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We present the details of a novel approach to the treatment of Coulomb effects in atomic and nuclear

reactions of the three-body type in which two of the particles are charged. Based on three-body integral

equations the formalism allows the practical calculation of elastic, inelastic, rearrangement, and breakup

processes with full inclusion of the Coulomb repulsion or attraction in a mathematically correct way. No
restrictions need to be made concerning the form of the short-range interactions between the three pairs. A

particular virtue of our method lies in the fact that it corroborates, and gives precise meaning to, the

intuitively anticipated conception of how to describe such reactions.

NUCLEAR REACTIONS Three-body scattering theory. Coulomb effects when

two of the particles charged. Screening and renormalization approach. Quasi-
particle method. Defined scattering amplitudes for elastic, inelastic, rearrange-
ment and breakup processes, and scattering wave functions. Derived practical

integral equations for these quantities.

I. INTRODUCTION

Modern investigations of nuclear reactions in-
volving three fragments are often based on three-
body integral equations originating from the work
of Watson, Faddeev, Mitra and Bhasin, Amado, 4

and Sitenko and Kharchenko. ' Although this for-
malism is quite general, it nevertheless has one
important shortcoming: Long- range force@ can-
not be easily accommodated. For practical pur-
poses this is a serious drawback since in the
majority of nuclear reactions at least two charged
fragments are taking part. As long as the latter
remain bound both in the initial and in the final
state, one may treat such processes by the meth-
ods of ordinary (short-range} scattering theory.
However, in most circumstances it will happen
that at least two charged particles separate as-
ymptotically. In fact, these are just the reactions
preferred by experimentalists for obvious reasons.
Then one must face the question of how to treat
the long-range Coulomb potential in the frame-
work of three-body integral equations theory. '

In the present paper we restrict ourselves to
three-body processes in which anly tuo charged
particles participate, i.e., the Coulomb force
acts in one subsystem only. In order to de-
scribe such reactions, essentially bvo distinct
approaches have been developed previously which
attempt to formulate three-body integral equations

in the presence of the Coulomb force. The one
proposed by Noble' and by Bencze' consists in
deriving three-body integral equations similar to
those known in ordinary (short-range} theory, with
the Coulomb potentials occurring only in the "free"
Green's functions and the two-particle transition
operators constituting the inhomogeneity and the
kernel. In this way well-defined equations are
obtained, however, with kernels which are un-
pleasant three-body operators. Therefore, they
do not appear to be useful for practical applica-
tions. Indeed, in order to make this scheme
manageable, drastic and uncontrollable approxima-
tions had to be made. "".

Another approach has been put forward by
Veselova, "who investigated the Faddeev equa-
tions for screened Coulomb potentials. After
isolating those two-body quantities which generate
the Coulomb singularities in the zero screening
limit, she explicitly inverted the corresponding
part of the Faddeev kernel. By that procedure
she arrived at three-body equations having a ker-
nel which can be constructed in terms of two-body
transition operators and which is well behaved in
that limit. However, the latter property could be
shown only for negative energies, i.e., for en-
ergies below the breakup threshold.

In the following we present another rigorous ap-
proach which combines the advantages of both
above mentioned formalisms. It leads to integral
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equations for elastic, inelastic, rearrangement,
and breakup arnplitmdes the kernels of which are
we'll defined for all energies and ean be calculated
from the genuine heo-body amplitudes.

Our theory exploits the great similarity between

the present problem and that of the scattering of
two charged elementary particles. Their close
relationship is most clearly exposed by formulating
the three-body problem as an effective two-body

one. This is accomplished by the quasiparticle
formalism of Alt, Grassberger, and Sandhas
(AQS)" which, therefore, appears to be ideally
suited for the following investigations.

Following Ref. 13 we use a screened Coulomb
potential. For the scattering of taboo charged par-
tj.cles the screening approach leads for finite val-
ues of the screening radius to well-defined scat-
tering amplitudes and wave functions. However,
the transition to amplitudes and wave functions for
an unscreened Coulomb potential cannot be per-
form. ed in a Straightforward manner. Indeed, it
requires the renormalization procedure con-
jectured by Dalitz" and developed by Gorshkov'
and others. " " In Sec. II this approach to two-
cParged-particle scattering is presented in some
detail since our treatment of the three-body prob-
lem closely follows these lines. Section III con-
tains the discussion of the scattering of orle neu-
tral and two charged particles, in a model in which
we assume that the pairwise short-range forces
are rank-one separable potentials, and that the
coulomb force is repulsive. The simplicity of this
model enables us to explain our method in a de-
tailed and transparent manner. %e demonstrate in
particular that the renormalization procedure out-
ljned jn See. II can be taken over directly in order
to define amplitudes for elastic, rearrangement,
and breakup processes, as well as scattering wave
functions. The above mentioned restrictions are
removed in Sec. IV where we allow for arbitrary,
in particular local, short-range interactions and
also for attractive Coulomb forces.

It should be mentioned that the simple three-body
&yodel discussed in Sec. III has already been made
t;ht.'basis of a numerical investigation of elastic
proton-deuteron scattering by the present authors.
First results for quartet effective range para-
meters and 8 wave phase shifts were reported in
Ref. 20, whereas the first results for pd cross
sections have been published in Ref. 21. A full
analysis of pd scattering is in preparation. "

II. SOME ASPECTS OF THE SCATTERING OF
TWO CHARGED PARTICI.ES

lt is well known that many results in (short-
range) two-particle-scattering theory do no

longer hold for long-range forces of which the

Coulomb force is the most important and, there-
fore, the most thoroughly investigated example.
Since the difficulties arising in the three-body
problem under consideration turn out to be simi-
lar to those encountered for two-charged-particle
scattering we start by recapitulating the relevant
aspects of the latter. This also serves to fix our
notation.

A. Pure Coulomb scattering

Let us first concentrate on the scattering of two

particles via a pure Coulomb potential V~,

v, (r) =g/r. (2.1)

The corresponding transition operator satisfies
the Lippmann-Schwinger (LS} equation

(2.2)T, (z) = V, + V, G( z) T, ( z)

with G,(z) = (z —P'/2p, ) ', u, being the reduced
mass.

For the following it proves convenient to intro-
duce off-shell scattering states (pc(z}) and off-
shell M)lier operators Ac(z) via

IP&(z)& = il&(z}IP&

= [1+G,(z)T (z)]ip), (2 2)

P, (cos8) Tc, (k)
2l+1

l=O
(2.4}

does not converge'9'4 (as a function) for any value
of the scattering angle 8 due to the slow decrease
of the "Coulomb phase shifts" with increasing I.
This indicates that problems might arise in three-
and more-particle scattering if a partial wave de-
composition of the Coulomb amplitude or potential

where z =if'/2p bio is supposed not to be cor-
related to the energy E~ =p'/2p, associated with
the plane wave ~p).

Although the off-shell matrix elements of T~,
the on-shell amplitudes Tc(p', p), and the cor-
responding on-shell scattering states

~
p~~&) are

explicitly known, they suffer from the mell-known
diseases. %e mention only those vrhieh are rele-
vant for the following.

(i) The matrix elements (p')Tc(F'/2p, +io}~ip)
are well defined for p, p' 1%, excluding the for-
ward direction, but do not have a limit when
either p or p' or both tend towards their on-shell
value %. This is due to the occurrence of char-
acteristic diverging factors. Similar divergences
show up also for the scattering states ~pc(%2/2u
+i@)) in the limit p going to %.

(ii) The partial wave series
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exp(-r/R)
VRr =g r (2 6)

The corresponding transition operator TR(z) ful-
fills the LS equation (2.2) with Vc replaced by V„.
Similarly, the off-shell Mi(lier operator QR(z) and
scattering states lpR(z)} are defined in analogy to
Eq. (2.3) as

is used.
The origin of these and related difficulties lies

in the fact that the kernel VcGo(z) of the LS equa-
tion (2.2}, and Go(z)Vc of the LS equation for
Ipc(z)), is highly singular for energies z =k'/2i2
+io. This is apparent in momentum space where

&p'IVcGo(k'/2p+i Q)1 'p}= t 2 y2 0 2)
~

pg/z '

(2.5)

Inspection shows that for on-shell values of the
momenta p = p' = K, the singularities of the free
Green's function and of the Coulomb potential coin-
cide."

This problem can, however, be avoided by
screening the Coulomb potential, i.e. , by re-
placing Vc (r} by a potential"

on the right-hand side of Eqs. (2.9) and

(2.10) are the genuine on-shell Coulomb ampli-
tude and scattering wave functions which we are
looking for. Writing ZR as

ZR(%, Iu) = exp[2iy R( P, p, )], (2.11}

the phase QR can be determined for arbitrary
screening' in the limit of large R. In the special
case of exponential screening considered here it
takes asymptotically the familiar form

p„( )2, p, }= -2) (in2%R —C) . (2.12)

As is customary we have introduced the "Coulomb
parameter" 2} with q

' =yeas (+for repulsion,
—for attraction), az =1/glgl being the Bohr radius
of the system. t" =0.5772 ~ ~ ~ is the Euler number.

S. Coulomb scattering in the presence of short-range potentials

%hat we have discussed so far remains essen-
tially unchanged if in addition to the Coulomb in-
teraction short-range forces" are present, too.
%e are, thus, again forced to screen the Coulomb
potential. Denoting the additional short-range po-
tential by V„ the total interaction is

Ips(z)) = QR(z) Ip) V = VR+Vs & (2.13)

= [1+G.(z)T, (z)]lp} (2 'f)

= IpR(K'/2p, + i0))2=2—. (2 6)

In order to recover the case of scattering via
genuine Coulomb potentials the screening radius
R has to become infinite. The performance of this
limit is trivial except for the on-shell scattering
amplitude and the physical wave functions due to
the occurrence of violent oscillations. "'" How-
ever, it has been shown in Refs. 16-19 that these
oscillations can be isolated for R- ~ in the form
of a diverging phase factor Z„,

TR(p' p &'/2u+i0}12=, =2

and

"~"z,(},v)T, (p' p)l, , ; (2.9)

&rip &,= , " "z,"'(v,-&)&rip, &"), (2.10)

The quantities Tc(p', p) and &rl~pc'l) appearing

Since V„ is of short range for finite R all results
of conventional scattering theory are valid. In

particular, QR(K /2p. +i0) becomes the conven-
tional Mi(lier operator mapping the plane wave
states Ip) with p=K onto the scattering states Ip'R'~},

I pR") = QR(&'/2~ ~ i0}1p&&

and depends on the screening radius R. The same
holds true also for the corresponding amplitude
T which can appropriately be split into a sum of
two terms

7(R) ~ +T(R)
R sC (2.14)

= Q,'(z~}V,[1+G,(z)T'"(z)], (2.15}

with QR(z) defined in Eq. (2.7). This form sug-
gests introducing a quantity t,c (z) via

T,',"'(z) = Q„'(z~)i'„"(z)Q,(z) . (2.16}

'Then straightforward algebra leads to the equa-
tion

i,'."'(z) = V. + V,G.(z)i'. (z) (2.17)

which demonstrates that t,~ is essentially deter-
mined by the short-range part of the interaction.
Here, GR(z) is the full Green's function for a
screened Coulomb potential

