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The Yakubovski equation for a four-body system is decoupled into a tractable expression suitable for the

treatment of reactions. Because of two-body interactions, some channel wave functions collapse in the course
of collision processes. A part of the decoupled Yakubovski wave function justifies the coupled cluster

approximation. The optical potential is defined by the L 2 operator in the four-body space. The lowest order
amplitude is the impulse approximation.

NUCLEAR REACTIONS Four-body Yakubovski equation decoupled to handle re-
actions. Cluster approximation. Relation to optical model and impulse approxi-

mation.

I. INTRODUCTION

The Yakubovski equation' is a coupled set of
equations for N-body problems, as a generaliza-
tion of the Faddeev equation' for three-body prob-
lems. The Yakubovski equation has desirable pro-
perties: (i) The Yakubovski equation satisfies
the original Schrodinger equation without redun-
dancy. (ii) The wave function has a tree structure
with respect to successive interactions. This
means that the wave function is constructed fol-
lowing simple hierarchies. (iii) The kernel of the
equation is fully connected. (iv) There is no spur-
ious bound state. On the other hand, difficulties
in the Yakubovski equation are as follows: (i) The
number of coupled equations is too large. In fact,
18 (130) ec(uations are coupled in four- (five-)
body problems. (ii) The Yakubovski equation is
not designed for use in a reaction theory of many-
body systems. For example, in a four-body sys-
tem, the number of binary partitions directly re-
lated to two-body channels is seven. Then the
problem arises how to make "eighteen" relate
to "seven. " These difficulties prevent the Yaku-
bovski equation from being a vital reaction theory.
These difficulties are partly removed by recom-
binations of the Yakubovski wave functions. ' It
has been shown that all amplitudes resulting
from the recombined wave functions are brought
into the mell-known expressions, 4 if me make
use of the fact that the final state is on the
four-body energy shell. " Also, it was shown ex-
plicitly for three- and four-body systems that
this wave function covers the whole Hilbert space
[Eq. (55) of Ref. 5] and that the closed channel
vanishes in the high energy limit.

Nevertheless, one difficulty still prohibits prac-
tical applications of the Yakubovski equation: its
lack of an intuitive description of multistep pro-

cesses. If each step in the multiple scattering ex-
pansion is expressed in terms of channel wave
functions, we may call it intuitive. Naturally, the
channel wave functions require special decoupling
of the Yakubovski components. The Yakubovski
equation has been constructed with care for full
connectivity to two-body interactions. That makes
it impossible to express each step of the multiple
scattering in terms of channel wave functions. Of
course, since the scattering processes in the col-
lision complex take place under the two-body in-
teractions, the whole process need not be de-
scribed only by the channel wave functions: Some
part of the channel wave functions may be col-
lapsed. Nevertheless, it is desirable that at least
some part of the process be described by the
channel wave functions.

The present paper is a study of this problem.
In fact, one of the motivations of the present pap-
er was the question as to whether the Yakubovski
equation can be brought to amenable and intuitive
form compatible with the contemporary theory of nu-
clear reactions, ' which has been developed without
care to the structure of N-body Hilbert space, nor
the connectivity of kernels, but which has been
considered to be more practical in use than the
Faddeev- Yakubovski equations. (A criticism to
the contemporary theory of nuclear reactions was
given in B,ef. 5.)

In the present paper, we find that the decoupled
Yakubovski equation can in fact be brought to amen-
able form. For instance, the lowest order term
is the impulse approximation; we can find a sat-
isfactory operator which serves as optical poten-
tial for the elastic scattering, etc. The results
are summarized at the end of the present paper.
The author now believes that the decoupled Yaku-
bovski equation does not involve any fundamental
difficulty, either in principle or for practical use.
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Previous papers by the author are the back-
ground of the present paper. References 3 and 5

will be referred to as I and II, respectively. For
example, Eq4 (10) of Ref. 3 will be quoted as Eq.
(1.10).

