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Models of quantum mechanical many-body systems are presented such that the Hartree-Fock equations for

them admit analytical solutions, which simulate an isolated atomic nucleus or two nuclei colliding with each

other.

NUCLEAR REACTIONS Scattering theory, time-dependent Hartree-Fock method.

I. INTRODUCTION

The Hartree-Fock (HF) method combined with

simple effective nucleon-nucleon interactions has
been very successful in describing gross features
of nuclear structure. The random phase approxi-
mation, which is a linearized version of the time
dependent Hartree-Fock (TDHF) method, has also
proved useful for understanding small amplitude
collective motions. Hence it is natural to try to
apply the TDHF method to more dynamical prob-
lems such as nucleus-nucleus scattering.

The TDHF calculation is much more complex
than that for HF because one has to solve partial
differential equations involving the time variable.
Unlike in the HF case, the single-particle states
in the TDHF method vary in time, and it is not
very easy to visualize how the method works. With
a large computer, apparently one can do TDHF
calculations without much difficulty, and already
a few such calculations have been reported. ' '
Nevertheless it would be interesting to construct
models, even if they are very simple-minded
ones, such that the HF and TDHF equations can
be solved analytically. Such models would hope-
fully provide us with insights into how the TDHF
method works and how it can possibly be improved.
Also, the models can be used for testing computer
programs for TDHF calculations.

The purpose of this paper is to present a few
models such that the HF and TDHF equations for
them can be solved analytically. The TDHF equa-
tions for the models are of the form of the so-
called nonlinear Schr'odinger (NLS) equations for
which "soliton solutions" can be constructed easi-
ly.4 Such solutions can simulate an isolated nu-
cleus or nucleus-nucleus scattering. In Sec. II
we summarize mathematical apparatus for solving

NLS equations. Three models are presented in
Secs. III, IV, and V, respectively. In Sec. VI we
discuss limitations and possible extensions of the
models and method.

II. MATHEMATICAL PRELIMINARIES

Define an n xn real symmetric matrix D = (D z)
with

D ~=5 ~+e e~/(v + v~), (2.1)

where e -=A '~'exp(z x) and A and z are arbi-
trarily real positive constants. Introduce n func-
tions P (x) which are defined by

I d2

2m dx~ 2+ ~OCad (2.3)

where

(2.4)

Since Eq. (2.3) is a nonlinear equation, the nor-
malization of Q is nontrivial. In fact Q 's are
all normalized by

To show this we start with'

dD
dx (2.5)

where e is the transposition of e. Equation (2.5)

gD ~P~=e, or Dg=e, (2.2)

where Q and e are one-column matrices. One can
show" that Q satisfied the time-independent NLS
equation
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follows immediately from Eq. (2.1). Next, differ-
entiating DD ' =1 and using Eqs. (2.2) and (2.5),
me obtain

dD '
dx

D~l dD D~l
dx

and hence

(2 6)

x tItg x dx=D~~" -~ -D I,
~ . 2 7

It is easy to show that D„/, '(-~) = & ~ and D ~ '(~)
=0, and hence,

y. (x)y, (x}dx = &., (2 3)

Next we consider time-dependent functions. De-
fine an n &&n Hermitian matrix & with

S
~

—5 g+B~'/bg/(K~+ Kj') ~ (2 9)

where u =A '/'exp(x~+ikx 2t/2m). A is a posi-
tive real constant while the ~ 's are arbitrary
complex constants with positive real parts. The
n functions t/i (x, f) which are defined by'

~tt =9 (2.10}

satisfy the n-component NLS equations

g (x, f)=y (x)exp(-fe t/5). (3 3)

Then p obeys the HF equation (2.3), with X&—-g.
Since X~ is independent of P, all single-particle
energies a are degenerate, which implies that Q
is independent of o.'. Although n in Eq. (2.3) can
formally be any integer, n =1 is the only physically
meaningful choice which corresponds to a
"nucleus" of mass number A =4.' The Slater de-
terminant for a nucleus of A =8 or 12, . . . is iden-
tically zero. The explicit form of p =—

f15 is im-
mediately found from Eq. (2.2) to be'

P (x) A 1/ 2exx/[(A/2 K)e2sx+ I]
= (K/2)' 'sech(xx) . (3.4)

Here z = 4g, and me took A to be A = 2a.' The sin-
gle-particle energy is given by c = (gx)'/-2m
= -(Kg/4)'/2m. Equation (3.4) represents a nucleus
whose center is at the origin. Note that the choice
of the origin is arbitrary.

