per
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nucleon of 250 MeV, our two-fluid model predicts
a center-of-mass invariant distribution that is
nearly isotropic and that decreases nearly ex-
ponentially with increasing energy. Further-
more, both the magnitude and slope are very sim-
ilar to those for a Maxwell-Boltzman distribution
whose temperature is 39.6 MeV, corresponding

to complete thermalization and equipartition of
energy into the three translational degrees of
freedom of each nucleon in the system. There
may be significant departures for nucleons with
energy between about 35 and 55 MeV, but other-
wise the agreement is as good as fluctuations
(presumably due to the coarseness of the num-
erical procedures) permit.

On the other hand, the calculated results for a
bombarding energy per nucleon of 2.1 GeV clearly
violate both isotropy and thermalization. Unlike
a thermal distribution, our calculated distributions
decrease significantly near zero energy. Further-
more, for higher energies the calculated dis-
tribution is larger near the backward direction
than at other angles. This calculation confirms
the earlier indication'® that a single-particle-
inclusive distribution, for events corresponding
to nearly head-on collisions, could be sensitive
to the nature of the collision process.

E. Maximum compression and excitation

A major purpose of investigating high-energy
nuclear collisions is to learn about the response
of nuclear matter to substantial compression and
excitation. In the one-fluid model, one can solve
for the maximum rest-frame compression, **
compressional energy per nucleon, and internal
excitation energy per nucleon exactly in terms
of the nuclear equation of state and the bom-
barding energy per nucleon. This is done by
integrating the equations of motion over an in-
finitesimal volume near the contact point in a
head-on collision. In this case the kinetic energy
in the center-of-velocity frame is converted
entirely into compressional energy and internal
excitation energy.

For our nuclear equation of state and a lab-
oratory bombarding energy per nucleon of 250
MeV (corresponding to a center-of-velocity
bombarding energy per nucleon of 60.5 MeV),
the one-fluid model gives a maximum rest-frame
compression of 2.24, a maximum compressional
energy per nucleon of 23.4 MeV, and a maximum
internal excitation energy per nucleon of 37.1 MeV.
For a laboratory bombarding energy per nucleon
of 2.1 GeV (corresponding to a center-of-velocity
bombarding energy per nucleon of 427 MeV), these
values are 3.66, 101 MeV, and 326 MeV, respec-
tively. (The maximum compressions given in
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Refs. 13 and 14 refer to center-of-velocity bom-
barding energies per nucleon rather than to lab-
oratory bombarding energies per nucleon.)

The maximum compression and excitation are
achieved only for an infinitesimal time in an
infinitesimal volume near the contact point. As
time proceeds, the maximum compression and
excitation are reduced substantially because of
the divergence of the shock waves and the rare-
faction from the trailing surface of the projectile.

In the two-fluid model, the interpenetration of
the target and projectile leads to a gradual rather
than a sudden conversion of kinetic energy into
compressional energy and internal excitation en-
ergy. We are unable to solve exactly the coupled
equations of motion in the two-fluid model to ob-
tain the maximum compression and excitation.
Also, the finite resolution imposed by our mod-
erately coarse three-dimensional computational
grid does not allow us to answer this question.
We have therefore solved numerically in one
dimension the collision of two slabs of matter
whose thicknesses correspond to **®U nuclei;
the slabs extend to infinity in the two transverse
directions. For this one-dimensional calculation,
the length of our cells is one-fifth that in the
three-dimensional calculations, and there are 10
times as many particles per cell. The time
step is about one-fifth that used in the three-
dimensional calculations.

For large relative velocities of the two fluids,
where X >X, and the target and projectile fluids
have not yet begun to merge, it is appropriate
to consider the compression and excitation of
each fluid separately. When the bombarding
energy per nucleon is 250 MeV, the two fluids
begin to merge after about 1.0x107% s, at which
time the rest-frame compression of each fluid
is about 1.2, the compressional energy per nucleon
is about 0.4 MeV, and the internal excitation
energy per nucleon is about 20 MeV.