II. BACKGROUND OF THE CURRENT PROBLEM

The four-body wave function is expressed in two

ways. We designate by p„. the wave function in
which the pair ij interacts in the final state.
Since there are six interactions, the total wave
function is expressed as (1.1)

~12 ~13 ~14 It 23 ~24 ~34'

Alternatively, we define the cluster wave function
ft)"' to represent a state in which 1, 2, and 3
interact while the particle 4 is in the continuum
in the final state. In terms of the cluster wave
functions, the total wave function is expressed as
(I.9)

))t
—

AD)23+
$124+ p)34+ y234 y)2, 34+ y)3, 24+

AD)4,
23 (2)

For the binary partitions of the system, the use
of the cluster wave functions Q"', Q"'", etc. ,
is useful, while for the breakup process (ternary
and quarterly partitions), the use of P», etc. , is
more useful. ' Anyway, P», etc. , and Q"', etc. ,
are obtained by a decoupling of the Yakubovski
components. " p'", fII)"'", etc. , are related to
P», etc. , by the following relation. To be specific

we assume that the particle 4 impinges on the
bound 123 in the initial state. W'e denote the wave
function of the initial state as )}30"23)f4

2 . Then
it))23 and )t)»'4 are expressed as (I.40}

y123 ~(123)f +G IV 123(y + y + y )

and [cf. Eq. (I.27)]

y)2~34,—G yv12~34(y + y + y + d )

with

~ 122 34 ~ 12~ 34 + gr 122 34
12 34

(3)

The amplitude leading to the bound 123 system
and a free particle 4 is obtained from Eq. (3) as
[(L 73), (IL 35)]

where y„'""denotes the wave function of the nth
state of the bound 123. Similarly, the amplitude
leading to the final state (0„'»)y'")f» „,„ is ob-
tained from Eq. (4) as [cf. Eq. (I.81)]

&""""=(~'"'l&~.'"'
I

( f)2-34;nm I vl2 v341 ~13 ~14 423 ~24) '

(8)

The amplitude for the ternary partition, in which
a pair 12 is in a bound state, is expressed as
[II.51, II.52, and II.53]

T„'"'=(9 „'"'l(f,,„l(f. ..l v„l0",,'+ p,",'+G, (t„+t„)(p„+4. ., + @„)+ p",,'+ 0,",'+G, (t„+t„)(4„+p„+p„)
(7)

~13 GOt13(412 423) 1

~34 0 34 ~12 '

(8)

(9)

Now the problem with these expressions is the
following: These expressions are described in
terms of wave functions such as fII),4+ fIF)24+ (jI)34 and
f13 f14 f23 f24 etc . Clearly, both for intui-
tive understanding of the scattering processes
and for easy handling of the multiple scatterings,
it is desirable that the wave functions Q„+fjt)„
+ f34 etc . be expressed in terms of the cluster
wave functions (II)"', etc. Equations (I.44) and
(I.49) were found for this purpose. However, the
denominator

I+ Go(f12+ f13+ t23) I I+ Go(ti2+ t34)]

in Eq. (I.44) [Eq. (I.49)] is unfamiliar.
Another way of expressing the amplitudes in

terms of the channel wave functions is to first
bring Eqs. (5)-(7) to the usual form [(I.73}, (I.81),
and (D.54)]

&.'""=&~.""'l&f„,„l v + v-+v. I4),
Z (12)(34) —(~(12) l(~(34)

I

"&f12-34;., ~ I vl. + v)4+ v2. + v24I))')

(10)

Z (12) —((p(12) I(f
x(f, , Iv„+v„+v„+v„+v„l)(), (12)

and then use Eq. (2) for )t). By this procedure, the
first order term is described by the cluster wave
functions. For handling the second and higher or-
der terms, we must employ Eqs. (3) and (4}. Then
the rightmost function becomes again $14+ fI|)24+ fII)34,
etc. For getting the "physical expression" of the
amplitude, we must have equations in which $12,
etc. are expressed by some combinations of cluster
wave functions P"', etc. This kind of equation has
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not been found so far. The purpose of the present
paper is then to give equations of this kind and to
see how useful these equations are.

III. NEW' SET OF EQUATIONS

Each of the wave functions Q», Q"', and Q"'"
consists of the Yakubovski components [(I.6), (I.7),
and {I.8)]

terms on the right-hand side of Eq. (19)]. It may
be interpreted that some cluster wave functions
[1P'24, 1P"4, and $14'23 in Eq. (19)] collapse in the
course of collision. (ii) The cluster terms are
more important than the collapsed terms, because
the cluster terms couple to ft),.