The first of them, TR, is chosen as the solution of
the LS equation (2.2), with Vc replaced by VR, and
describes, therefore, the scattering by the
screened Coulomb potential alone. The quantity
T,c', conventionally called Coulomb-modified
strong amplitude, is given according to the two-
potential formula by

T~cR1(z) = [1+TR(z}Go(z)]V,[1+Go(z)T (z)]
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G„(z) = (z H, ——V„) '. (2.18)

The representation (2.16) allows an intuitive
physical interpretation. Namely, for on-shell
values of the momenta p=p'=0, it becomes

&p'IT. c (&'/2u + tO) IP&

= &P'IQs( K'/2P —io)t,'cs'( %'/2P, + iO)

x Q„(%'/2p, + io)lp&

=&p„' 'lt'„"(K'/2q+to)lp~„'& (2 18)

expressing the Coulomb-modified strong amplitude

by means of the matrix elements of the operator
t,g in the (screened} "Coulomb representation. "

In order to recover the scattering by an un-
screened Coulomb potential again the limit R- ~
has to be investigated for T,c", and also t,~~, and

the full transition operator T " . In this limit the
kernel of Eq. (2.17) does obviously not develop a
singularity of the type (2.5). Consequently all
matrix elements g'It, cl(7t'/2tJ. +io) Ip) tend
smoothly towards their unscreened counterparts.
Thus taking into account the large-g behavior
(2.10}of the scattering states, we obtain from
(2.19) for p= p'=K

&p'IT'. (&'/2t +~o)IP&

"~"Zs(R, p}T,c(p', p;0'/2p+io}
2

-z„(a, ,)&%-~~1 ~,';& (, .io)lr,'». (2.20)

Here T,c(p', p; %'/2p i+o) is the Coulomb-modified
strong amplitude for an unscreened Coulomb po-
tential. This result together with Eq. (2.8) im-
plies that also the full amplitude (2.14) behaves
for on-shell values of the momenta as

T'"'(p', p; 0'/2 p+io) "Z. s(&, p) [T,(P', P)+2',c(p', P; k'/2m+to)]

=Z„(%, P, )T(P', P) . (2.21)

In other words, the amplitude describing the scat-
tering off a short-range plus an unscreened Cou-
lomb potential also follows from T by asymp-
totically fa.ctoring out the phase factor Z~.

The results (2.20) and (2.21) are of consider-
able practical importance, in that they provide us
with a recipe for numerically determining the full
unscreened amplitude defined above. It consists
in calculating first at some value of R the screened
Coulomb-modified amplitude T,~' and to "re-
normalize" its on-shell element by Zz '(5, p, ).
This procedure has to be repeated for increasing
R until the asymptotic value, which is the un-
screened Coulomb-modified amplitude 7.',c, is
reached. To it we then add the analytically known
unscreened pure Coulomb amplitude Tc. This
yields according to Eq. (2.21) the desired ampli-
tude T. In practical tests it turned out that for
proton-proton scattering stable results could be
obtained in this way already for R-30 fm.

III. SIMPLE THREE-BODY MODEL FOR SCATTERING
OF ONE NEUTRAL AND TYCHO CHARGED PARTICLES

In the present section we are going to describe
how the scattering of two charged particles re-
viewed in Sec. II has to be modified when a third
neutral particle is present in addition. In order to
keep the presentation as clear as possible we will
assume fqr the moment that the short-range forces
acting between the three particles are described
by separable potentials of rank one. Complica-

tions arising from higher rank separable poten-
tials or from local ones (including finite size cor-
rections) will be dealt with in the next section.

=Ix„&x &x I, for a=1, 2,

Vs =
I XS&Xs&Xsl+ Vs

(3.1a)

(3.1b)

where we take the (point-) Coulomb potential" to
be screened as in Eq. (2.6), with g=Z,Z,e'. The
corresponding subsystem amplitudes are" [recall
Eqs. (2.14} and (2.16)]

T.(z }=Ix && (z.)&x.l,
T."'(z3) = T~(zs}+f1R(zs*) I xs& &3(zs)& x lfls(zs}

(3.2b)

with z denoting the energy of the subsystem of
the two particles p and y. In order to distinguish
energy-dependent two-body operators to be read
in the two-particle space from those in the three-
particle space, we characterize from now on the
former by a caret. Furthermore, for notational
simplicity we do not indicate any energy depen-
dence of the form factors

I x~&. Then the Coulomb-
distorted form factor occurring in Eq. (3.2b) can
be expressed in momentum space as overlap be-

A. Two-body input and kinematics

Let the particles 1 and 2 be charged (with
charges Z,e and Z, e) and particle 3 be neutral.
According to our assumption the potentials for the
three subsystems are
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tween l x,) and the off-shell scattering state (2.3),

&plfls(zs &l x &= &ps(zs }I xs&. (3.3)

(m, +m„)k -m Jk, +k„)
ma+m 8+my

(3.11)

(3.4b)

Finally, we have for e = 1,2

t„'( ) x '-&x IG ( }lx & (3.4a}

and, 'o as follows most easily from Eq. (2.17),

&. '(z, ) =X& '- &X&IGR(za)1 X3&

with Gs(z) given by Eq. (2.18).
In this section we consider a situation where in

each channel precisely one stable bound state
exists. This requires the particles 1 and 2 to be
equally charged. The cases of oppositely charged
particles and of channels with no bound states will
be treated in the next section (the latter aspect is
relevant, e.g. , for proton-deuteron scattering).
Then we can write Eqs. (3.4) as

In what follows we will often encounter another
type of genuine two-particle system. It consists
of a particle of mass m and momentum k~, and
another "particle" of mass (ms+m„) and momen-
tum (k8+k ) with no internal structure or motion
of the constituents. The free Hamiltonian of this
two-body system is Q '/2M„, where Q is the
relative momentum operator acting only in the
subspace spanned by the eigenstates lq & with
eigenvalues given by (3.11), Q, lq & =f1„lg„&.

In order to distinguish operators acting in this
two-particle system from those discussed above
and in Sec. II the former will be characterized by
an index" Q. For instance, the free Green's
function is

~„(z„)=, n =1,2, 3.S (z )
Z

(3.5)
Go(z )=(z —g '/2M ) ',

whereas

(3.12)

Hereby, E is the two-particle binding energy of
pair (P+y), and S„(z) is defined as"

S„(z )=[(X„IG,(E )G (z )lx )] ', for n= 12,

(3.6)
s, (z, )=[&X,IG (E )G, (z, )lx &] '.

Note that for all three subsystems S (E ) equals
the normalization integral of the bound state wave
function in subsystem e and is conveniently set
equal to 1,

S (E~) =1, for ~ =1,2, 3. (3.7)

In order to investigate the system of the three
particles we make use of the quasiparticle for-
malism which reduces the three-body problem to
an effective two-body one. First we will discuss
elastic and rearrangement scattering, then the
breakup processes.

To begin with let us introduce some notation. %e
consider three particles with masses m„m„and
m, and momenta k„k„and k, in the total center-
of-mass system. The reduced mass of particles
P and y will be denoted by p.

Go(z.) =(z„-q '/2M Vso)-' (3.13)

Tz(za) = VR+ VIRGO(za)Ts(z }~ (3.14)

and yields in momentum space the (screened}
Coulomb scattering amplitude for the considered
two-particle system, &q'~l Tso(z, ) lq~&
=To~(q', q„; z ). In analogy to Eq. (2.7) the off-
shell Mtgller operator

0,'(z ) =1+G,'(z )T„'(z.) (3.15)

is introduced which, when applied to the free
states lqg, yields the corresponding (off-shell)
scattering states lq„z(z )). The latter are for
z~=q '/2M +i0 and q =q the on-shell states
[compare Eq. (2.8)]

is the total Green's function for the system of
particle o. and "particle" (P+y) interacting via, a
screened Coulomb potential V~~. The corresponding
transition operator, denoted by Tso(z ), satisfies
the LS equation (2.2) with Vc replaced by VRo, and

Go by t"o
y

-1 -1 -1=Sfg +SZy

and their relative momentum by

(3 8)
lq+", &= lq, (q /2M +iQ)&=fino(q'/2M +to)lq &

(3.16)

m, kz -m~k,
p

8 y
(3.9)

M„'=m„'+(m, +m„) ', (3.10)

and the corresponding relative momentum by

Furthermore, we denote the reduced mass of
particle e and the system of particles (P+y) by
M~,

describing the scattering of particle e off the
"center of mass of particles P and y."

Later on we will need the on-shell amplitudes
Ts(q', q;q'@2M +i0} and wave functions l~q'is&
in the limit g- ~. Recalling that both of them are
genuine two-body quantities we can immediately
take over the results (2.9}and (2.10}. Denoting
the corresponding counterparts for an unscreened
Coulomb potential by an index C, we have for
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q =q' =q

Z'ee(q', g.; q 2„/2M +f0)

""Zz(e,M )Tc'{fl' q )

and

B. Elastic and rearrangement scattering

(3.17)

where we have explicitly indicated the dependence
on the screening radius R. All quantities occurring
here are still operators with respect to the plane
wave states describing the free motion of one
particle and the bound system of the other two in
the initial and the final state. In fact,

'I''s '($e, q )=Q'eI9 te y(E+io)lf1 & (3.20)

are just the physical bound-state scattering ampli-
tudes if the momenta q and qe are equal to their
on-shell values q~ and q'z, respectively, defined
by means of

(R) (R) (a) (R)~en Usa++ +sy ~o;y~ya ~ (3.19)

Even under the simplifying assumptions about
the short-range interactions, detailed in Eqs.
(3.1), in the present problem the strictly local
Coulomb potential occurs in subsystem 3. Hence
a formalism for describing three-body processes
is needed which allows us to fully take into account
local parts of the interactions. This is the case in
the AGS quasiparticle approach'4 which, therefore,
represents the adequate tool for the following in-
vestigation. As mas shown there the quasiparticle
equations for elastic and rearrangement scattering
are

E=Ee =q'e'/2Me+Ee =E =q„'/2M +E„. (3.21)

The effective free Green's function g, . is es-
sentially" determined by h~ of Eq. (3.5),

&q'.Ig. ,..(z)14.&= 5(O' - q.)(z -q '/2M. -E.) '
= r4.1G;(z —E„)14„&. (3.22)

'For the second equality use had been made of Eq.
(3.12).

Due to the assumed separability of the nuclear
potentials and the fact that the (nonseparable)
Coulomb potential" Vz acts in one subsystem
only, the effective potential has the following
exact and closed representation"

(4sl~'s'J(z)lq-&=Be(z-ee'/2Me)]"&q'sl&xel{5e [Go(z)+(5e +5 +5e 5 )Go(z)T (z)G (z)]

+ 5e 5 3GO(z)TB(z)GO(z))I Xn&142Ãa(z —en'/2M )]'i' (3 23)

[as usual, 5e ~ = (1 —5e,), and G,(z}= (z —H, )
' is

the three-particle free Green's function]. The po-
tential 'U ~ depends on the screening radius R via
the screened Coulomb amplitude Ts (and in an un-
essential manner via S„as discussed above's).
The individual terms on the right-hand side of
Eq. (3.23} are represented in diagrammatical form
in Fig. 1.

