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An earlier formulation rougly relating core-polarization effects for different external fields, electromagnetic

(p,p'), (a,a'), etc., through a 2)& 2 core-polarization matrix has been generalized to include charge-

exchange reactions under the assumption that the isospin of the nuclear states is pure. The pure isovector

field of the direct charge-exchange reaction to an excited-analog state has both an isovector and an

isoscalar field for the model space as in inelastic scattering. A crude schematic representation of the giant

resonances, virtually excited by interaction with the model space and responsible for the core polarization, is

used to estimate the effect on the core-polarization parameters of imposing isospin conservation. The results

of the earlier formulation are changed only slightly. Direct excitation of giant-quadrupole resonances in

Pb by (p,p') and (n,p) are compared. Energy shifts of the T& and T& isovector giant-quadrupole
resonances are compared arith the corresponding dipole shifts.

NUCLEAR REACTIONS Low lying 0' -2' transitions; extension of core-polari-
zation effects to include charge exchange by application of isospin conservation.

Giant-quadrupole transition rates and isovector splitting estimated.

I. INTRODUCTION

In a recent paper' we have shown that the concept
of effective charges for nuclear transitions in neu-
tron-excess nuclei must be generalized when one
considers various external fields such as the elec-
tromagnetic interaction, (n, ]x'), (P, P'), etc. This
need is due to the fact that in nuclei with a neutron
excess the giant-resonance states, thought to be
largely responsible for the polarization charge,
are expected to depart from a purely isovector or
isoscalar character. As a result the usual effec-
tive nuclear transition operator

ap+ ai7

gets replaced by

(2)

The operator 7,' operates only on model-space nu-
cleons, and the coefficients a,"' are given by the
relation

a'," a,

suits of Ref. 1 to charge-exchange reactions.
Among other results we show how the z matrix
can be used for charge-exchange reactions when
the conservation of isospin is taken into account.
The main results of Ref. 1 are unchanged by this
improvement.

II. CORE POLARIZATION IN INELASTIC SCATTERING

We make up a giant-resonance state of a nucleus
by coupling particle-hole pairs with the nuclear
model space. It is convenient to classify the par-
ticle-hole pairs as matched (ma) or unmatched
(un) types as in Fig. I, according to whether the
neutron and proton particle-hole pairs can occupy
the same or only different orbits, respectively.
In the idealization that the nucleus consists of
filled independent-particle states, the unmatched
type pairs give states of definite isospin, ' T= Tp
= (N —Z)/2. The matched type can produce states
of T=T, and T=T0+1. Our Tamm-Dancoff ap-
proximation (TDA) giant states can be written as
follows

In E]I. (2) z is a 2x 2 matrix which is expected to
be nondiagonal in N WZ nuclei. In the limit of pure
isoscalar and isovector giant-resonance states or
in nuclei with N = Z, /pi pip 0 Qpp ep and
=e„ the isoscalar and isovector effective charges.

The main aim of this paper is to extend the re-
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FIG. 2. A diagram representing a component needed
for a good-isospin wave function with a charge-ex-
changed core and particle-hole pair.
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ization terms in both the initial and final states in
some nuclear transition. We ignore differences
in the particle-hole excitations due to different
blocking effects in the initial or final model states.
The model-space wave functions are perturbed by
their interaction with the particle-hole pairs:

~o p ([At 6']( ~
I'~ &i )[At &I'

t Eg+Ef ~ Ef

for T= T„and

a
I k(o r; T, Tr. )= B', [[n'~,']„„,I To)] rr~

m

(4b)

FIG. 1. Types of particle-hole excitations. Figures
1(a) and 1(b) are matched types, linear combinations of
which can be taken to be purely isovector or isoscalar.
These are then coupled to the ground state of the nuc-
leus with isospin Tp to form excitations with T= To or To
+1. Figure 1(c) has no corresponding neutron particle-
hole and Fig. 1(d) has no corresponding proton particle-
hole pair, so each of them are completely mixed in iso-
spin. When coupled with the nuclear ground state of To
they each produce only T= To pieces. The quadrupole
transitions particle-hole pairs come primarily from
2h(d below to the top of the Fermi sea. The shaded
areas represent sources of unmatched neutron and

proton particle-hole pairs, and the space between is the
source of matched particle-hole pairs.

((At~~b~ ~~6)(A~i)s
t

(5b)

where A~t is an operator which produces the par-
ticle-hole giant-resonance excitation built on the
model state. We consider two cases: (1) T, = T&

In this case [Atgoz], and [A,'g', ]I represent
T Tp giant resonances built on the final and initial
states. (2) T,= T„Tz= T, +1: In this case [A~tg~z],

represents a T= Te giant resonance built on a T
= T,+1 state, and [A,'t)t', ]I represents a T= T,+1
(T&) giant resonance built on the T, ground state.
There is no need to consider separately charge
exchange to analog states in the T,= T, -1 neigh-
boring nucleus or to T Tp+1 states in the T,= T,
+ 1 nucleus since these are related by Clebsch-
Gordan coefficients to the analogous inelastic-
scattering transitions.