&
by the lower order

interactions than the collapsed terms do. Thus,
we may approximate $14 by

y
123 + y 124 + y12t 34

y123 y123 ~ y123+ yl23
12 13 23

y12, 34 ~12~34+ ~12' 34
~12 +34

The wave function Q» satisfi'es the equation

(13)

(14)

(15)

(y123 + y234+ y12 ~ 34+ y13,24) (20)

Let us call the approximation (20) the coupled clus-
ter approximation (CCA).

IV. COUPLED CLUSTER APPROXIMATION (CCA)

[{I4)]

~12 0 lo(~13 ~14 ~23 ~24 ~34) {16)

If we use Eqs. (13)-(15), Eq. (16) is brought into
the form

(yl23+ y123+ y124+ @124+yl2234

+ @134+@234 + @13224+y14~23)

The Yakubovski components are expressed as
[see the equation following (II.43)]

P12 @12,0 f4, 30 GOW12 ( P14 P24 P34) &

P12 0W 12 (@13 P23 P34) I

P12 GOW12 (P13 P23 P14 P24) ' (18)

Here y,'2»0" represents the 1 2 component of @~0
3

[cf. Eq. (14)]. The kernel G,W,'," (G0W",,'") denotes
the 12 component of the kernel G, W'„" (G0W"'~)
which is fully connected with respect to 123 (12
and 34). The kernel G W",,' was given in Eq. (I.29)
[Eq. (I.34)]. Making use of Eq. {18),we can ex-
press e.g. $14 in Eq. (5) in a fully connected man-
ner as

&14 = Got 14[G0(W1"+ W24') (&13+ &23+ @34)

GO( 13 W34 )(412 P23 P24)

OW23 (P12 13 P24 @34)

+ y123+ 4
234+ y12, 34+ y13,24]

By solving these six equations for Q„., we can ex-
press each Q, , by combinations of Q"" and Q'~'~'.
Therefore, Eq. (19) and similar equations for 1P,.

&

a,re equations we wanted to have.
The important features in Eq. (19) are as follows:

(i) $14, in general 1P,3, consists of "cluster terms, "
1p' '+ ~ ~ ~ + Q"' and "collapsed terms" [first three

In this section, we investigate the consequences
of CCA. Under this approximation, f24 and $34
1 ead

G t (g123 + lt1134 + lp12I 34 + lp14I23)

(lp
123 + p

124 + y1 3~ 24 + p 14' 23)

(21)

(22)

y12 ~ 34 —G W12~34G [t (y124+ y234+ y12I34+ y14~23)

(1pl24 + @134+lp12~34+ 1p13~ 24)

(y123+ y234+ y12, 34+ y13, 24)

(4
123 + y134+ @12,34+ @14,23)]

(24)

These seven coupled integral equations are well
defined since all kernels are connected. The cor-
rect and intuitive multiple scattering series are
obtained by iterating these equations. Further, we
can draw the following consequences from these
equations.

A. Optical potential

By Eqs. (II.32) and (II.33), if we neglect contri-
butions from breakup and closed channels, the op-
erator 605""is.approximated by

If we put Eqs. (20)-(22) in Eqs. (3) and (4), we ob-
tain

y123 +(123)f0 4, P0

W123G [t (F123+ y2344 y12I34+ y13~24)

(y123 + y134+ @12~34+ y14, 23)

(y123+ y124+ y13, 24 4. pl+23)]

(23)

(25)
1

t

Here c.p. denotes "the cyclic permutation. " Equation (23) then tells that the distorting potential (optical
potential) U4 „ for the elastically scattered particle 4 from the nth bound state of 123 is given by
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U...= (&.'""
I

[V»G2(f)3+ f23)+c p «123]G2('f)4+f24+f34)1&'"") .

Similarly, the optical potential U, 2 34 for the elastically scattered wave between the nth bound state
of 12 and the mth bound state of 34 is given by

(26)

U„„,.„=((&)„'»'I(())„"'1(v„G f„+v G t„)G (t„+t„+t, +f 4) I
P„' ')1(P' ').

Some papers in the past' have suggested that the optical potential for the particle 4 is given by

U = ((()& 3) If +f + f
I

(&)& )) (28)

Comparing Eq. (26) with Eq. (28) we see that the factor [V&2G,(t»+ f23)+c.p. of 123] is new. Thanks to the
presence of this factor, the operator [V»G, (t»+f23)+c.p. of 123]G,(t)4+t„+f34) is the L' operator in the
four-body space. Namely, it is eligible to be a transition operator in the four-body space. The situation
is the same in Eq. (27).