We will now proceed as follows. First we demon-
strate that the kernel of Eq. (3.19) becomes, in the
limit R- ~, as singular as for the genuine two-
particle case [cf. Eq. (2.5)]. Then the most singu-
lar part of the kernel mill be isolated in such a

form that the renormalization procedure discussed
in Sec. II can be taken over directly.

As indicated, the effective free Green's function
(3.22) has precisely the form of a genuine two-
particle free Green's function taken at a two-par-
ticle energy z =z -E . This becomes even narc
apparent for physical three-bbdy energies z =

q„'/2M +E +iO in which case z, = q '/2M +i0
Then Eq. (3.22) reduces to 2M &&1'1(q„'+io
-0 ') 'lC. &.

What remains to be shown is that U e" (q's, g; z)
reveals in the limit R- ~ the same singular be-
havior as the two-body Coulomb potential. As

(a} (d)
FIG. 1. Diagrammatical representation of the exact effective potential (3.23). Semicircles indicate the form factors.
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suggested by Fig. 1 this can originate only from
diagram d. In fact, its most singular part in the
limit R- ~ has analytically the form

6s.5..V.(q; -q.)R.(q;, 4.; z), (3.24)

with V„being the genuine two-pa~ticl g screened
Coulomb potential. The term (3.24) is graphically
represented by Fig. 2. The decisive point to note
is that due to its locality the screened Coulomb
potential Vs, as it occurs in Eq. (3.24), depends
only on the momentum transfer from the (charged)
particle n to the center of mass of particles p and
y. Consequently, Vz(q'„—Q„) can be identified
with the matrix elements of the operator V~ in-
troduced in Eq. (3.13) which directly describes
the Coulomb interaction between particle e and
the center of mass of p and y, Vs(q', —g~)
=—(q'„(Veo~q ). The factor R in which the whole

FIQ. 2. The part (3.24) of the effective potential (3.23)
which arises from diagram (d) of Fig. 1 (with o. & 3)
and gives rise to the longest-range contribution of &

in the limit R —~.

nonlocality resides is defined by

R (f'„,Q, ;z) =[S„(z-q "/2M )]'t'F (q', ll;z)
&[S (z —q '/2M )]'t' (3.25)

with

[k /2 g ~ —(z —q ~ /2 MJ] [(k + D~) /2 p ~ —(z —q ~i/2 M~) ]
(3.26)

In the last equation we have introduced R„(fi., q;q '/2M, +Z.) =1 (3.28}

5 =m„/(ms+mr)(q'„— Q, ) (3.27)

which is, apart from a mass ratio, the momentum
transfer from the charged particle at to the other
charged particle P.

The quantity F (q', g; z) has a simple physical
interpretation. Namely whey the absolute values
of the momenta g' and q, coincide with the on-
shell momentum q, then F (q', g;q '/2M +B„)
is just the body form factor of the bound system
n, normalized to unity for D =0. This fact,
together with Eq. (3.7), immediately shows that
for q' =f1, and q„=q, when the singularities of
Vs(g'„- t| ) and of the effective Green's function
(3.22) coincide,

holds. Thus, indeed, the kernel of Eq. (3.19) does
exhibit in 'he limit of zero screening the same
singular behavior' as the two-particle kernel
(2.5) but only in the relative momentum variable

between particle o and the center of mass of
particles P and y. In the Appendix it is proven that
all other contributions to '0 &" are less singular
than the term (3.24), implying that in coordinate
space they decrease faster than the Coulomb po-
tential for large distances. These observations
will allow us to take over the screening procedure
for two-charged-particle scattering sketched i@
Sec. II.

In order to investigate the behavior of

[R (q~, q; z) —1] we introduce for o. = 1, 2 an auxiliary function B depending only on the magnitudes of the
momenta q~ and q~

d'kI X (k)I'[S (z —q„"/2M )S„(z—q '/2M )]'tr
[h /2p —(z —q'/2M )][hr/2p, —(z —q '/2M )] (3.29)

Comparison with the definition (3.6) of 5 shows
that half on shell

B.(q'., q ;E +rO) = [S (B.+iO q"/2M. )]--'~',

and for arbitrary q' = q

B (q, q ', z) =R,(q, f„;z). (3.31)

(3.30) With the help of B we decompose R„(q', g;z},
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taking into account Eg. (3.28}, as follows'":

B.(fi'., 4.;z) =1+[B.(q'. q.'z) —1]

+ [R (Q', g „;z) —B (q', q; z)] .
(3.32)

The foregoing discussion makes clear that the
first bracket of (3.32) vanishes if q' = q~ = q, and
the second bracket if g'„=ll, .

We are now in the position to detail the singu-
larity structure of that part of the kernel of Eq.
(3.19) which originates from (3.24). Inserting
there the splitting (3.32) we recognize that the

first term of it gives the most singular contribu-
tion. The second and the third terms are less
singular on account of the fact that either the pole
of g, . or that of the Coulomb potential V„(in the
limit R-~) are killed off. We are, therefore, led
to the following decomposition of the effective po-
tentiaI V (

(3.33)

with

(3.34)

and

(q8, q„;z) = [S„(z—q z'/2 1}f,)S„(z-q.'/2M. )]'~'&$z] & y, ~g&,.[C,(z)+ G, (z)T,(z)G, (z)]

'6s 8' .G.( }[T ( ) —V ]&.( ))I X &I%.&

+6z E,V (Q'„—j )[[B (q', q;z) —1]+[8 (q'„, fi;z}-B (q'„, q„;z)$. (3.35)

~ sn + Ba ++so, aa
(~) (R) (z)

Here, the operator &( is defined by a LS equa-
tion wit potential 'U("),

(3.36)

Equation (3.33) provides the desired separation of
the effective potential into a long-range part
(UIz~) which describes the pure (screened) Coulomb
scattering of the charged particle e from the cen-
ter of mass of particles p and y, and a shorter-
range contribution ('0' '). The former is depicted
diagrammatically in Fig. 3.

Thus we are in a situation analogous to that en-
countered in Sec. II for the genuine two-particle
scattering and can repeat the development starting
with Eq. (2.13). Applying again the two-potential
formalism leads to the following decomposition of
the effective two-body transition operator f'8~,

7(R) ~(R)+P g(z)g 7(z)
y

g(R) + ~ j.(8) g Q(R)
Sa ~ Hy 0;y ya (3.37)

and the quantity &,~) by

7'pp'(z) =58 E,T„(z) (3.39)

making use of the specific structure (3.34) of
'Uiz'. Equation (3.37) can then immediately be
transformed into an equation for Tz(z), which in
momentum space reads as [recall Eq. (3.22}]

7 (R) (1 + j (R) 8 ) gs{R)(I + g cf(R))

yh

(3.38}

Both terms (3.37) and (3.38) are easily inter-
preted. For this purpose we define an amplitude

(zz) via

„V (4' —4")T (4" 0 'z)

FIG. 3. Genuine two-body (screened) Coulomb poten-
tial V@ between charged particle o. and the center of
mass of particles p and y identified as the most singu-
lar part of the diagram displayed in Fig. 2, and con-
stituting w (~), Eq. {3.34).

(3.40)

This, however, coincides with the momentum
representation of the LS equation (3.14) at a two-
particle energy z =z —E . Thus for physical
three particle energies (3.21), we have z,
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=q, '/2M +i0 so that

Tz(it', ft; z =q„'/2M„+k +i0)
-=&4 IT;(q.'/2M. + io)Ill.& (3.41)

equals the screened Coulomb amplitude for tseo
particles of masses m and (ms+m„).

The second amplitude (3.38) will be called Cou-
lomb-modified strong amplitude in analogy to
expression (2.15) in the genuine iwo-particle case.
I.et us z'ewrite it in order to make its structure
more transparent. The first step is to recognize
that, if we define a quantity Q~" as

fl'"(z) = [1+9.(z) &'"'(z)]... (3.42)

then it takes, because of the structure of 1' dis-
cussed above, the explicit form

iwo-body amplitude together with (3.39) and (3.44)
makes the execution of the limit R -~ a simple
task. As discussed in Sec. II and at the beginning
of Sec. III, after renormalization the two-particle
amplitude (3.41) approaches on the energy shell
the corresponding pure Coulomb amplitude [cf.
Eq. (3.17)]. Consequently we find from Eq. (3.39)

lim Z„s 'i'(qs, Ms)ts(z)(qs, q; E+ i0)
R~~

XZ(( ~ (q, M ) =Pc ss(qs, qs)

=6s 6 sToc(q', q }, (3.48)

where for the sake of compact notation a quantity

[ QRe(z —E~), for a )) 3,
[1, for a=S.

(3.43) Z, .(q., M. ) =
Zz(q, M ), for ((43,

for a =3,

gz) (z) g(R)t( z)
s(Rf) (z)g(R)(z) (3.44)

which by simple algebra can be shown to fulfill

f(R) (z) 1)a(B)( )+zg t) (R)I(z1)8(R)(z)f(R) (z)

(3.45)

Here the similarity to Eq. (2.17) is emphasized by
the notation

Gzo(z —E„), for ) ((3,
8(())(z)

I ()s.s(z) =Gsc(z-Es), for y=S,

(3.46}

where Go(z zE„) is the sc-reened Coulomb Green's
function (3.13) at a two-particle energy z„=z —E„.
on the energy shell Eq. (3.44), therefore, ex-
presses the Coulomb-modified strong amplitude
W(cz's, ((L'„q ) as the matrix element of t(cz's in the
"(screened) Coulomb representation"

Here hzo(z —E „) is the "off-shell" MS%lier operator
introduced in Eq. (3.15), at a two-particle energy
z =z —E Thus .for physical energies z=q„'/2M„
+E +i0, the M((Ilier operatorAj(q '/2M +i0) maps
the plane waves ~q„& with q„=q onto the scat-
tering states" ~tl ')s& [recall Eq. (3.16}].

In analogy to Eq. (2.16) we then define an opera-
tor t,(cs'(z) via

(3.49)

has been introduced, ZR being the renormalization
factor defined in Sec. II [cf. Eqs. (2.11) and (2.12)].

Next we investigate the large-R behavior of
For this purpose we recall that the kernel

of Eq. (3.45) for f(sc) does not show in the zero
screening limit a singular behavior of the type
(2.5), as has been discussed above. The implica-
tion is that t,'~' is well behaved in this limit.
Hence in Eq. (3.47) only the scattering states
~q" R& for a =1 and 2 develop diverging factors

which are, according to Eq. (3.18), known to be
the same as in the two-body case. Thus, after
having renormalized the on-shell amplitude (3.47)
the limit R - ~ can be performed

lim Z„s ' '(q s, M s) ',c's, (q s, q, ; E+ iO)
R~~

XZz '~'(, M }

=&c,s (qs q. &+iO)

= (q,"-,' )i,'",',.(&,- iO} ) q."&, c(3.50)

yielding the Coulomb-modified strong amplitude
corresponding to an unscreened Coulomb potential.