As in Ref. 1 we now calculate the matrix element
between states represented by Eqs. (5a) and (5b)
of some multipole operator

for T WT,. Note that the coupling of the matched-
type particle-hole pairs to the T, ground state in
Eq. (4a) includes components with 7;=0, T, = To
and 7 1 T Tp 1 The latter is built on an an-
alog state in the model space and diagramatically
would be represented' by Fig. 2 as a two-particle,
two-hole state.

The polarization will now be calculated using the
diagrams in Figs. 1 and 2 to represent the polar-

A

a,O„„„= Qx„i ao+a, T s
T =1

(6)

representing the effects on the nuclear coordinates
of an external field such as electromagnetic,
(P, P'), (n, n'), (P, n), etc. In Eq. (6) 7', is the p
component of the single-particle isospin operator

(Obviously if p40, a, =0.)
The matrix element to first order is
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r @~iiei...i[A~ «]~&&[A~ K]~ i V i&~ &

t f

g &[A', 0', ],le, .„il', &&0;i Vi[A', 0;] & (7)

A. Case (1), T,. = Tf = To

As in Ref. 1, a separable central interaction,

V=+ V, s„,(model) 8 i, (ph},

is used. The giant-resonance excitation of isospin
Tp built on a model- space wave function $ of iso-
spin T, with projection Tp can be written

[A, g']~r =[A/ g']~+ [A', g']~+[A', P ]sr (9}

where [A",' go]I is the unmatched and [A;g']~ r a
matched part of Eq. (4). Note that we have explic-
itly excluded a T& Tp+ 1 component which would
violate the purity of isospin assumed for the per-
turbed wave functions of Eqs. (5). The X multipole
of the potential matrix element of the third term
in Eq. (7) is

4~!V I[A', tp]~&= g V, QIIO„,(model) 6„,(ph) l[(A;"+Ao+At)'qo, ] &

T

= Q V &J(&Jif(p l&q~q&
' S,'(un)+6, oSt(ma)+ 5„'+ S,'(ma) &q~ r lei„, lqo &, (10)

where, in terms of the particle-hole (ph) vacuum,
the transition strengths are

S,'(un) = &A",&„&„,16&„oI 0„,&,

S'&ma) = &A~i'. &('~. le i..o l(i' .&.

and the operator matrix element of the third term
of Eq. (7) is

&[A,'g', ]~le„„~I g', &= &1, xM, p I J~Mg&

This is equivalent to Eq. (3) with

& = 1 —2V(r,

VT'T 5T'T VT ~

St, St

t t

and

(15)

(16a)

(16b)

x' S', (un) + 6~ S,'(ma)

j./2
+ 6„o S',(ma) . (12)

T,+1

The reduction of the isovector transition strength
due to the exclusion of the T&= T,+1 excitation is
expressed by the factor [7'o/(To+ 1)]'i' in the third
term in the brackets of Eq. (12}. A similar re-
duction in the matrix element of Eq. (10) is more
than compensated by the inclusion of charge-ex-
change parts of the T T operator, in the valence-
core interaction.

For E,' » (E& —E,)' the second and third terms
of Eq. (7) are combined using Eqs. (10) and (12)
to give a result analogous to Ref. 1,

4'pic a ego o l«&= ~~ilZ a ' 6io 'ol«&
T T'

X/2
S', =S', (un)+ 6„So(ma)+6„' Sf(ma),

p

(17a)

T+1 '/'
S~=S,' (un)+ 6,.oSt(ma)+ 6,., ' S,'(ma).

Tp

(17b)

The only essential difference in these results and
those of Ref. 1 is the asymmetry of the 0 matrix,
and according to Eq. (17) this difference vanishes
in the limit of large neutron excess. This is due
to the fact that the T& part of the isovector excit-
ation hes a vanishing inelastic excitation strength
in the limit of large neutron excess.

B. Case {2),Tf = T + 1

where

a,'l'=Q ~, ,a, . (14)

Since only the v. =1 transfer is possible in these
cases, the ematrix is 1x1, so the multipole ma-
trix element is
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&~f r 6 L ul o ~( T() )

where again it is assumed that E,'» (E&- E,)'.
This may not be the case for T&= T,+ 1 states, so
2/E, must be replaced by 2E,/(tE, ' —(Ez E,)'].-
Equation (18) implies that transitions to T& states
below the T& giant resonance are retarded.