For this bombarding energy per nucleon of 250

MeV, the maximum compression is reached after
about 2.0x 1072% s (in one particular cell), at
which time the rest-frame compression of each
fluid is about 1.3, the compressional energy per
nucleon is about 1.1 MeV, and the internal ex-
citation energy per nucleon is about 30 MeV.
The two fluids are now partially mixed, and if we
alternatively view them as a single fluid, the rest-
frame compression is about 2.6. This value is
maintained, with some fluctuations, for about
10722 5. At this density the compressional energy
per nucleon is about 38 MeV, which would require
a negative internal excitation energy per nucleon
(about -7 MeV) to satisfy energy conservation.

Such a negative internal excitation energy is,

of course, physically impossible. It arises
because the actual transition from two fluids at
high relative velocities to a single fluid at low
relative velocities is more complicated than the
smooth interpolation that we have used here.
Within our present framework, an upper limit

to the maximum compression may be obtained by
requiring that the total available energy per nu-
cleon be converted entirely into compressional
energy. At this bombarding energy per nucleon
of 250 MeV, where the total available energy per
nucleon is about 31.1 MeV, this procedure yields
an upper limit of about 2.4 for the maximum
compression. On the other hand, within a broader
framework that allows for the possibility of a
different phase of nuclear matter at a sufficiently
low energy per nucleon, the original estimate

of about 2.6 for the maximum compression would
be applicable. (This estimate depends very little
on the precise form of the equation of state for
high compressions, since it is obtained by simply
doubling the compression achieved by each fluid
separately.)

An analogous situation prevails at higher bom-
barding energies, although the compression is
much larger. For example, when the bombarding
energy per nucleon is 2.1 GeV, the two fluids
begin to merge after about 2.2x10"% s, at which
time the rest-frame compression of each fluid is
about 2.3, the compressional energy per nucleon
isabout 25 MeV, and the internal excitation energy
per nucleon is about 250 MeV.

For this bombarding energy per nucleon of 2.1
GeV, the maximum compression is reached after
about 6.3x1072% g, at which time the rest-frame
compression of each fluid is about 4, the com-
pressional energy per nucleon is about 130 MeV,
and the internal excitation energy per nucleonis
about 200 MeV. In this case the two fluids have
completely merged according to our criterion of
X <X,, and the combined rest-frame compression
is about 8. However, this value is maintained for
only about 5x 107 5. At this density the com-
pressional energy per nucleon is about 610 MeV,
which would require a negative internal excitation
energy per nucleon (about —280 MeV) to satisfy
energy conservation.

As before, such a compression would be possible
within a broader framework that allows for the
possibility of a different phase of nuclear matter
at a sufficiently low energy per nucleon. However,
within our current framework, the requirement
that the total available energy per nucleon of
about 330 MeV be converted entirely into com-
pressional energy yields an upper limit of about
6 for the maximum compression.

In contrast to the predictions of the conventional
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FIG. 10. Fraction of nuclear matter with rest-frame
compression greater than a specified value versus time,
for the collision of two nuclear slabs whose initial den-
sity is n, and whose thickness is equal to the diameter
of a 238U nucleus. The lower portion of the figure refers
to 2 bombarding energy per nucleon of 250 MeV and to
n>2ny. The upper portion refers to a bombarding energy
per nucleon of 2.1 GeV; the dashed line corresponds to
n > 3n, and the solid line corresponds ton >4n,. The
duration of a pion time unit, %#/m,, is indicated to sug-
gest a relevant time scale.

one-fluid dynamical model—where the compression
of nuclear matter is accompanied by a relatively
large internal excitation energy—our two-fluid
dynamical model suggests that it may be possible
to compress nuclear matter while introducing
little internal excitation energy. Provided that
there is a different phase of nuclear matter at a
lower energy per nucleon than the ordinary phase,
this would in general increase the probability of
a transition to that phase.