Finally, recalling Eq. (3.36) we have proven
that on shell the limits

lm Zz s (q s, Ms}V s~ (qs, q ~~ E+'LO)
R~

v,c, s (qs q i E+ s0)

= «a'If!c",'s.(&+ iO} lq':. 'z& (3 47}

Now the decomposition (3.36) of the effective

xZ„'~'( M )

=(,,s.(q s', q. )+ v', c (qs'„„qE iO+))

= 7's. (qs, q.) (3.51)
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FIG. 4. The final result (3.51) for the elastic and
rearrangement amplitudes. The first diagram on the
right-hand side represents the two-body Coulomb am-
plitude t3.48) for the scattering of the charged particle
n off the center of mass of the other two particles. The
second diagram illustrates the Coulomb-modified strong
amplitude (3.50), with the initial and final state Coulomb
distortions being characterized by a shaded blob.

exist, and equal the amplitudes for elastic and
rearrangement scattering of one neutral and two
charged particles, interacting via short-range and
unscreened Coulomb potentials. Their represen-
tation as a sum of the two contributions (3.48)
and (3.50) is depicted in graphical form in Fig. 4.

We would like to emphasize that this approach
provides us not only with a correct but also prac-
tical formalism for calculating Coulomb correc-
tions in three-body systems; as demonstrated
in Hefs. 20-82. The decisive point is that, as for
the scattering of two charged particles, the Cou-
lomb-modified strong amplitude V', ~ can be cal-
culated via a partial wave expansion of, e.g., Eqs.
(3.50) and (3.45). To this amplitude we then have
to add coherently the analytically known two-
particle Coulomb amplitude which in not calculable
by a partial wave expansion (cf. the discussion at
the beginning of Sec. II}, in order to obtain the
full amplitude via Eq. (3.51).

C. Breakup reactions

Let us envisage the situation of particle n im-
pinging on the bound pair (P+ y) leading to three
free particles. The corresponding amplitude

7","'(p', q', q ) can be written as matrix element
,of an effective transition operator ~0~' between
plane waves describing the relative motion of the
incoming and outgoing particles,

yl (p' q' q.}=&p' q'l~l". '(E+f0) lq. & (3 52)

This is the physical amplitude if the absolute
values of the momenta p', q', and q are equal to
their corresponding on-shell values defined by

or with the help of the integral equation

gr (R)(z}=Q(R &(z)+Q 7 (R~(z)g . (z)Q&R~(z)
B

(3.55)

The elastic and rearrangement potentials 'UB ' and
amplitudes V'B&"' are those discussed in the pre-
ceding subsection, and 9~ is the effective free
Green's function (3.22). For separable nuclear
potentials considered in this section [cf. Eq. (3.1)]
the effective break-up potential g,' ' can again be
given in an exact and closed form." For this
purpose it is most convenient to choose as the
final-state variables those characterizing channel
3, since the relative momentum between. the two
charged particles is then simply p,'. In this case
we have""

u,'."(p,', q.'; q.; z) = &q,
'

I &p.
'

I
[1+T (z)&.( )]I x.& I q.&

x[S (z-q '/2M )]'~2 (3.56)

or when we make use of the off-shell My(lier op-
erators and scattering states, defined in Eq. (2.7),

E=E =q /2M +E =E'=P' z/2p, +q' /2M . (3.53)

The relative momenta (p', q') can be chosen as
any one of the three equivalent sets (p'„q,'), (p,',
q', ), or (p,', q,') defined in Eqs. (3.9) and (3.11).

As is well known'4 the three-body breakup op-
erators Eo"' can be calculated either by quadra-
ture from the elastic and rearrangement ampli-
tudes rB'"'

(z)=so (z)+ Q'Uoq (z)80 z(z)r8 (z) (3 54)

0 (p3 ~q
3 q. ; z) =

& q.' I &p.
'

I
&~z(z*)

I X., q, ) [S.(z —q.'/2M. )]'"
=&p,'IQ~(z* —q"/2M )&q'Ix, q ) [s (z-q /2M )] ~2

= &pl. ("-q."/2M. ) I &q'I x., q. & [s.( —q.'/2M. )]'". (3.57)

The various terms occurring in the definition
(3.56) are graphically displayed in Fig. 5. Note
that on the energy shell the breakup potential
(3.57) becomes simply [recall Eq. (3.7)]

&.- (p' q' q- E+f0}=&q'l&p3,'s'Ix. , q.& (3 58)

and vanishes for z =3 due to energy conservation
(~',", ' corresponds to the fi.rst two diagrams of
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&I + 0~)

pgG. 5. The exact effective breakup potential (3.56) represented in diagrammatical form.

(3.59)

with

Fig. 5).
Our discussion of breakup processes will be

based on Eq. (3.54), although all results could be
derived also from Eq. (3.55}. When the splitting
(3.36) of i' s'") is inserted in Eq. (3.54) it induces
a similar decomposition of W~ ',

(R) (R) (R)
Oe Oe + sC&oe y

(3.65)

with Qs's) defined by Eq. (3.46}. We remark that
by making use of the integral equation (3.45) for
t,'c'8 we obtain immediately an integral equation~'

-g I„)[$(z)]s)'s9&»g'~»

g(R) ~(R)+ so(R)g j(R)
De oe 08 0 8

8
(3.60} +~ t(R) g(R)gr(R)

sCOB 8 Be
8

(3.66)

and

c~ (R) ~ spy(R)~ ~(R)
sCsOe ~ 08 "0 8" sC Be

8
(3.61)

In order to interpret the transition operator
&,',")we make use of the form (3.39}for f's',") and
of the definition (3.42} of 9's), to write

j(R)(g) g)R)(g)g(s)(s) (3.62)

In momentum space this expression becomes, for
on-shell values of the momenta, q3 q3 p3 p3
=q, very simple and transparent [recall Eq.
(3.58) and the remark following it],

d q' p"„' kX k'

tR) (z) =g )(z's)f(B) (z)fl(s)(g)

It is related to t,'c'8 via

(3.64)

x [S', (E, + sp —)I"/2M, )]'~'(q,' Iq"„),
(3.63}

with k and k' being the well-known linear combin-
ations of q,' and q' . It involves only a quadrature
of genuine two-body screened Coulomb scattering
wave functions and represents the pure screened
Coulomb breakup.

The Coulomb-modified strong breakup amplitude

0 can be handled in analogy to the nonbreakup
case. Inserting expression (3.44) for K,'sc)s into
Eq. (3.61) suggests the introduction of the breakup
analog of (3.45) via

which would, of course, also follow if the integral
equation (3.55) for the breakup amplitude V",s'
were used as a starting point. When writing Eq.
(3.64) in momentum space its structure becomes
again transparent. Indeed, for on-shell values
of the momenta the Coulomb-modified strong
breakup amplitude is given as

9 c.o (ps qs q„.E+ip)
= &qs I &ps,'s'If!:,)..«+ sp} Iq.".'s& (3 67}

clearly displaying the (screened) Coulomb distor-
tion of the plane waves describing the relative
motion of the different two charged particles in
the initial" and final states.

The transition to unscreened Coulomb potentials
is now as obvious as for the nonbreakup case.
Since the kernel of Eq. (3.66) contains only the
potential part'UB R' which has no infinite range
contributions, the limit to zero screening in

t,'c'0 can be performed as it was the case for
t,'c'8 . Thus the only quantities where divergen-
ces for R —~ occur in Eqs. (3.63) and (3.67) are
the genuine two-body scattering states Ips" s)) and
Iq"„). We can, therefore, again apply [using
Eqs. (2.10) and (3.18)] the renormalization pro-
cedure described above to find that on the energy
shell4'

lim Zs '~ (p', p,)F'(p', q', .q,';E+ip)
R~~

x g~ ') s(q, M )

~g ~ p

c,oe(ps~qs qa)

=6..&qlI &pl,
' 'Ix. )[S.(Z.+sp)]'" Iq". ,& (3.68)
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lim Z~ '~'(p3 p'3)7'~', (p,', q,'; q; E+f0)
R~~

=7'.....(p,', q,';q. ;E+fo)

= &q'l&p'. c lf'."' ..(E+ f0) lq.",,& (3.69)

H r +c,o ad+, c,o ar p
the Coulomb-modif ied strong breakup amplitudes
for unscreened Coulomb potentials. The diverging
phase factors Z~ and Z„are defined in Eqs.
(2.11) and (3.49), respectively. Putting these re-
sults together, we have proven that also the on-
shell element of the full breakup amplitude (3.59)
tends after renormalization towards the physical
breakup amplitude for an unscreened Coulomb
potential

Eq. (3.65) or (3.66). And the pure Coulomb break-
up described by (3.68), which would not be ob-
tainable by a partial wave expansion, can, how-

ever, be evaluated, e.g. , by quadrature of analyt-
ically known two-body Coulomb scattering wave

func tions.

D. Scattering states

Sometimes it is desirable to work with scattering
wave functions instead of with scattering amplitudes.
%e, therefore, discuss how the formalism de-
veloped above can be implemented in a wave
function approach to three-body processes. 4'

Let I+,"; „& denote a scattering state charac-
terized by a channel state Ig ) Iq &, with Ig )
being the bound-state wave function of pair
(P+ y) and q being the channel relative momen-
tum. In the quasiparticle approach it can be ob-
tained as a sum of three terms, '

lim Z~ '~'(ps, p, ,)K,'~'(p,', q3; q; E+ fo)
R~~

xz„'~ (q, M )

C, Oa(p37 q3& qe)

+ 7',c...(p,', q,'; q. ; E + i0)]
= 7'..(p.', q.'; q.). (3.70)

Equation (3.70) is represented in diagrammatical
form in Fig. 6.

That this approach to breakup reactions is also
practical will be demonstrated in a later publica-
tion. The decisive point is here as in the non-
breakup case that the Coulomb-modified strong
amplitude V,c o can be calculated, e.g., by means
of a partial wave expansion of (3.69) together with

I4', ~g, z&= Q Go(E + f0)0.'~~(E. + f0) lq".",!&s.

(3.71)

Here we have introduced the effective two-body
states I4'"1 )8 which are defined as

I@'.,~&s-~s&xg Iq'. .a., s&

=[6, +9, ,(E +fo)f "'(E +f0)]lq &.