C. Core polarization in excited-analog transitions

Since the perturbed wave functions, Eqs. (5)
have definite isospin, the inelastic scattering and
charge-exchange transitions are analogous.
Therefore, the effective operators have the same
relation to the bare operators in charge exchange
as in inelastic scattering. Since in charge ex-
change, the bare operator includes only a 7=1
part, the effective operator has strength para-
meters

(19)

The nonzero first row of Eq. (19) means that the
charge-exchange reaction in the model space can
take place by a non-charge-exchange term in the
effective interaction operator [see Eq. (15) for the

definition of e„]. This feature is due to the as-
sumed conservation of isospin of the total state,
model plus core. The conservation requirement
is brought about by the symmetry potential V,„T'
which mixes the charge of the particle-hole ex-
citation and the model space. Thus, because the
charge of the model space and particle-hole space
separately are not conserved, the operator pro-
ducing the inelastic excitation and deexcitation
need not transfer charge. The symmetry potential
itself can transfer charge between model space and
particle- hol. e space.

III. SCHEMATIC MODEL

In this section we derive a generalized schematic
model of the isovector and isoscalar giant reson-
ances with good isospin. ' Although crude, this
model contains the main features needed to show
an example of the core-polarization effects we
are developing. The schematic model with con-
servation of isospin has been treated for dipole
states. ' Here we treat the general electric multi-
pole in the degenerate limit, which allows us toob-
tain explicit dependence on nuclear parameters.
It is advantageous to start as in Eq. (4) with states
of definite isospin. Here as in Ref. 1, we resort
to the separable-potential model. We will need
isospin uncoupled- uncoupled, coupled- uncoupled,
and coupled-coupled matrix elements since our
particle-hole states are both coupled (for matched
particle-hole pairs) and uncoupled (for unmatched
pairs) in isospin. The matrix elements needed are

—V, + V, =-P, unlike ph pairs,
(20a)

and

V~ 7=1,

&~p(mi) IVI)).p70(nj))=~2d„(d„, V, &=0, mi a proton ph pair,

T= 0, mi a neutron ph pair,

&Xi), Tp(mi) I Vlagrp(nj))=2d, d„,.(V,5„+V, 5„),

(20b)

(20c)

where

= (Xp(mi) I(j ~0) = " ' (-1)"'~ '((j II@ llj )

in the particle-hole matrix element of the Q„~ Q„
interaction.

A. States with T= To

(21)
These are obtained by calculating the exchange
terms (particle-hole destruction plus creation) and
dropping the direct terms (particle-hole scattering)

In this case the coefficients 8 and C of Eqs. (4a)
can refer either to the isovector or isoscalar ex-
citation. In fact, the solutions which occur are
neither purely isoscalar or isovector. Inserting
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Eq. (4a) into the Schrodinger equation and taking
inner products of the resulting equations with sin-
gle particle-hole excitations of each of the four
types, unmatched neutron, unmatched proton,
matched 7.= Q, and matched 7.= 1 gives a set of four
coupled equations in the coefficients C"„CP„B„
and B',. In the interest of brevity, we record at
this point only the first of these,

u

( —e'„,) ~, =
~» ~i d„i —P C~i d~~,

IS III

where

K= (E++,K,)

yun y

2y mLV

-y Vo

Vo -g Vg -y yap

IDLy Q Q

-y V, y",'V, yu'V, p

Q 2y IllLy 2y Ina, y

(27)

(28)

-W2V 8 ., d ~ ~

m i'

+ W2pVj. B~ i.ding.
m i'

(22)

where

and

7 =Sg +3'p +2k =3' + 2f

where the Clebsch-Gordan coefficient

p= (T01TOOI TOTo)= [TJ(To+1)]'~' (23)

un

K„= d, C", . (24)

Transforming for convenience to new variables

-K„+Kp - K„+Kp

~2
'

~2
(26)

we can. express these four equations as a matrix
equation

(26)

comes from thy coupling to good isospin of par
ticle-hole and model-space wave functions.

Taking the degenerate limit &', = &'= const, mult-
iplying both sides of Eqs. (22) and the correspond-
ing equations in the other coefficients by d, and
summing over particle-hole pairs of a given kind
gives four equations in a set of coll.ective variables
K Kp Ko Kg where, for example

un unS- =Sn —PP (30)

In Eqs. (29) and (30) y„"', y~', andy
' are, respec

tively, the sum of d, ' over unmatched neutron,
unmatched proton, and matched (neutron or proton)
particle-hole pairs. The equations for K, and K,
and those for K, and K, are nearly identical except
for the y term. Since y is small compared to y„
it is appropriate to treat the y terms as perturb-
ations and carry them only to first order. When.
the y terms are dropped, the E, and K, equations
are uncoupled from the K, and K, equations, so
these pairs of equations can. then be diagonalized
separately. The details are carried out in Appen-
dix A.