An alternative measure of compression that
may be more reliable and more informative
than the maximum value is the amount of nuclear
material contained in a region of density above
a specified multiple of n,, the normal density.
Figure 10 gives this amount as a function of time
for 238U projectile slabs incident on stationary
%38y target slabs at bombarding energies per
nucleon of 250 MeV and 2.1 GeV. These graphs
were constructed by first finding the number of

adjacent computational cells with rest-frame
density » greater than 2n, for E,_,/238=250 MeV
or greater than either 3n, or 4n, for E, /238
=2.1 GeV. These values were then divided by the
total number of cells (120) in two ?**U slabs at
rest, and were finally multiplied by a factor to
take into account the average density in the com-
putational frame. These factors are 2.25 for
n>2n, at E,,, /238=250 MeV, 5.10 for 4n,>n
>3n, at E,,,, /238=2.1 GeV, and 6.55 for n>4n,
at E,,,/238=2.1 GeV.

From Fig. 10 one sees that for a bombarding
energy per nucleon of 250 MeV, more than 0.75
of the nuclear matter is contained in the n>2n,
region. For a bombarding energy per nucleon
of 2.1 GeV, the corresponding values are about
0.50-0.55 for n>3n, and are about 0.45 for n
>4n,. These fractions are maintained for several
times 10°2% s at the lower energy, and for about
10~2 s at the higher energy. These are clearly
significant bulk densities and duration times,
which could be even larger for a softer equation
of state.

IV. SUMMARY AND CONCLUSION

We have introduced a two-fluid dynamical model
that is designed to take into account the expected
partial transparency of nuclei during collisions
at high energy. The coupling between the target
and projectile fluids was obtained from the cross
section and momentum transfer for individual
nucleon-nucleon collisions. At low relative
velocities the two fluids merge, in which case
the conventional one-fluid dynamical model is
recovered.

For a given nuclear equation of state, we cal-
culated with this two-fluid model the double dif-
ferential cross section d% /dEdQ for outgoing
charged particles from four reactions that have
been studied experimentally. For the collision
of the light projectile “He with #*®*U, the results
of the two-fluid model are substantially smaller
than the experimental values at all energies and
angles. For the collision of the somewhat heavier
projectile ?°Ne with 2*®U, at bombarding energies
per nucleon of 250 and 400 MeV, the two-fluid
model describes the overall features of the ex-
perimental data adequately, but at 30° the calcu-
lated values are only one-third the experimental
values. At the higher bombarding energy per
nucleon of 2.1 GeV, the two-fluid model describes
the experimental data adequately in the forward
directions and at 90° for low energies, but at 90°
for high energies the calculated values are only
one-fourth the experimental values.

The accuracy with which the two-fluid model
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describes the experimental data therefore in-
creases as we go to heavier projectiles and as
we increase the bombarding energy. This is
probably because a heavier projectile (1) has
more degrees of freedom, (2) has a smaller sur-
face region compared to volume region, and (3)
deposits a larger total kinetic energy and mo-
mentum than a light projectile. Because of this,
we calculated the cross section d%/dEdQ for
outgoing charged particles from collisions of
238y with 238y, as predictions for future experi-
ments.

By means of a one-dimensional calculation, we
also studied the maximum compression and
excitation that can be achieved insuchcollisions.
At a bombarding energy per nucleon of 250 MeV,
the maximum rest-frame compression of each
separate fluid is about 1.3, which leads to a
maximum rest-frame compression for the
combined fluid of about 2.4 to 2.6. At a bom-
barding energy per nucleon of 2.1 GeV, the max-
imum rest-frame compression of each separate
fluid is about 4, which leads to a maximum rest-
frame compression for the combined fluid of
about 6 to 8. When the fluids are viewed as
separate, the compressional energy is relatively
small compared to the internal excitation energy.

However, when the fluids have merged into a
single fluid, the available energy is primarily in
the form of compressional energy.

The discrepancies between the calculated and
experimental results for *°Ne + 2**U at bombarding
energies per nucleon of 250 and 400 MeV may
arise from deficiencies in the two-fluid model,
from inaccuracies in our numerical procedures,
or from errors in the experimental data. On the
other hand, perhaps the nuclear equation of state
is significantly different from the one that we are
currently using. Asmentioned earlier, relativity
alone implies modifications at high densities.
Also, perhaps the interaction of nucleons inside
a nuclear medium is significantly different from
the free-nucleon-nucleon interaction that we are
currently using. Or perhaps the formation of a
new phase of nuclear matter alters substantially
the evolution of the matter distribution. These
possibilities clearly deserve further exploration.