B. Amplitudes

Under CCA, the amplitude T&)23) [Eq. (5)] reads
T(123) ((()(123)

I (f I
(V + V + V )G (f

I

(t)123+ (t)234+ $12 34+ y)3 24)+c p of 123)

Since the final state 1&))(»3))
I f, ) is on the four-body energy shell, satisfying

[z —a, —(v„+v„,+ v„)] I q &"')&If, , &=o,

Eg. (2.9) is reduced to

=((o' '1&f . „I (f-10 "+0'"+0"'"+0"'"&+f,
I

0"'+0'"+0" "+0'""&

I

4)123+ y124+ y13, 24+ y14~23) )

(29)

(3o)

For other processes, the amplitudes are given, e.g. , by

—«'""
I &f. ,„I

(f .I
&"'+e"4+ &"'"+&"")+f-

I

&"'+&'"+&"'"+&""&

+f 1~124+ y123+ y)3y244
AD)4, 23)) (32)

T()2)(34) [see Eq (6)] ((&)(12)
I

(9)(34)
I (f I (f

I

$124 + $234+ $12~ 34 + $14I23) + f
I

$124+ $134+ &f&12&34+ $13&24)

I
y)23+ y234+ &t)12e34+ y&3y24) + f 1&f)»3+ y»4+ y», 34+ y)4, 23))

(33)

The breakup amplitude Eq. ('I) is a little complicated. In CCA we must neglect p123, (t),',23, 4)', 24

(t)34
' because these wave functions are parts of clu ste r wave functions Q"', Q"', and Q" '". As a result,

(34)

+ G.(f-+f-)
I
e-+ e-+ &-)+G.f- I &-+ &-' &-+ &2a]

=((o("'l&f, l&f. IV,2I«.(f„+f-)G.«14I@"'+e'"+@"'"+&"'")+'poI '»&
+G (f +f )G (f, Ip»4+@"4+/» ~ "+&t)'"23)+c.p. of 124)

G (f 1&t))24 + &t)234 + y ~ + (() 4~2 )
+f,.IA"'+ 0'"+@""+0" "&+f,

I

4"'+0'"+0""+0" ")
+f I&"3+&'"+&""+O"'0)]

= ((&)(»'1(f, I(f, 2 1((f„+t„)G,(f141/"'+ (t)'"+ Q"~ "+p" ")+cp of 123)

+ (f + f )G (f
I

$)24+ $234+ $12~ 34 4 $14 3) c f 124)

+«9f.l&"4+&'"+e""+&'"")+(3-4))
+ [f., I

e'"+ @'"+@""+e"")+(3 =4)])
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C. Impulse approximation

(38)

Now we retain only the lowest order term in each amplitude. We denote by T„""'" the amplitude thus ob-
tained from T„""',etc. The results are

T (123)IA —(p(123) I(f I
(f +f +f ) I

p(123)) If ) (35)

T'""'"=(v.'""l(f„,„lf,.lv.'"")If.,„), (36}

T '"""""= (9 '"' l(v'-"' l(f,...,..I(f-+ f-) I 9 '"")If..„) (37)

22) o 32+f32Go( 14+ 22)] I&o & If4, 2).

Equations (35)-(37) are the impulse approxima-
tion. The lowest order terms of the breakup pro-
cess are of the second order [Eq. (38)]. This ex-
plains why the cluster transfer reactions are more
important than the breakup process.

In conclusion, we have shown the following for
the decoupled Yakubovski equation:

(I) In the previous paper,
(i) it covers the whole four-body space, '
(ii) the closed channel vanishes in the high ener-

gy limit, '
(iii) the scattering amplitudes are brought into

the mell-known expre ssions."
(II) In the present paper,
(i) the waves in the intermediate stage consist

of the cluster wave function and the collapsed wave
functions [Eq. (19)]. The number of equations we

have to solve is six [Eq. (19)].
(ii} If we adopt the coupled cluster approxima-

tion [Eq. (20)], we can define the optical potential
[Eqs. (26) and (27)], in which the transition oper-
ator is fully connected with respect to four-part-
icles. We have to solve seven equations [Eqs. (23)
and (24)].

(iii) The lowest order terms of cluster transfer
reactions are impulse approximations [Eqs. (35),
(36), and (37}].

(iv) The cluster transfer reactions are realized
more easily than the breakup process [Eqs. (35)-
(37) and Eq. (38)].
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