Before these solutions are presented, some re-
marks on the interpretation of K, and K, seem ap-
propriate. The variables K, and K, are collective
coordinates coming from linear combinations of
particle-hole pairs of the matched type, which have
definite isospin. On the other hand, K, and K, are
linear combinations of neutron and proton terms in
different particle-hole states and are, therefore,

TABLE I. The four solutions of the coupled equations for T& states.

State Kp/C„a Kp/C„ Ki/C„ Ki/C„

0

Collective
isoscalar

None ollective
isoscalar

Collective
isovector

Noncollective
isovector

yull

y lln

y (y V 2ymaV

Py,
2ymay

2y ma

2y Slay

Py+

2y may

-y (y Vp 2y Vi)

yun

yun

2ymay V p

2y ma

p

y un (y un + 2y map 2)

py+

To the same approximation as the table entries, one can show that

CS= Cy=(2y, )
' ' Ci=f2(y,""+2y a/P)j

and

Ci —
f 2yun(] + yun/2ymap2) j i/2



1948 V. R. BRO%N AND V. A. MADSKN

totally mixed in isospin. Nevertheless, the collec-
tive solutions have either K,+ K, large and K, +K,
small or vice versa and behave with respect to
transition operators as if they were nearly purely
isoscalar or isovector. Thus these solutions in

this rather crude nuclear model are precisely
what Bohr and Mottelson' refer to as excitations
which on the microscopic level are completely
mixed in isospin, but which on a macroscopic lev-
el are fairly pure. The solutions obtained for K
are given in Table I. The shift of the isoscalar and

isovector states are approximately Voy, and V,y„
respectively [see Eq. (A6)].

~,= 2y VK

giving an energy shift

4—=E — =2 V.

(31b)

(32)

This is equivalent to Brown's' result, Ch. IV, Eq.
(8.1), except that in this case only the matched
particle-hole pairs a.re summed.

As the coefficients 8', are proportional to d,
as in Eq. (31), it must be true that

B. States with T = T0 + 1

For these excitations we ha.ve the simple TDA
function (4b) with T= T,+1, and T, = To. The
Schrodinger equation gives

(E —c',)//', = P 2V, B'., d, d, =2V/, /C, .
rn f'

(31a)
Multiplying by 4 „summing and taking the degen-
erate limit &', = e' yields

(32). Since 2y '&y„Eq. (29}, it is seen that the
upward energy shift of the T& state is less than the
shift of the T& state; however, the T& states are
shifted up compared to the T& states by the Lane
symmetry potential V,. The net shift (in MeV) is

~E =E „—E
0 0

= —'(T, + 1) —AE, (1 —2y '/y, )

100 38 a 6
0 } gl/3 3+ 5a (36)

A
=T 1'
=100 29(1+2.75/A'/')T, /(T, +1) MeV. (37}

Because it is at best difficult to get an empirical
determination of ~E~ and, therefore, U„ for the
isovector quadrupole states, the results of our
dipole-shift predictions compared to other work
a,re included to support the credibility of our quad-
rupole estimates. Using the procedures of Appen-
dix B for the dipole state, it can be shown that

where the results for 2y /y, have been obtained
by dividing Eq. (B6) multiplied by 2 by (B7a); a and

$ are given by Eqs. (B3) and (B4). In Eq. (36) the
procedure of Ref. 1 is used whereby the a.mount of
isovector particle-hole interaction strength is ad-
justed to fix the energy of the isovector collective
state such that dE, = 120/A'/' —25/d. If the sym
metry energy U„ for quadrupole states is defined
to include the particle-hole interactions in corres-
pondence with what has been done' for dipole
states, we obtain from Eq. (36)

1/ 2
(

mk)1/2 (33) (38)

for normalization of the state. Then K, is

(39)

where the good isospin requirement ~„=cu& has
been used. This leads to a net shift for the dipole
states given by

~V 80
(To+ 1)—,/3 —8'&u —,

' $a.

Having the wave function, we may now calculate
the transition amplitudes, S,', where t now refers
to T= T, +1 states. This is

S,'(ma. )= Q", 0„, ~e,„„~q... }

To the extent that the giant-dipole excitation matrix
element is pure isoveetor, there is no correction
for recoil needed in Eqs. (38) and (39). The cor-
rection due to impurity in the T& state is small and
proportional to (' because the strength of the in-
teraction and the impur ity are each proportional
to f The dipole sy.mmetry energy (in MeV) is
then

(2 IBR) 1 / 2 (35)

It is interesting to compare the shifts of the T&
and T& isovector quadrupole state Eqs. (A6} and

Ui = 100 —60TO/(To+ 1). (40)