(3.72)

They represent that part of the scattering wave
function in which particles n and y, with n, y &P,
emerge as a correlated pair (spectator wave func-
tions), and are obviously only vectors in the rela-
tive momentum space of the two colliding frag-

FIG. 6. The final result (3.70) for the breakup amplitudes described as a sum of the pure Coulomb and the Coulomb-
modified strong breakup amplitudes (3.68) and (3.69), respectively. The large shaded blob has the same interpretation.
as in Fig. 4, whereas the small one indicates the Coulomb distortion between the charged particles 1 and 2,
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ments. Note that Eq. (3.72) can be interpreted as
a mapping of the plane waves lq ) onto the effec-
tive two-body scattering states by means of effec-
tive two-body M)(flier operators, as has been em-
phasized in Ref. 43. Kith the help of the integral
equation (3.19) for 7'~) one easily derives'i'" ~
an equation for these effective states,

l)I((,~i)
&g

——6i lq &+9O i(E .+io)

lim s„.-'"(q.,M.) le(.',) ),

= 6,.lq(:),&+ 9~(")(E.+ io)f,(,".),.(E.+ ip)
l q.",&.

(3.76)

Going back to the definition (3.71) for the screened
three-body scattering state l4,"; )(& we find

xg ui(~)(E +io) lc'~) )„. (3.73} lim Zz '~'(q, M ) l)1(,"; )(&
R~~

Recall that in all equations (3.71)-(3.73) the mag-
nitude of the momentum q is fixed by the on-
shell condition (3.21) to the value lq l

=j . In-
serting in Eq. (3.72) the splitting (3.36} for the
amplitude 9'~ ' leads to the following expres-
sion"

+9/)(E +io&f,'"' (~ +io)lq'' ) (3.74)

in which the long-range Coulomb distortion of the
two incoming fragments is explicitly separated
out by means of the (screened) Coulomb scattering
states lq "z& introduced in Eq. (3 16). The effec-
tive two-body operators 9~"' and t,'R~.'~, are defined

by Eqs. (3.46) and (3.45}, respectively. When

making use of the latter equation one can easily
rewrite Eq. (3.74) into an integral equation for
l@(s)

l4' - ) = 6i- l q.',& + 9("(E.+ ip)

(3.75)

which we could have derived also from the integral
equation (3.73}. Note that this result is nothing
else than a distorted wave representation of the
effective two-body states, with only the shorter-
range part '0"R' of the effective potential V'R'

occurring in the kernel.
The limit R- ~ is now most easily investigated

by means of Eq. (3.74). We simply have to recall
that, as discussed after Eq. (3.49), f(~~'i is well
behaved in that limit. Furthermore, the screened
Coulomb Creen's function GR occurring in 9~ '

for P= 1, 2 [recall the definition (3.46)] goes over
into the unscreened one. Thus there remains
only the singular behavior arising from the
screened Coulomb scattering states lq "~&.
ing into account Eq. (3.18) we can conclude that
after renormalization we obtain in the limit R - ~
the effective two-body wave function for an un-
screened Coulomb potential, "

= g c,(z.+io)uo(,")(E.+io) l@.,; ),

l

(I((+ ) ) (3.77}

IV. THREE-PARTICLE SCATTERING WITH
GENERAL SHORT-RANGE TWO-BODY POTENTIALS

In the preceding section we have developed a
formalism for describing the scattering of three
particles two of which are charged, but with the
restrictions that the short-range forces are rep-

which provides us with the desired three-body
scattering wave function for an unscreened Cou-
lomb potential. In the last step explicit use has
been made of the form (3.56}for 'U,(i~) to show
that

Go(&&&'s '(&& = G~(z& I xi&(~i(&)]'" (3 78)

And in the limit R-~ the genuine two-body Qreen's
functions GR goes over into G~.

It is worthwhile pointing to an interesting fea-
ture of the Coulomb scattering wave function con-
structed in our approach; namely, inspection of
Eq. (3.76) reveals tha, t the spectator wave functions

(pi l4'; &i show the typical Coulomb-type behavior
in the two-fragment relative variable p~, starting
at the threshold of channel P (for P = 1, 2). The
Coulomb-type behavior which occurs in the vari-
able r,' between the charged particles 1 and 2 for
energies above the breakup threshold is only in-
troduced when going over to the full scattering
wave function (p,', r,' l4"; ). The explicit separa-
tion of these effects might be advantageous for
practical applications.

Similar equations can be obtained for the state
l)1(' '; ) which is asymptotically characterized by a
free wave l(i) ) lq ) and incoming spherical waves,
and for the states l4',")& characterized by the
plane waves lp, q&. Three-body bound-state wave
functions follow, of course, from Eq. (3.71) in
the limit R- ~, with the effective two-body states
calculated from the homogeneous version of Eq.
(3.72).
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resented by rank-one separable potentials and that
the Coulomb force is repulsive. These limitations
are now shown to have been only of technical na-
ture. We, indeed, demonstrate that the formulas
derived before are valid, with unessential mod-
ifications, also for general short-range inter-
actions and for attractive Coulomb potentials.

Two important differences to the simple case
discussed in Sec. III emerge when general two-
particle interactions are admitted. First, ex-
citation of the bound systems in the initial and/or
final state becomes possible. Secondly, there
may also occur "channels" which do not corres-
pond to asymptotically allowed configurations.
This happens either if the energy is not high
enough (energetically closed channels), or if the

situations described by them are no physical chan-
nels at all (the latter will be termed unphysical
channels; a well-known example is the "channel"
p+ d~ in proton-deuteron scattering where d~ de-
notes the neutron-protonpair in the 'S, state}. As is
shown below the unphysical and the closed physical
channelsposenoproblemwhatsoever. Thatis, the
need for generalizing the formalism developed in
Sec. HI is caused solely by the occurrence of the
physical, energetically allowed channels

For the following investigation we employ again
the quasiparticle formalism of Ref. 14.

1. Two-body input

Starting from arbitrary short-range two-body
potentials V„' we decompose them into a separable
part and a remainder V„'. Thus for + =1 and 2 we
have

v. =g Ix.,».,&)f., l
v. .

yel
(4.1a)

In subsystem 3 consisting of the two charged par-
ticles 1 and 2, the (screened) Coulomb force" V„
acts in addition to V;. Since we require V„ to be
repulsive only the short-range force V; is capable
of producing bound states. Thus a suitable decom-
position of the subsystem potential V, is"

V, = P I x~&X„&x„l + Vl+ Vz ~ (4.1b)

The subsystem amplitudes corresponding to these
potentials are"

A. Repulsive Coulomb force

We first treat the situation of two equally charged
particles which is of paramount interest for nuclear
reactions.

N~

T.(z.) = g I
C.„(z.)&d. , „,(z.)&4.,(z.*)

I T.'(z.),

(4.2)

with T' fulfilling the LS equations

T' (z ) = V' + V' G, (z )T' (z ), for a = 1, 2,

(4.3a}

T', (z, ) = (V', + Vz) + (V', + Vz)G, (z,}T,'(z, ) . (4.3b}

For the following it proves advantageous to rewrite
Eq. (4.3b) in analogy to Eq. (2, 14) in order to ex-
plicitly display the pure Coulomb contribution.
This is again accomplished with the help of the
two-potential formul. a yielding

T', (z, ) = Tz(z, ) + Az(z~)t,'c, ,(z,}As(z,) . (4.4)
A

Here Tz(z) and Qz(z) are the transition operator
and the off-shell Mdller operator for a screened
Coulomb potential, introduced in Eq. (2.7}, and

t,'c, fulfills the LS equation (2.17) with the short-
range potential V', . The form factors

I 4,„(z )) oc-
curring in Eq. (4.2) are defined for a = 1 and 2 by

I C.,(z. )& = [1+&.'(z.}G.(z.)] I x.,&,

and for a=3 by

I4 "(z.}& = [1+&l(z.}G.(z.)] I x.,&

=f1'.(z;)[ f:...(z.}G„(z,}]l)f,„& (4.6b}

[G„ is the screened Coulomb Green's function
(2.16)). Finally, the elements of the matrix Z
are determined by

[&. '(z.}],.= ~., '6,.—&x..lG.( -}I4-.(z-})

(4.6)

for +=1,2, 3.
Let us make a few remarks. The first one con-

cerns the number of separable terms in Eq. (4.1).
Assume the existence of n~ stable bound states in
subsystem a. Then for the quasiparticle approach
to be applicable the number N of separable terms
in the decomposition (4.1), which determines the
size of the matrix equation (4.14) below, must be
at least as large as n so that the remainder V'

is too weak for producing any bound states. How-
ever, in practical applications it might be ad-
visable to choose N &n (this aspect is discussed
in detail in Ref. 46). Then these additional se-
parable terms give rise to (N, —n ) "unphysical"
channels. The second remark concerns the special
case that the short-range potential in subsystem
a is a separable potential of rank M~. The sim-
plest possibility" is to choose N =M which im-
plies V' = 0. From Eqs. (4.3) it then follows that
T' =0 for a= 1 and 2, and 'F', =Tz. This situation
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is clearly included in the above formalism. Fi-
nally, we draw the attention to a simplifying
change in notation as compared to Sec. III. In con-
trast to the convention observed there, any im-
plicit dependence of various subsystem quantities
on the screening radius is no longer indicated by
a superscript R. That is, only a subscript R is
used, as before, to label the pure screened Cou-
lomb quantities.

In order to proceed further it is necessary to
briefly recapitulate" the properties of & (z). Let
us denote the binding energies and wave functions
of the n possible bound states in subsystem o.'

by E„„and Ig „), x=1, . . . , n (n (N ), respec-
tively. %e assume that the first n separable
terms in (4.1) are adequately chosen so that all

Pa A

bound state poles of T show up in &, i.e. , T'
is nonpolar. For the following it proves advan-
tageous to require for the form factors the con-
ditions"

~,(x.„l1)',) = 5„„ (4.7)

~ Q tXnt

(4.9)

That is, the matrix & contains the bound state
poles only in its first n diagonal elements; al.l

A
other matrix elements & „,being, therefore, non-
polar. In order to clearly expose this important
fact we rewrite these terms as [cf. Eq. (3.5)]

(z )=— " for r= 1, . . . , n (4.10)S.„(z )

Q Cly'

with

S~ „(E~„)=1, (4.11)

leaving all other elements of ~ unchanged.