If we denote the total kinetic and potential ener-
gies of the constituent nucleons by T and V, re-
spectively, and the total energy by E, we obtain

(3.2}

Each orbital accommodates four nucleons, hence
the mass number A =4n. The single-particle wave
function g, (x, t) is normalized by Eq. (2.13).

First, let us consider a stationary state by put-
ting

, , + g ~, ~y, ~

' q. =fa „
l4j.

(2.11) E = T+ V =2 (T+ 4m} . (s.5)

where

Xz —-4 Re x&. (2.12)

Combining this with the virial theorem for &-func-
tion interactions, ~o i.e., V= -2T, we find T = -4c/3,
and hence

The It) 's are normalized by

P*(x, f)g, (x, t)dx = &, (2.1s)

4c 52 g2

3 2m 12' (s.6)

which can be proved in the same manner as Eq.
(2.S).

A close examination shows that each g contains
one "mave packet" or "soliton. " In Ref. 4, we
showed how solutions can be constructed such that

can contain any number of solitons, but we will
not use such solutions in this paper.

V„=— —~(x, -x,) .g
2m 3 (3.1)

When the spin and isospin of the system are satu-
rated, as we mill assume throughout this paper,
the TDHF equations are given by Eq. (2.11), with7

III. NUCLEUS IN ONE DIMENSION

Consider a system of "nucleons" in one dimen-
sion, the interaction between nucleons i and j being

The TDHF equation (2.11) with n =1 has a solu-
tion

g(x, t) = y (x vt) exp[i (m—v/h)x i~t], —

v/here d is defined by Eq. (3.4), and

8 =&+ gp1V .1

(3.7)

(3 3)

This g represents an isolated nucleus which is
moving with a constant speed v. We note that Eq.
(3.7) is simply a consequence of Galilean invar-
iance of the TDHF equation.

Mcouire" considered the same model as the
present one except that the particles are all dis-
tinguishable in his case. Recall that eigenstates
for a system of distinguishable particles contain
those for fermions and for bosons which are of
course subjected to the same interactions.
Mcauire shomed that, for any number of particles
in his model, there is one and only one bound
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state. Moreover, the wave function of the bound

state is symmetric with respect to all coordinates
involved, and hence it can be regarded as that for
a system of bosons. Up to mass number A =4,
effectively there is no difference between boson
and fermion systems because of the spin-isospin
degeneracy in the latter. For A & 4, however, the
fermion wave function, if it exists, must be differ-
ent from that for bosons. McQuire's result, that
there exists one and only one bound state for dis-
tinguishable particles, implies that there is no
bound state containing more than four fermions.
This is consistent with our finding that there can
be only one orbital in the model under considera-
tion.

Next let us discuss a more interesting case of
nucleus-nucleus scattering. Since each nucleus
consists of four nucleons, there are altogether
eight nucleons, and we need two orbitals to accom-
modate them. The Slater determinant is

t},(x„t) ttt, (x„t)

g, (x„t} tt', (x„t}
(3 9)

x
I 1+

(2}fx/m)+i(v, -v, ) /
'

where 17 =exp[tc(x —v t)], and

[~,~,(,— .)]

(s.lo)

(3.11)

it, is obtained from Eq. (3.10) by interchanging
subscripts 1 and 2. In deriving g, and P„we have
put

Herc, = Rex, = z = 4'
Imx =mv /g,

Ax -A~=2g,

and
tf

& ( g)
(KK) mv

2m 2~ 2

(3.12)

(3.13)

(3.14)

(s.16)

If v, =v„ then g, and g, are both reduced to g of
Eq. (3.7), and the Slater determinant 4 vanishes.
The nucleon density is given by

Here again the spin and isospin factors in the wave
functions have been suppressed. We expect that
the two wave functions g, and g, are well separated
for t =+~, i.e., lim, ,„g,(x, t)g, (x, t) =0. The TDHF
equation is given by Eq. (2.11), with XB=g and n =2.
Unlike the case of the stationary state with Eq. (2.3),
t}, and g, will be different functions [orthogonal to
each other according to Eq. (2.13)], and 4' of Eq.
(3.9) will not vanish identically.