If we had used (r„')= (r~'), the -', of Eq. (38) would
be replaced by 2. It follows that the second term
of Eq. (40) would be 33Vo smaller so that U, would
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then agree with the dipole symmetry energy of Ref.
6, U, = 60 MeV at T, = 7. For 9 Zr the symmetry
energy from Eq. (40) is U, =50 MeV. This result
is lower than the 60 MeV of Ref. 6, but, because
of the spread, both predictions are consistent with
the data' for "Zr. In actual nuclei the results are
probably somewhere between the extremes of tak-
ing (r„')= (r~') and ~„=u&&. Indeed, the empirically
determined average dipole symmetry energy is
55 +15 MeV, ' which lies between these limits. In
our good isospin schematic-model description, it
would be inconsistent to take (r„')= (r&'), and, in

any case, the present data do not require us to do
so.

The ratio of the T& to T& particle-hole strengths,
2y '/y„ for the dipole and the quadrupole states
is of interest in understanding their respective
shifts. In both cases the relative amount of
matched strength decreases with the neutron ex-
cess, but, since the quadrupole strength is made
up of particle-hale excitations involving two major
shells, the matched strength decreases more slow-
ly. For the dipole state in '"Pb our good isospin
procedure (~„=~~) gives 2y /y, =0.051, while for
the quadtupole state the ratio is 0.484. These are

intuitively pleasing results since we might guess
these strengths to be zero and —,'-, respectively, be-
cause in '"Pb the dipole matched pairs are essen-
tially blocked and the quadrupole matched pairs
are nearly half blocked. (See also Sec. VB.) In
contrast, for (r„')=(r&'), the dipole ratio 2y '/y,
= 0.283.

The net shift in energy of the giant isovector
states is a result of the competition between the
Lane symmetry term which dominates and which
shifts states of higher isospin higher in energy and
the particle-hole interaction which because of the
smaller strength in the T& state, shifts the T& state
higher in energy. Because nE, =40/A'~' is about
the same for the dipole and quadrupole cases, and
2y '/y, is considerably larger for the quadrupole
state compared to the dipole state, the upward
shift of the T& state compared to the T& state due
to the particle-hole interaction is larger for the
quadrupole states. Consequently, because the Lane
symmetry term is equal and larger in magnitude
than the particle-hole shifts for the two cases, the
T& is higher in energy for both and the net shift is
larger for the isovector quadrupole than dipole
state.

IV. CALCULATION OF THE POLARIZATION PARAMETERS FOR ELECTRIC QUADRUPOLE TRANSITIONS

A. Calculation of transition amplitudes between T = T states0

From Eqs. (11) and (4a) using Eqs. (25), we obtain

S~(un) = (At lj) goo leg o~ I t/ pao )

U
nC,a, (,b, -,g, + C;a -,(,b, ,(,

llll tin

C",d, —-1 ' C,d, =K„- -1 'K~= -1 "'v 2 K, , (41)

S,'(ma)= g; tt, , leq, ~I&, &=(-I)'*'v 2 S'(d, = ( I)"'v2 K, .
m

(42)

Thus the transition amplitudes Eqs. (11) are sim-
ply proportional to the appropriate K, or K, from
Table I.

The elements of the polarization matrix can now
be calculated from Eq. (15). The results are

q00= 1 —2 -- = 1.74,
0

V —V (&oo e 11)0—

V 2y™yV
~V '

(Vo —V, )y '(To+ 1)

1 pol + pol
—V

V 00 ll
0

(43)

-'- = 0.366,
24E~ where the amount of polarizing interaction strength

V, in Eq. (15) has been adjusted to fix the energies



1950 V. R. BROWN AND V. A. MADSEN 17

Nucleus 10
a

E0(

44Ca
90Z r

"8Sn
207Pb

-0.055
-0.067
-0.093
-0 ~ 125

0.110 0.104
0.136 0.131
0.186 0.182
0.255 0.249

3.11
-1.15

2 ~ 18
1.83

3.09
-1.18

2.19
1.84

Calculated from formulas of Ref. 1.
Corrected for good isospin.

TABLE II. Polarization parameters for T& quadrupole
transitions with corrections for good isospin. The no-
parameter schematic model (NPSM} is used with &„

(dp,

more, the one- and two-step processes are nearly
incoherent. ' Other projectiles such as 'He and
pions should have an advantage because the first-
order interaction has a nonreal phase which would
be expected to lead to more interference between
the one- and two-step processes. Lacking direct
empirical evidence, indirect evidence, which
comes about because of the differences in the iso-
vector deformation parameters corresponding to
various external fields, can be obtained from inel-
astic scattering and electromagnetic transitions.
Recent studies'"'" comparing (n, n'), (p, p'),
(n, n'), and electromagnetic transitions are con-
sistent with our predictions.

of the isoscalar and isovector (T&) collective states
at 60/A'~' and 120/A'~', respectively. The ex-
pressions in Eq. (43) are all the same as in the no-
parameter schematic model (NPSM) of Ref. 1,
where no account was taken of isospin conser-
vation, except for fog in which the second term is
a correction which is small for large neutron-ex-
cess nuclei (see Sec. IIA).