We are grateful to G. F. Bertsch, S. E. Koonin,
M. Gyulassy, J. W. Negele, and R. C. Slansky
for comments concerning this work, as well as
to A. M. Poskanzer and G. D. Westfall for pro-
viding us with a tabulation of the data of Ref.

29 prior to publication.

*This work was supported by the U. S. Energy Research
and Development Administration.

tPermanent address: Institute for Theoretical Physics,
State University of New York at Stony Brook, Stony
Brook, New York 11794,

Is. z. Belenkij and L. D. Landau, Usp. Fiz. Nauk 56,
309 (1955); Nuovo Cimento Suppl. 3, 15 (1956); in
Collected Papers of L. D. Landau, edited by D. ter
Haar (Gordon and Breach, New York, 1967), 2nd print-
ing, Paper No. 88, p. 665.

2A.E, Glassgold, W, Heckrotte, and K. M. Watson,
Ann. Phys. (N.Y.) 6, 1 (1959).

3G. F. Chapline, M. H. Johnson, E. Teller, and M. S.
Weiss, Phys. Rev. D 8, 4302 (1973).

‘C. Y. Wong and T. A. Welton, Phys. Lett. 49B, 243
(1974).

W. Scheid, H. Miiller, and W, Greiner, Phys. Rev.
Lett. 32, 741 (1974).

®H. G, Baumgardt, J. U. Schott, Y. Sakamoto, E. Schop-
per, H. Stocker, J. Hofmann, W. Scheid, and
W. Greiner, Z. Phys. A273, 359 (1975).

7J. Hofmann, H. Stécker, U, Heinz, W. Scheid, and
W. Greiner, Phys. Rev. Lett. 36, 88 (1976).

8A. Y. Abul-Magd, Phys. Rev. C 12, 343 (1975).

%Y. Kitazoe, M. Sano, and H. Toki, Nuovo Cimento
Lett. ¥3, 139 (1975).

10y, Kitazoe, K. Matsuoka, and M. Sano, Prog. Theor.
Phys. 56, 860 (1976).

UM, 1. Sobel, P. J. Siemens, J. P. Bondorf, and H. A.
Bethe, Nucl. Phys. A251, 502 (1975).

2G. F, Bertsch, Phys Rev. Lett. 34, 697 (1975).

13A, A, Amsden, G. F. Bertsch, F. H. Harlow, and
J. R. Nix, Phys. Rev. Lett. 35, 905 (1975).

147 A, Amsden, F. H. Harlow, and J. R. Nix, Phys.
Rev. C 15, 2059 (1977).

154, A. Amsden, J. N. Ginocchio, F. H. Harlow, J. R.
Nix, M. Danos, E. C. Halbert, and R. K, Smith, Jr.,
Phys. Rev. Lett. 38, 1055 1977).

1éo, Benary, L. R. Price, and G. Alexander, Lawrence
Berkeley Laboratory Report No. UCRL-20000 NN,
1970 (unpublished).

1TA, M. Poskanzer, G. W. Butler, and E. K. Hyde,
Phys. Rev. C 3, 882 (1971).

81, p. Remsberg and D. G, Perry, Phys. Rev. Lett.
35, 361 (1975).

19_“—1, Busza, in Proceedings of the International Con-
ference on High-Energy Physics and Nuclear Struc-
ture, Santa Fe and Los Alamos, New Mexico, 1975,
edited by D. E. Nagle, A. S. Goldhaber, C. K. Har-
grove, R. L. Burman, and B. G. Storms (American
Institute of Physics, New York, 1975), p. 211,

1, D. Landau and E. M. Lifshitz, Fluid Mechanics,
translated by J. B. Sykes and W, H. Reid (Pergamon,
London/Addison-Wesley, Reading, 1959), Chap. XV,
pp. 499-506.

4Q, M@ller, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd.
23, No. 1 (1945).