2. EIastie, inelastic, and rearrangement scattering

Also for arbitrary short-range two-body inter-
actions the elastic, inelastic and rearrangement
amplitudes f«"„' (@,q ) can be expressed as ma-
trix elements of effective two-particle transition

which imply the subsequent rel.ations at the energy
A

E „
I &-,&

= G.«-, )[1+T-'(E-.)G.(E-HI y.-.&
=G.(E.,) I4.„(E.„)). (4 i))

As a consequence of (4.7), rR „,(z ) behaves for z,
in the neighborhood of a binding energy E as

operators between plane wave states

(q«, q ) =(q«
I
7~ z' (E +i0)

I q ) . (4.iS)

Here the relative momenta of the two fragments
in the initial and the final states are restricted to
their on-shell val. ues qe =qe„and q =q defined

by
2

&en
" &em

+ Ee. =E = +E
~e a

(4.13)

The indices n and m denote collectively all. quantum
numbers which are necessary for a complete
characterization of the subsystem bound states,
and are numbered by 1, . . . , n for I and by

1, . . . , n for n.
The transition operators Y'e~„"' fulfill the multi-

channel, effective two-body LS equations

&q'I g.;- „(z)lq. ) = 5(q'- -q. )~„„(z-q.'/2~. ),
(4.15)

generalizing Eq. (3.22). From the above discus-
sion of the singularity structure of ~ follows that
the diagonal elements (q'

I Q,. ««(z)
I q, ) are pro-

portional to (z —q '/2M —E «)
' for 0=1, . . . , n,

whereas no other element can become polar.
The effective potential. 'Ue"„' is now much more

complicated than in Sec.III. In fact, it is itsel. f
determined by the solution of an integral equation.
Let the three-body operators Ue fulfill Faddeev-
type equations with the nonpolar subsystem ampli-
tudes T„' introduced in Eq. (4.2):

U« = 5«nGo +Q 5«rT~~OUra ~

r
(4.16)

Then the matrix elements of Ue between the mod-
ified form factors (4.5) yield 'Ue„' via

.P g ~,'„„(z)S.„,„(z)7'„",,.'.(z)
'Y k, l~1

N

+ Q g &«„'„«(z)80;y«i(z)u, „', ', (z).
7' k, f»

(4.14)

Note that the dimension of these matrix rel.ations
is determined by the numbers Ne and N of sep-
arable terms in Eq. (4.1). According to our con-
vention the ne ~ n physical amplitudes occupy the
upper ne rows and n columns of the matrix ~z"„'
The effective free Green's function g, is given by"

«» I
&«".,'..(z)

I q.&
= «« I &4«.(z* - q«'/2M«) IG.(z»«. (z)G.(z)

I
4..(z - q. '/2M. » I q.&. (4.17)
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We mention, however, that it is not necessary to
solve the integral Eq. (4.16) exactly. Instead,
expanding U in powers of 7„' and inserting it in
the definition (4.17) yields a practical calculational
sche'me; the so-called quasi-Born expansion of the
effective potential" (the question of the conver-
gence of the quasi-Born series for short-range
potentials is discussed in Ref. 46}. In the present
investigation we are, however, interested only in
the problems arising from the additional action
of the Coulomb force between the two charged par-
ticles.

I et us briefly sketch the further procedure which
follows closely the one employed in Sec. III. We
first demonstrate that for R-~ the kernel of the
I 8 Eq. (4.14) develops a "Coulomb-type singular-
ity. " When investigating its most singular part
we will find that, despite the formal complications
due to the complexity of *U'"' and 8„ it can be
isolated in a form which very much resembles Eq.
(2.5). Thus again the renormalization approach
presented in Sec. II can be applied to define the
physical amplitudes for the various scattering
processes with an unscreened Coulomb potential.

From the preceding discussion of the pole struc-
ture of 8, it is evident that a singular behavior of

the kernel

X&„'&, (z}=g 1l ts&(z)g...„(z) (4.18)

5z,'E„V„(q' —q, )E, „(q'„q,; z) . (4.19)

Denoting the momentum space representation of
the modified form factors by

(ki@ (z —q '/2M„))=@, (k;z —q, '/2M )

and by

(4.„(z*-q."/2M, )
~
k) =i.*„$;z* q"/2M-),

the quantity F, „(q'„q;z) is defined by [cf. Eq.
(3.26)]

in the limit R-~ can occur only for values of the
index m specifying the physical channels"; i.e. , it
suffices to consider ng in the range from 1 to n .

In the Appendix we demonstrate in detail by
iterating Eq. (4.16) for Uz that only one term of
the resulting quasi-Born expansion of 'U'"' can
become as singular as the Coulomb potential in the
zero screening limit. It is, in fact, the direct
generalization of Eq. (3.24), graphically repre-
sented by diagram d of Fig. 1 and analytically
given by the expression

[& /2p —(z —q' /2M )][(k+T),)'/2p, , —(z —q '/2M, )]
(4.20)

with D introduced in Eq. (3.27). By combining the
result (4.19) with the form (4.15) for g, [recall Eq.
(4.10)], it becomes apparent that this part of the
kernel (4.18) exhibits for R -~ a singular behavior
which is characteristically similar to the kernel
(2.5) for two-charged-particle scattering.

We point out that for on-shell values of the mo-
ments, (q'.

~
=q.„and )q. ) =q. (n, m=1, . . . ,

n }, which make the channel energies E'„and E „
equal [cf. Eq. (4.13)], the quantity
E „(q,', q; E =E' „}is the transition form factor
leading from the bound state m to the bound
state n of the pair (P+ y) [to derive this result use
must be made of the relation (4.8)]. The elastic
form factors E,„„(q',q;E, }are, as usual,
normalized to one for zero momentum transfer.
This fact enables us to further simplify the most
singular part of the kernel (4.18).

To do so it is necessary to investigate in more
detail that part of 3'„"' which arises from the
potential term (4.19). In a compact notation it can
be written as

5„,V„(q' —q )(z —q '/2M E)'-
XR „(q',q; z), (4.21}

where we have introduced the smooth nonpolar
function

R, „(q,', q; z) = Q E,„„(q',q; z)

&«n. ,„(z—q.'/2M. )

&& (z - q '/2M E) . (4.22)-
We first of alI note that no Coulomb-type singulari-
ties can occur in the nondiagonal terms of (4.21).
In the case of nondegenerate energy levels, if
E 4 E „for n 4 m, the on-shell momenta q
and q'„are different. Thus, the singularities of
Vs(q' —q ) for R-~ and of [z —q 2/2M —E ]
do not coincide on the energy shell. For de-
generate levels vrhere q equals 4'„ for n4 ~,
the nondiagonal elements of R,„even vanish on
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shell. For, in the sum in Eq. (4.22) only the con-
tribution with r =m survives due to the pole be-
havior (4.10) of n „,but then E „vanishes due
to the orthogonality of the bound-state wave func-
tions. Accordingly only the diagonal terms of
(4.21) remain to be investigated. Here we know
from the above discussion [ recall Eq. (4.11)] that
for q'=q and Iq I=q

R....(q. , q.;E..) =F., „.(q. , q. ;E..) =1.
(4.23)

This suggests the following decomposition"

R, „(q,', q; z) = 6„+[R, „(q„q; z) —6„]
+ [R,„(q'„q; z)

-R, „(q„,q;z)] . (4.24)

The first bracket on the right-hand side vanishes
for n=m and Iq I=q, for physical energies z
=Eo + gO, whereas the second one vanishes for
q' =q . Thus, inserting the decomposition (4.24)
in (4.21) we find that its first term gives rise to
the most singular part of 3'("), which we denote
gfR)

the first of which becomes as singular in the zero
screening limit as the genuine two-body kernel
(2.5) while the second one is well behaved.

We, therefore, can apply the machinery de-
veloped in Sec. IG also to the present general
case. This is most easily done for

(4.27)

cp (R) cp (B) p(B)+ aC ~

Here 5 "' is defined by the LS equation

g(R) X(R)+X(B)7p(R) g(R)+ p(B)f{'(B)

(4.29)

(4.30)

which is quite simple on account of the structure
of its kernel (4.25). Hence its solution is easily
found to be [cf. Sec. III, Eqs. (3.39)-(3.41}]

for which the I.S equation (4.14}takes (in matrix
notation) the simple form

6{B) x&B) ~x(R) 6:(R) sc&R)+cP&B&st(R) (4 26)

Use of the decomposition (4.26) then allows 6'"'
to be written as a sum of two terms

xz&R„), (z) =x(zR' (z)+xzu',) (z), (4.26)

(q', q;z) =6z 6,6„VB(q'„—q )

)& [z q.'/2j4. E„.] '

=6,.6.,6„.(q. Ivoco(z E..) Iq. )

(4.25)

[ for the occurrence of VB see the discussion fol-
lowing Eq. (3.24)] . We recall that here the range
of m is restricted to the values 1, . . . , n, . This re-
sult entails, in complete analogy to Sec. III, a
splitting of the kernel 3."~' into two terms, (4.32)

m=1, . . . , n, (4.31}
A

with the quantities T~ and Go~ introduced in Eqs.
(3.14) and (3.12), respectively.

The second term S&c' then admits a representa-
tion analogous to Eq. (3.38). Here, however, we
aim immediately at the LS equation fulfilled by
F&c~'. For this purpose it proves convenient to
generalize the distortion operator (3.42) as

0 &"'(z) =[I+9&R)t(z(')]

or explicitly [recall Eq. (3.15)]

QRo(z —E, ) for &r = 1, 2, and m = 1, . . . , n„,
0&")(z)= 1 for &(=1,2 and m=n I,+. . . ,N, ,

1 for @=3 .
(4.33}

It represents an off-shell (screened) Coulomb
My'lier operator for the (open) physical channels
describing the scattering of one of the charged
particles relative to the center of mass of the
other two. With its help we find the integral
equation (4.35)

The above results can be converted into rela-
tions for the transition amplitudes by multiplying
them from the right with 9, '. In the case of Eq.
(4.29) this leads to the decomposition

s & R )(z ) = cj'( R & (z ) + cf ( R & (z )

6 &B & (z) g(B ) t(ze)Xi(B ) (z)fl(R )t(zg)

(4.34)

From Eq. (4.31) then follows that on the energy
shell (4.13)

(q'
I
q'„") (E+i0) Iq )

=6z 6,6„TRo(q', q; q '/2M +i0) (4.36)
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for the (open} physical channels (m = I, . . . ,n, ).
And the Coulomb-modified strong amplitude V",~'
can again be written as the matrix element of an
operator f,'zc' in the (screened) Coulomb representa-
tion

(q) IE'&ac&. z„, (E+iO) Iq

= (q»,'„&It,'"!„(E+io) Iq&'„» . (4.37)

u',&„".& (z) =X~&".& (z)[Gt&(z -E. )]-', (4.38)

containing only the shorter-range Coulomb con-
tributions, and a kernel

The scattering states'z Iq" &s& with q =&I have
been defined in Eq. (3.16). The quantity t,'zc! z„,
fulfills for m =1, . . . , n a LS equation of the type
(3.45) with an effective potential

'U)"„"' Gzo(z —E ) for a=1, 2 and m= I, . . . , n,

(4.39)

for @=3 .gn, nm

With the help of Eqs. (4.36) and (4.3"I) the per-
formance of the limit screening radius 8 going to
infinity is an easy task. Renormalizing the on-
shell amplitudes for the (open) physical channels

Z„'~'(q, M ), introduced in Eq. (3.49), we
find that they tend for R —~ towards the pure two-
body elastic Coulomb amplitudes and the Coulomb
modified strong amplitudes, respectively, for
unscreened Coulomb potentials. The same holds
true, of course, also for the full amplitude (4.35).
We, thus, have succeeded in generalizing the for-
malism of Sec. III 8 to arbitrary short-rangepo-
tentials leading to a well-defined theory of elastic,
and rearrangement processes including Coulomb
effects.