In Table II the polarization parameters for quad-
rupole T, - T, transitions are presented for some
typical nuclei along with values of the isovector to
isoscalar deformation parameters' P,/P, . The
parameters &„are double those of the NPSM of
Ref. 1 due to the use of ~„=~& for the harmonic
oscillators instead of (r„')= (rp'). The former re-
lation was chosen because it is necessary for good
isospin single-particle states. The correction for
good isospin is seen to make only small differ-
ences for &Oy and P,/P, . The largest changes occur
for small T, for reasons stated in Sec. IIA. In
contrast the effect of using (d„= co& as opposed to
(r„')= (rq') as described above makes sizable
changes in the &'s. On the other hand, the inel-
astic P ratios such as P„,/P, are much less sen-
sitive to these model assumptions.

Polarization parameters for charge exchange to
2' excited-analog states are the same as those that
enter in the isovector part of the inelastic scatter-
ing to the parent 2 state because of our imposition
of definite isospin on the wave functions of Eq. (5).
For low-lying collective 2' states the quantities of
interest are the isovector and isoscalar deform-
ation parameters P, and P,. The P, /P, ratios pre-
dicted by our core-polarization model, including
the small changes for good isospin, are quite dif-
ferent, even including a sign change, for proton-
valence nuclei and neutron-valence nuclei as seen
in Table II. Direct empirical determination of the
isovector deformation parameter P, is difficult be-
cause the (p, n) excited-analog transition takes
place primarily by two-step processes involving
isoscalar and isovec tor transitions, and, further-

B. Transition amplitudes between To and To + l states

For this case q is one dimensional and is given
trivially by Eq. (18) as

'~S,'(ma)(2=1 ' (2y ).2Vx t 2 2Vj
Et

(44)

V. TRANSITIONS TO GIANT STATES

In this section we use the values of the transition
matrix elements S,' to estimate multipole-transition
rates for various giant resonances.

A. Inelastic scattering to the T& state

For the isoscalar state one has

and

(45)

S, ' (V, —V, )( y, V, T,~ 1)
(46)

(47)

and

=(l 0*(~ 'y ) . (48)

Again, in RPA S', is reduced by a factor z'/E, but
the ratio Eq. (48) is maintained (-1/o for "'Pb).

The factor in front —, $ is due to the assumption that
For (r„')= (r&') it is —,t', and in reality it

is probably somewhere in between. In RPA IS', I is
increased by a factor of e'/E, but the ratio is
maintained. For "'Pb the ratio is about 4%, which
means that the cross section for exciting the iso-
scalar giant resonance with a pure isovector field,
such as in (p, n) is small.

For the isovector state
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B. Excitation of T =- To + 1 states

The multipole matrix element for exciting the
giant state T= T, +1 [used in obtaining Eq. (18)] is
given by

= (J,XM, plZIM&&(T, ITpITT, )S',(ma). (49)

The isospin Clebsch-Gordan coefficient for T = T,
+ 1 states is near 1 for T, = T, + 1» 1 and small for

T, = T,. Thus the (n, p) reaction to the T& giant re-
sonance should be large, the (p, p') small, and the

(p, n) yet smaller for large T,.
As an example, we estimate the ratio of the

'"Pb(P, p') cross section for the T& state to that
for the isoscalar state. Using Eqs. (12) and (45)
for the isoscalar transition and Eqs. (49) and (35)
for the T& transition with the appropriate projectile
isospin Clebsch-Gordan coefficients, the cross-
section ratio becomes

(TOITOO I TTO&'(~1, —~0 I 2, —P)' —
V y T + 1oi.a~ iP P') Vo y, 0 g ()+

(50)

For E1 transitions y
' is essentially zero for Pb

due to blocking of matched pairs, so there is no

T& transition, but as E2 involves 2S& transitions
there is only partiai blocking, and the ratio 2y /y,
of matched pairs to total pairs can be obtained as
in Eq. (36). For nuclei with a small neutron ex-
cess, 2y '/y, is near 1; almost all pairs are
matched. For '"Pb it is =-,'. (See Sec. IIIB.) The
Clebsch-Gordan coefficient, however, is very un-
favorable, and the expected ratio Eq. (50) using
V,/Vo = ——,

' is 0.0018. On the other hand, the ratio
of the (n, P) transition to the To+1 parent-analog
state with the appropriate isospin Clebsch-Gordan
coefficients should be

2 2
= 0.242 . (51)

oisos~ar(» P'& Vo

From the known '"Pb(p, p') cross section" for the
E2 isoscalar state of about 6.5 mb/sr at 15 we
get a '"Pb(n, g) cross section of 1.6 mb/sr. How

ever, because of the high energy of- the T& quad-
rupole state, it is expected" to be spread consid-
erably and will probably not be visibl. e as a sharp
resonance.