2R, M. Edelstein, E. J. Makuchowski, C. M. Meltzer,
E. L, Miller, J. S. Russ, B. Gobbi, J. L. Rosen,

H. A. Scott, S. L. Shapiro, and L. Strawczynski,
Phys. Rev. Lett. 38, 185 (1977).
W, D. Myers and W, J. Swiatecki, Ann. Phys. (N.Y.)



2096 AMSDEN, GOLDHABER, HARLOW, AND NIX 17

55, 395 (1969).

UT. G, Trippe, A. Barbare-Galtieri, R. L. Kelly,

A. Rittenberg, A. H. Rosenfeld, G. P. Yost, N. Bar-
ash-Schmidt, C. Bricman, R. J. Hemingway, M. J.
Losty, M. Roos, V. Chaloupka, and B. Armstrong,
Rev. Mod. Phys. 48, S1 (1976).

%F, H. Harlow, A. A. Amsden, and J. R. Nix, J. Comp.
Phys. 20, 119 (1976).

%F, H. Harlow and A. A. Amsden, J. Comp. Phys. 18,
440 (1975).

3, D. Murray, J. Fluid Mech. 21, 465 (1965).

33. D. Murray, J. Fluid Mech. 22, 57 (1965).

233, Gosset, H. H. Gutbrod, W. G. Meyer, A. M. Pos-
kanzer, A. Sandoval, R, Stock, and G, D. Westfall,
Phys. Rev. C 16, 629 (1977).

3oRapidity 9 and transverse momentum p, have been
used widely in descriptions of high-energy collisions
of elementary particles. A modification appropriate to

the nuclear case is to divide py by the mass of a nuc-
lear fragment, giving the quantity v of Eq. (48). This
definition was adopted by R. K. Smith, Jr. and

M. Danos, in Proceedings of the Topical Conference
on Heavy-Ion Collisions, Fall Creek Falls State Park,
Pikeville, Tennessee, 1977 [Oak Ridge National
Laboratory Report No. CONF-770602, 1977 (unpub-
lished)], p. 363.

Sy, D, Myers, Lawrence Berkeley Laboratory Report
No. LBL~6569, 1977 (unpublished).

2w, D, Myers (unpublished).

333, Gosset, J. I. Kapusta, and G. D. Westfall, Lawrence
Berkeley Laboratory Report No. LBL-7139, 1978 (un-
published).

33, I. Kapusta (unpublished).

%G, D, Westfall, J. Gosset, P. J. Johansen, A. M.
Poskanzer, W. G. Meyer, H. H, Gutbrod, A. Sandoval,
and R, Stock, Phys. Rev. Lett. 37, 1202 (1976).



20N+ 238y |
Ebom”/20=250 MeV

Thoe i Impact Parameter =0.5(R, *R )
=gl
® l @ "
00
» » o
51
13.5
L J
253
7 Zrervé 7 Two- Fluid One- Fluid
Coupling Model Model

FIG. 1. Calculated time evolution of the matter dis-
tribution in the collision of ®Ne with 238U for three
different values of the coupling between the two fluids.
The left-hand column gives the result for zero coupling,
where the target and projectile pass through each other
without interaction. The middle column gives the result
for a finite coupling taken from free nucleon-nucleon
scattering, which corresponds to the present two-fluid
model. The right-hand column gives the result for in-
finite coupling, which corresponds to the previous one-
fluid model (Ref. 14). The impact parameter is 0.5 (R,
+R,)=0.5 (1.2049)(4 //*+4,'/% fm, and the laboratory
bombarding energy per nucleon is 250 MeV,



20pe +238|
E bom/20=250 MeV

Time Two-Fluid Model
(102 s) -
@ ® @
00

9l

Ol 05 09
Impact Parameter/(R, *Rp)
FIG. 2. Calculated time evolution of the matter dis-
tribution in the collision of ¥Ne with *®¥U for three dif-

ferent impact parameters. The laboratory bombarding
energy per nucleon is 250 MeV.
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FIG. 3. Calculated time evolution of the matter dis-
tribution in the collision of **Ne with 28U for three
different impact parameters. The laboratory bom-
barding energy per nucleon is 2.1 GeV.