3. Breakup reactions

Breakup processes can be treated in analogy to
Sec. III. Again we stait from an equation which
expresses the breakup amplitudes by means of the
nonbreakup operators [cf. Eq. (3.54))

&o',".'.(p' q' q.}= &p' q'I f 0'",.&.(E+ io) I([.&,
(4.41)

provided the momenta fulfill the on-shell condition

p f2 q/2
fzm 0 gp

(4.42)

Here (p', q') can be any one of the equivalent sets
of momenta (p', q'} defined in Eqs, (3.9) and
(3.11). However, since particle three is neutral,
the choice (p,', q,') is the most appropriate one.
The nonbreakup amplitudes g~"„, ~ and the effective
free Qreen's function 9,.~ „are those discussed
before.

Similar to the rearrangement potential (4.1V) al-
so the breakup potential 'Uo~~' is defined" by the
solution U,', of the Faddeev-type equation (4.16),

= &p.', q.'I U.'.(z)G.(z) I 4 (z —e.'/2M. )& Iq.& .

(4.43)
v'f&& & (z) —~(R & (z}

(4.40)

It is important to realize that the expression (4.43)
contains the long-range distortion of the motion of
the outgoing two charged partjcles 1 and 2. The
latter can be explicitly extracted by making use
of the following relationM

The amplitudes for the transition from the two-
fragment configuration (n, m) to the final three-
free particle channel is then given by the matrix
elements of ~0~' between the corresponding plane
wave states

Uo = 5) Go '+(1+T)'Go)U) (4.44)

which holds for arbitrary P. Choosing P =3 and
taking into account the form (4.4) for the remainder
amplitude T,', the quantity U,' (z}G,(z) IC (z)) can
be written as [recall Eq. (4.5}]
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U;.(z)G, (z}I4 ..(z)& =fit (z*)[1+W,'.(z)] I x..),
(4.45}

with

W,' =f,'c ~G„[5,+U3 Go(1+7„'Go)]

+5,T,'Go++ 5z U3'z GoTqGo(1+ T'Go) .
B

(4.46)

Here Qs is the off-shell Manlier operator intro-
duced in Eq. (2.7). The virtue of this decomposi-
tion is that S", w0 only if the remainders V' o
the short rang-e forces, definedinEq. (4.1), donot
vanish. " We thus end up w'ith the following repre-
sentation of the breakup potential (4.43),

&p.', (4 I'0.',".'. (z)
I q. &

= &p3, z (z'-~."~2M.) I &q,
'

I [1+ii"..(z)] IX..& Iq.&

(4.47}

which explicitly displays the (screened) Coulomb
.distorted wave for the outgoing charged particles
1 and 2.

Let us remark that for 8',' =0 the expression
(4.47) is the generalization of the simple pure Cou-
lomb breakup potential used in Sec. III, to the case
of many subsystem bound states. As discussed
there, the contribution with 0. =3 vanishes on the
energy shell due to energy conservation. The term
proportional to S depends on the remainder sub-
system amplitudes T' and can be made sufficiently
small. Therefore, a practical method for cal-
culating these corrections is obtained by expanding
Eq. (4.16}for U,', occurring in Eq. (4.46), into
powers of T'. This procedure leads to the quasi-
Born expansion of the effective potential.

We now proceed as in Sec. III. Introducing the
decomposition (4.35}of the rearrangement ampli-

tudes 9"z("„' in the right-hand side of Eq. (4.40)
we are led to a similar splitting of V","'„,

+~~~'0 o~ ~
{R) (&) (8) (4.48)

Here the first term is defined as

&P '(..).='((', ( ") (Ix..&

Ng

+Z g lx~.)((', L..(~)~t.".'..(')) .
nor =1

(4.49)

Taking into account the result (4.36) for t P'
we obtain on the energy shell"

K(» (p' j' ~ q ~ X+f0)

=5,&q,'I &p,'I„' IA (K+f0) Iq "„&. (4 50)

For a concise notation we have introduced the ab-
breviation (for m =1, . . . , n, )

N~

A... (z)=Z Ix..)9. .. (z)[G.'(z —E. )] '
n=1

(4.51)

which is nothing else but a peculiar off-shell con-
tinuation of Ix ) . Thus the amplitude (4.50)
represents the pure (screened) Coulomb breakup
amplitude, generalizing the expression (3.63).

The Coulomb-modified strong breakup amplitude
v,'~.', contains the whole effect of the short-
range interactions. For on-shell values of the
momenta, q,'=q,',p,'=p,', q =q, it can be
brought into a form similar to Eq. (3.67}

r,'zc,', , ( p,', q,', q; Z+ f'0)

=(q,'I(p,'„' If,",', (E+i0) Iq'„') . (4.52)

The operator f,'sc.', „(z) can be determined from
the corresponding nonbreakup operator t (zc,'z„, (z)
introduced in Eq. (4.37), by means of

f!", ... ( )=g ii",.( )Ix,&9.;... ( }[Go'( -E. }] '

Ng

[1+w,'z(z)] Ixz„& S,, z ~(z}[1+6'"'(z)]z, ~f',c,'z„(z)
1) nor al (4.53)

with rn =1, . . . , n . We only mention that an in-
tegral equation can also be d rived directly for
f (c!o, generalizing Eq. (3.66}.

The transition to an unscreened Coulomb poten-
tial for the breakup amplitudes (4.50) and (4.52)
proceeds now along the familiar lines. First we
recall that t,'~) ~„ is well behaved in the zero

screening limit. The same holds true also for
t(sc.'o since, as inspection of Eq. (4.53) reveals,
for on-shell values of the momenta the poles from
the effective free Green's function 9, can never
coincide with the singularity of the potential V„ in
the limit 8-~. The implication is that in this
limit all matrix elements (p,', q,

'
I
f,(zc.', , I q ) tend
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towards the corresponding expressions calculated
with an unscreened Coulomb potential. In other
words, the singular behavior for large R in the
on-shell amplitudes (4.50) and (4.52) arises ex-
clusively from the scattering states (j,' 'z '

l
and

l q
&+s» (for a =1 and 2). But in this case we know

how to proceed. Namely, the amplitudes have

to be renormalized by Zs '~'(p3, p, ,) and

Zs, '~'(q, „,M ), defined in Eqs. (2.11) and

(3.49). Taking afterwards the limit E-e we obtain
the pure Coulomb breakup and the Coulomb-modi-
fied strong breakup amplitude, respectively, for
an unscreened Coulomb potential. The same holds
true then also for the full breakup amplitude
y'&"& (p,', q,'; q ) on account of Eq. (4.48). These
results generalize Eqs. (3.68}-(3.70). According-

ly, we have at our disposal a well defined theory
for calculating breakup processes for arbitrary
two-body short-range potentials.

4. Scattering states

Vfe, finally, generalize the discussion of the

scattering states in Sec. DID to arbitrary short-
range interactions. Let l4" '; »& be a scattering
state characterized by an incoming two-fragment
channel state

l $ ) q ) . It can be expressed in

analogy to Eq. (3.71 by the set of effective two-

body states ling&; )~„(spectator states) ac-
cording to

(4.54)

with m=1, . . . , n and n=1, . . . ,N~. The latter are
defined by the analog of Eq. (3.72),

Ng

[et,"',;&,„=(5„II„+pR... (Bio„&, r, ',"„~', e, +f }[0q&
t' el

(4.55)

and fulfill the integral equations

N Ny

le&.»; ,„=6,.5„„lq.& + 9... „„(E..+io) p g ~&a&„,(E..+io&lq& &; ), .
r ~1 S al

(4.56)

For physical states the absolute value of the mo-
mentum q has to be equal to its on-shell value,
q =q, which is related to the channel energy
E, via Eq. (4.13).

We could now proceed as in Sec. IIID. However,
in order not to duplicate the previous derivation
we start from another point of view; namely, by
inserting Eq. (4.55) in Eq. (4.54) it follows that the
full scattering states are simply given as

l4"'; „)=G,(E, +io}K&,"& (E +co)lq )

(o& x 0), (4.57)

where &p'"' is the breakup operator defined by
Eq. (4.40), and lq l=q,„. We can now take over
directly the results of the preceding subsection. In-
sertion of the decomposition (4.48) of &,'"' in the
right-hand side of Eq. (4.57) leads to two terms the
first of which is according to (4.49) and (4.51)
equal to

Gs(E +io)AO, (E +io)lqt" &s& with q =q

(4.58)

G»(E + io)&~c.'o (E + io)l q~'s& ) with q = q

(4.59}

Thus for the full scattering state we obtain

lq";.'„-,s & =Gs«..+io}

x [A, (E +io) + &,'c '0 (E +.io) 1

x lq'. .&. (4.6o)

lim Zs e
'

(qem~Me) I+em. i,&&&
R~ eo

= Gc(E +i0jl [A, (E +io}

+t,'".', {E, +io)] lq
' ')

This representation makes the performance of
the zero-screening limit a simple task. We only
have to take into account that t g p is well be-
haved in that limit approaching the breakup opera-
tor t,'~ p calculated for an unscreened Coulomb
potential. Also GR goes over to the unscreened
Coulomb Green's function G~ By making use of
Eq. (3.18) we thus conclude that"

The second contribution depends on the breakup
operator t ~~.'p via

—
l

y(+& ) (4.61)
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i.e., knowledge of the breakup operator t,'~.',
allows the determination of the full scattering
state. But we empha»&e once more that also the
generalizations of Eqs. (3.74)-(3.77) to the case
of arbitrary short-range two-body interactions are
easily derived. We finally remark that since the
structure of Eq. (4.61) is identical to the one of

Eq. (3.77) together with (3.76), the discussion
following Eq. (3.78) concerning the Coulomb-type
behavior of the scattering wave function can be
taken over without any change.

B. Attractive Coulomb force

If the two charged particles 1 and 2 are oppositely
charged the treatment of the subsystem 3 has to

be slightly modified. For, in addition to the bound

states arising from the short-range part V,' if
there are any, we have the infinity of Coulomb-

type bound states. Thus the subsystem interaction

V3 V3 + Vg mus t be d ecompos ed as

(4.62)

where, in contrast to Eq. (4.lb}, the separable
terms account for the first N3 bound states of the
full potential V, . The amplitude T, corresponding

to the rest potential V,' can, however, again be
rewritten in the form (4.4), the operator t,'~ 3

fulfilling the LS equation (2.17) with the short-
range potential V,*-Q„"g, I}(,„)x,„()(,„ I

. And,

pew cnnstxuctionem, T,' contains only the bound-

state poles at energies E3„ for n& g„ the other
ones (n & N, ) residing in n, . With this proviso
the whole development of the previous subsection
can be repeated, leading again to a correct defi-
nition of the various three-body scattering am-
plitudes and wave functions for energies below
the (N, +1)-th threshold(inthebreakupregionN, is
infinite, of course).

V. DISCUSSION

In the preceding sections we have presented a
formalism for describing the scattering of one
neutral and two charged particles which interact
via arbitrary short-range potentials plus, in ad-
dition, the long-range Coulomb force. This ap-
proach which is based on the quasiparticle for-
mulation of the three-body problem, could be
proven both to be mathematically correct and to
actually provide us with the desired physical scat-
tering amplitudes. The starting point was the
observation that the Coulomb contributions to the
occurring effective two-body potentials, which
describe the scattering of one charged particle off

the correlated pair of the other two, can be de-
composed very naturally into an infinite-range
and a shorter-range part. The former can be in-
terpreted as the Coulomb interaction between the

charged particle and the center of mass of the
other takeo (Mncorrelated) Particles (a type of in-

teraction which has to be introduced artificially
in conventional approaches) and has exactly the

same form as in the genuine two-charged particle
scattering. Consequently, the methods developed
there for handling the long-range distortion could
be taken over directly to the three-body case.