VI. SUMMARY AND DISCUSSION

We have shown that the & matrix relating core
polarization in inelastic scattering and electromag-
netic transitions can also be applied in charge-ex-
change reaction. The schematic model is used to
show that the correction to the q matrix from the
imposition of isospin conservation is smalL The
ratio of isovector to isoscalar deformatiod para-
meters P,/P, is calcuiated for typical single-
closed-shell nuclei, and the correction is likewise
small. The P, parameter applies not only to inel-
astic scattering but also charge exchange under the
assumption of isospin conservation.

It should be pointed out, however, that, although

isospin splitting is expected for giant resonance
states, the purity need not be very great. In con-
trast, the impurity in a low lying nuclear state re-
sulting from mixing with this gian. t state as in Eq.
(5) wili be smalL It is not likely that this .impurity
will result in much change in the & matrix. On the
other hand, it may affect the validity of the simple
connection between inelastic scattering and charge
exchange and, therefore, decrease the accuracy
of Eq. (19) for the charge-exchange amplitudes.

Keeping in mind the above and other obvious lim-
itations due to the rudimental nature of the model,
we can ask what the present data tell us about the
qualitative, if not quantitative, correctness of our
ideas. Unfortunately, there is at present no direct
determination of the isovector transition strength.
This effect is masked in (P, n) excited-analog tran-
sitions to low lying 2' states because of the dom-
inance of the two- step and the relative phase of the
one- and two-step mechanisms. ' The indirect ev-
idence, "'" involving a comparison between ex-
ternal fields such as (p, p'), (n, n'), (a, n'), and
electromagnetic transitions, is consistent with our
predictions for P,/Po. (The correction for good
isospin does not alter these earlier conclusions. )
In the usual collective model with equal P's, the
isovector part of the multipole transition operator
used for inelastic scattering and electromagnetic
transitions is of the order of 7~/~ which makes the
difference for (p, p') and (n, n') of the order of
14'. Our shell effects moderated by core po-
larization produce fluctuations in the isovector
to isoscalar ratio of the same order. It is at this lev-
el, then, that our isospin effects are corroborated by
the inelastic and electromagnetic data. Continued
effort in the direction of indirect confirmation as
well as further investigation of the possibility of
a direct determination of P,/P, such as by pion
charge exchange or ('He, t) is necessary before a
clear separation of the isoscalar and isovector ef-
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fects can be made.
Results of the schematic model are used to es-

timate the energy splitting between the quadrupole-
isovector T& and T& states. Comparison of our
corresponding predictions on dipole splitting to
earlier work, '" done in the same spirit, gives us

confidence to apply our results to the quadrupole
case, where measurements are not available. Our

dipole results differ from the earlier ones in that
they depend on. mass number and neutron excess,
but neither this dependence nor the difference in

the size of the effect compared to the earlier work
is ruled out by the data. The net shift in energy
of the giant quadrupole isovector states is predic-
ted by our calculations to be larger than that for
the dipole states. This is because the T& quad-

rupole strength suffers less from blocking effects
since it involves transitions from two major shells
below the Fermi sea.

Determination of the core-polarization matrix
requires calculation of the multipole transition
strength for isoscalar and isovector multipole
resonances. These results are applied to estim-
ating some cross sections for directly exciting
giant E2 states. Cross section ratios of the giant
quadrupole T& (p, P') and (n, P) to the corresponding
isoscalar (r&, p') are determined from our model.
The known" "'Pb(p, p') giant E2 isoscalar cross
section is then used to predict the other two. Be-
cause of the unfavorable isospin Clebsch-Gordan
coefficient, the T&(I&,p') cross section is extremely
small, but the (n, p) cross section of the parent
analog of the giant quadrupole T& in ' 'Pb at 15' is
predicted to be 1.6 mb/sr Both .for this (n, p)
transition and the above discussion of the isovector
splitting one should keep in mind that on the basis
of more realistic RPA calculations, "the giant iso-
vector T& is expected to be spread considerably,
thereby making empirical determinations of these
effects at best difficult.

APPENDIX A. SOLUTION OF COUPLED EQUATIONS
FOR T& STATES

scalar and the collective (1) and noncollective (T)
isovector. The presence of the mop and m10 terms,
proportional to y and therefore to neutron excess,
mixes the two collective solutions giving rise to
giant resonances which are nearly purely isoscalar
or isovector but have a small component of the op-
posite type.

Let X ' be the transformation matrix to the re-
presentation in which the reduced M matrix is di-
agonal. Equation (26) can be transformed to

M'K' = X MXX K = X K5 = K' b, , (A2)

the only off-diagonal elements of X 'MX=-M' being
proportional to y, and these can now be treated
using a perturbation expansion. We can see im-
mediately that the eigenvalues are unchanged to
first order in y by the presence of the nonzero
off-diagonal matrices m„and m„, since the first
order corrections to the eigenvalues in perturb-
ation theory are the diagonal elements of the per-
turbation, which are zero. The eigenvector K'
=X 'K can then be written

K =K'"'+K ")
n n n

where K„'"' is the nth exact solution of the subpro-
blem. K„'"' can be expanded in terms of the other
three zero-order solutions,

K""a,
n = n n'n ~

n'&n

(AS)

(A4)

and substituted into Eq. (AS), which to first order
ln y 1S

K'= Cn n
6„g ~ 1 ( 0 &no~)

n8n n n (~& 0 j
(A5)

where

n,,= V,y„n,-=0, n, = V, (y —6), and nf= V,5

{A6)

Here we describe briefly the method of solution
of Eq. (26). The first step is to diagonalize the
matrix M, Eq. (28) with they elements set to
zero. To this end we write Eq. (28) as

are the energy shifts for the four states, and

6=-'y, —-'[y.'-2y y",'(1- p')j'"

2y 'y",'(1 —p')
(A7)

mj0

m 0$

m g]

(A1)

where the m„. are 2 &f'2 submatrices. We first
then diagonalize a reduced M matrix in which mop
= m„= 0, which leaves two uncoupled eigenvalue
problems. The four solutions for this subproblem
are the collective {0) and noncollective (0) iso-

The transformation matrices X from K' to K are
composed of four column eigenvectors of the re-
duced eigenvalue problem. They can be appjied
to transform the solutions (A5) of the complete
eigenvalue problem to give the eigenvectors K, the
elements of which are given in Table I. In this ta-
ble terms of order 5 are dropped unless they ap-
pear linearly with other small terms.
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APPENDIX B. QUADRUPOLE SUM RULES FOR MATCHED

AND UNMATCHED PAIRS

In Fig. 1 it is seen that, roughly speaking, the

strength parameter for unmatched neutrons comes
from the neutron excess. (This would be rigorous
ly true for a harmonic-oscillator double-closed-

shell nucleus without spin-orbit coupling. ) The
middle line of Eq. (B6) of Ref. 1 gives" the
summed- squared quadrupole transition strength.
The lower limit on the sum is taken to be zero to
get a running sum from zero to g, with the result
for the g' sum

(3)+ 1)(3)+2)(3)+ 3)(3)+4)(3)+ 5}
0 =0

(3)2+ 1 3)2+2 (3i(+3 3i, +4
5

(B1)

The parameter g is now allowed to be continuous and related to the total number of particles through Eq.
(B8) of Ref. 1, and the unmatched neutron quadrupole strength y„ is now

2

2"„'=2()() —2(3) =
22 (

—[)2((2)0"'~ 2)((2N)'" ~ 2) —Z((23)"' ~ 2)((23)"'+ 2)]

a
th A ((5a3+ 20a+ 18),

64m pe
(B2}

(B3)

and

N —Z
(84)

where the good approximation (3)+ 2) = (3N)'~3 has
been used,

5'=
32m

5
32m

5
16m

(Bva)

(avb)

Then we can obtain

2

[(3+)4/3 p (3g)4 l 3]

2 3g 4/3
[(1+ —' g) s (1 —' ()]

P, (d 3 3

(2 ',I(

The total neutron strength is obtained from Eq.
(B6) of Ref. 1 and is given by

2

y",'=y, -2y '= —A(5a3+18)(.
32K p Eo

(B8)

(3iV)4 '= —Aa(15+ 20$) .5

32m p (0 64'

(Bs)

Then the matched strength is

y
'= y„—y„"' = —A[15a —(15a'+ 18)]],1

64m p, (o

(B6)

and the sum and difference strengths are

For the double- closed- shell harmonic- oscillator
nucleus N=112, Z=70, these approximations are
within 1% except for y, ' which is 3%low. Eor "Ca.
an exact calculation with explicit summing was
made of y, ', giving 33 in units of (i3/p, 0))'v ' corn
pared with Eq. (B6) which gives 33.7. The same
calculation gave a value of yp which is 4.5 com-
pared to the value calculated using the same ap-
proximations as in Eqs. (B5)-(B7) of 3.8. This
difference will not matter much since yp is itself
rather small and unimportant in this case.
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