The present formalism is valid for all types of
processes which can occur in a general three-
body system, at all energies. It, moreover, sub-
stantiates the physical picture conjectured in-
tuitively for these reactions. In order to clarify
this remark let us envisage once more the situation
where one of the charged particles impinges on

the bound system of the other charged and the
neutral particle. The infinite-range part of the
effective potential between these two fragments
gives rise to a distortion of the incoming plane
wave converting the latter into a Coulomb scat-
tering state. At this stage the neutral particle
plays, as expected, no role (except by defining a
characteristic reduced mass for the two fragments).
For finite distances the three particles undergo
complicated interactions due to shorter-range
Coulombic effects and due to the genuine short-
range forces. In case the final state consists
again of only two charged fragments a final state
Coulomb distortion, similar to the one in the
initial state, takes place. If, however, three free
particles are produced, then only the movement
of the two charged ones will be influenced by the
long-range Coulomb force resulting in a Coulomb
scattering state for these twoparticles. Of course,
in addition we always have the pure Coulomb
("Rutherford" } contributions.

This separation of the amplitudes for all pos-
sible processes into a pure Coulomb and a
Coulomb-modified strong part in our approach is
also desirable from a practical point of view. For,
the latter can be calculated as in ordinary short-
range theory by means of integral equations which
are one-dimensional after partial wave projection.
Note, however, that nowhere a partial wave ex-
pansion of the two-body Coulomb T matrices which
occur in the effective potentials needs to be made.
The first (pure Coulomb) parts of the amplitudes
are not obtainable from angular momentum pro-
jected expressions, the reason being the non-
convergence of the partial wave expansion. How-
ever, for the nonbreakup amplitudes the pure
Coulomb contribution is just the genuine two-par-
ticle Coulomb amplitude which is analytically
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known. And in the breakup case it can be obtained,
e.g. , by quadrature of explicitly known two-body
Coulomb scattering wave functions. We mention
that a similarly simple structure results also for
the effective two-body (spectator) scattering wave
functions from which the full scattering wave func-
tions can be constructed.

An important point is the wide range of applica-
tion of this method. The most obvious candidate
is proton-deuteron scattering for which first
numerical results are already available. 2 ' '
Further results will be presented in a subsequent
publication. " Other interesting candidates are
electromagnetic and weak processes in the (p, p, n)
system. But our treatment of the Coulomb force
can be implemented straightforwardly in any N-
body theory provided that only two charged frag-
ments occur in the initial and the final state. This
@pens up a host of other possibilities. Some of
them which could be handled with present-day
numerical experience are the four-nucleon sys-
tem (0+d, p+'H, and pg+'He going over to all
possible final states including four free particles)
and three-body models of complex nuclear reac-
tions with two of the fragments involved being
charged [e.g. , (d, p), (d, pn), (p, pn), .. . , reac-
tions"]. Other applications lie in the field of
atomic and molecular processes (n+8, ion-ion-
neutral atom scattering, . . . ). Methodsforactually
performing such calculations will be described
in Ref. 22.

It is worthwhile pointing to the interesting pos-
sibility that reactions of the type mentioned above
might allow us to learn something about the (short-
range) two-particle forces. This hope is based
on the fact that here we have the rare opportunity
to investigate the interference between the known
Coulomb and an unknown (short-range) interaction
in the same subsystem. For instance, for thePPn
system the strong off-shell sensitivity which impedes
testing charge symmetry in nucleon-nucleonscat-
tering" might carry over to an off-shell sensiti-
vity of various proton-deuteron observables.

We, moreover, touch upon the question of ex-
tending this approach to the scattering of three
charged particles. It is quite obvious that the
formalism presented in this paper can uithout
any additional comPlication be extended to three-
charged particle scattering for nonbreakup reac-
tions (at any energy). The breakup into three free
charged particles" which is not so obvious is
presently under investigation.

A final remark concerns the simplicity and the
physically convincing structure of the final re-
presentations (4.35)-(4.3V), (4.48), (4.5()), (4.52),
and (4.61), which indicates that here a very gen-
eral feature of the charged-particle collision

problem is displayed. In other words, the final
results are independent of the quasiparticle method
used for their derivation. This aspect is clarified
in a Mgf lier operator approach based on time-
dependent scattering theory which is the content
of a publication under preparation.

APPENDIX

We have to prove the assertion that the most
singular part in the limit R -~ of the kernel of
the LS equation (3.19) arises from the contribution
(3.24) to the effective potential (3.23), and in the
general case of the LS equation (4.14) from the
part (4.25). For this purpose the singularity struc-
ture of the various terms occurring in the de-
finitions (3.35) and (4.26) of%1'and SC', respectively,
has to be examined. It is obvious that in the pres-
ent context we need not care about the singular-
ities which exist even for short-range potentials. "
Rather, only those are of interest here which arise
in the zero screening limit for on-shell values of
the momenta where 9, has its poles. The result
of this investigation will be that none of the terms
of 0' shows a singular behavior of the "dangerous"
type (3.24) but only a more harmless one (the
latter is termed "not dangerous"), and similarly
for X'. In order to simplify the notation the un-
essential factors [Sz(z —q f/2Mz)S„(z —q'/2M„)]'~'
are omitted. Throughout this Appendix we con-
sider 8 to be infinite. This is indicated by a
superscript ~ on the effective potential.

We proceed in two steps. In the first one we
deal with the simple model discussed in Sec. III
(separable short-range potentials of rank one,
repulsive Coulomb force), and investigate term
by term the various contributions to 'O'. There-
upon, it is demonstrated that in the general case
treated in Sec. IV, taking into account nonseparable
rest terms T„' and attractive Coulomb forces does
not alter the conclusions.

The effective potential &' of Eq. (3.35) is gra-
phically represented in Fig. 1 except for diagram
(d) in which Tc has to be replaced by Tc —Vc (the
contribution proportional to V~ is just the singular
part (3.24) ). Let us start with the first of the
diagrams (b) [diagram (a) does not contain Coulomb
effects at all]. The corresponding expression is

yq(s. &( .
) 5 6 Xs(pz)4 (p iz)

qR~ q+~ fl a ~3
p 2/2 — 2/~

(Al)
where the relative momenta pe, p are, according
to Eq. (3.9), linear combinations of the external
momenta, p'„= -q -m /(m„+m )q~ and p
=m8/(m8 +m„)q +q'„. The Coulomb-modified
form factor is defined by
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d'kT. (p. , k; z —q.'/2M. )X.(k)

)
d kTo(P„, k;E )X (k}P. (p. ;E =

E —k /2go
(A3)

(A2)

and reduces at the on-shell point, z =E+i0 with
E given by Eq. (3.21) and (q ~=q, to

Since the two-body binding energy E is negative
the Coulomb amplitude appears here for negative
energies where it is nonsingular (except for the

singularity in forward direction which, however,
is smoothed out by the integration). Consequently

P (p;z) is not dangerous. The same holds true
for the second diagram of {b).

Next we consider graph (c) of Fig. 1. Its ana, -
lytical representation is

with

d kXo(po}X (p, ) Tc(p„', p, ; z —k'/2M„)
(z —p'8'/2y z

—qI'/2M s) (z —p '/2Zz —q '/2M }
(A4)

and

pe =k+ m&/(m + m„)qz, p„= -k- m/(m z +m)q„, p' = -q8 —m, /(m„+m~)k,

p„=q„+m„/(m „+m ~)k .
On the energy shell the denominator in (A4) becomes simply (E, —p~~/21zz)(E -p '/2Zz ), i.e. , it can never
vanish. In other words, To(p, p„;E+i0 —k /2M„} is integrated over with the bound-state wave functions
g*„(po)=(X„(Go(E~)tpQ and g (p )=(p (Go(E ))X }.Furthermore, when q'z and q are fixed by the on-shell
condition, the momenta p' and p„can never reach their respective on-shell values where Tc(p&, pz, a'+i 0
—k'/2M„) would pick up a singular phase factor. Due to these reasons U'oo "1(q~, q, ;z) is not dangerous.

There remains finally graph (d} to be examined, with Tc replaced by T~ —Vc. Denoting this contribution
by s„" we obtain [with p' = —k —m /(m 8+m }q', p = —k —m /(m&+m )q, p&

=q'+m /(m +m&)k,
and p„=q +m„/(m +mz}k]

d'kX,*(p' }X (p ){T —V )(p„', p„;z —k'/2M }

(z —p"/21z -q"/2M }(z—p '/21z —q '/2M )
(A5)

By means of arguments similar to those employed
for U '" it can be shown that also 'U' d'" is not
dangerous. However, it is rewarding to investi-
gate in more detail the behavior of (A5) on the
energy shell, i.e., for values of z, qz, and q
fixed by the relation (3.21). In fact, from the
hypergeometric function representation2' of the
Coulomb amplitude one can derive

(To —Vc)(p„', p~; E+i 0 —k'/2M„}

orq' q (
i (A6)

Consequently 'Uz„" (qz, q„;E+i 0) behaves for
small momentum transfer as fq,

' —q J
' times a

nonlocal and nonsingular function of q' and q
being, therefore, not dangerous. ~

This proves our assertion. It is a simple but
useful exercise to check the arguments of the
Appendix in a perturbation expansion of the Coulomb
amplitude T~ for simple, e.g. , Yamaguchi, types
of form factors for which the integrals can be
done analytically. "

The demonstration that for general (e.g. , local)
two-body short-range potentials no other term
except (4.19) of the effective potential (4.17)
displays for R -~ a Coulomb-type behavior can
be performed in close analogy to the above dis-
cussion. For this purpose we iterate the integral
equation (4.16) for U'„,

+ Q 5 zy 6z, 6, o Tz Go T,' + ~ ~,

insert this series in the defining Eq. (4.17) of the
effective potential, and collect terms of equal
power in T„' (quasi-Born expansion). The zeroth
order contribution does not contain the Coulomb
interaction at all. In first order the generaliza-
tions of 'U" to U are produced, the only dan-
gerous one of these being just the term isolated
in Eq. (4.19}. The fact that many bound states
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may occur (either due to the short r-ange or due
to an attractive Coulomb force) requires only
trivial modifications of the arguments used above.
When second order terms in T' are finally in-
troduced it is apparent from the multiple scat-
tering structure that no two consecutive scatterings
via the Coulomb potential V~ can occur; That is,

when, say, y =3 implying Coulomb scattering of
particles 1 and 2, then e must be different from
3, i.e., T,' represents a short-range scattering
amplitude. In addition T, is integrated over and

thereby smoothed out. The same holds true for
any higher order term of the series expansion
(A7) .
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