From Eq. (2.10}we obtain

g, = (2x)'~'(q, /&)exp[i(mv, /h)x -i~,t]

p(x, t) = 4[ IttI, (x, t)I ' + I g, (x, t) I'], (3.16)

Sv~ = exp(-~c+ix) .
(2'!m) +iv,

For t- ~ we obtain

(3.19)

g,(t- —~}=P(x -c)exp[-i(~,t+X)], (3.20)

q, (t- ) = y (x —v, t) exp(i[(mv, /a)x —(u, t]J.
(3.21)

More generally, for v, v, we find

g, (t- ~) =P(x v, t)e '"i-',

&,(t- .-~) =y(x-c —v, t)

x exp(i[(mv, /n)x (u, t X]),

(3.22)

while P,(t- +~) remain the same as those of Eqs.
(3.18) and (3.21). The parameter $ in this general
case is defined by Eq. (3.19), with v, replaced by
v~ —v~ o

There is another interesting situation in which
we can visualize P, and g, relatively easily. For
t =0, we find that q, =g„and hence,

(x, o) =f (x)exp(imv~/tf) . (3.23)

Here f (x) is a function which can be easily found
out from Eq. (3.11) by putting g, =g~; f, (x) and f~(x)
are complex and related by f,(x}=f,*(x) For the.
densities in each orbital, we obtain

Iq, (x, o)I'= Iq, (x, o)I = —,'p(x, o). (3.24)

Therefore all eight nucleons are distributed in the
same manner. Nevertheless, the Slater determi-
nant does not vanish because of the phase factor of
Eq. (3.10). One may have wondered that, because
of the Pauli principle, the two orbitals try to avoid
each other such that their density overlap is mini-
mized. Our model calculation illustrates that the
Pauli principle is not as effective in the collision
process as in the stationary state. If Iv, —v, I

where the factor 4 is due to the spin-isospin multi-
plicity.

In order to have a feel for the solution let us ex-
amine its asymptotic behavior for t- +~. Let us
put V, =O and v, &0. Then we find for t- ~,

tt, (t- ~) = (2x)' 'e xp( xx-i~, t)/( I+e'"")

= y (x)e '"~' (s.17)

g, (t- ~) = ( 2K)'~ 'exp[x (x v, t—) + i(m v, /ff)x —i&a, t]

x (/EI +
I g I 'exp[2x(x —v, t)] &

= @(x-c —v~t)exp(i[(mv~/5)x —td, t+X]),
(3.18)

where P(x) is defined by Eq. (3.4), while $, c, and

X are defined by
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2.0

us is x =vt (for t- -~) and that of the emerging
nucleus is x=c+vt (for t-+~). Therefore the
time advance in this scattering process is given

by

i.O

O.o

» 1+c 1 1 2@K

v Kv 2Kv B'av

If K is very small, &t becomes

5 K

m2v& (2m)~ &2, „»~

(3.27)

(3.26)

E

O

-0.5

-2.0
-lO IO

where E, = ~rnv'. This time advance could be ap-
proximately related to the scattering phase shift
which in turn is related to X defined by Eq. (3.19).

Dolan' discussed a similar (but different) prob-
lem with a one-component NLS equation. In her
case, the NLS equation can be interpreted as the
time-dependent Hartree equation for bosons. The
effective interaction between two solitons, then,
is attractive and she obtained a time delay rather
than advance. In our case the effective interaction
between the solitons is repulsive because of the
Pauli principle, and hence the time advance.

IV. EXTENSION

x (fm)

F&G. ].. The density p (x, t) for "n-n scattering. " The
kinetic energy per nucleon ~mv of the incident nucleus

is 1 MeV. The units are fm both for g anc ct, where

e is the speed of light.

»25/m, or m~ v, —v2~ /2»2(etc)2/m, we find

The model presented in Sec. III allows only one
(spin-isospin saturated) nucleus. This restriction
can be removed by introducing another degree of
freedom. Ne consider a system of nucleons in two
dimensions, but they interact with each other
through the same one-dimensional interaction (3.1)
as that in Sec. III. For the single-particle wave
function, we assume

(3.26) P.„(x,y, t) =q. (x, t)h„(y), (4.1)

h' g =2.2 MeV. (3.26)

With this@, ~E~ of Eq. (3.6), the binding energy
of the + particle becomes 13.2 MeV. For Fig. 1
we took 2mv', the kinetic energy per particle of
the incident nucleus, to be 1 MeV. The density
builds up to its maximum at t=0.

The space-time trajectory of the incident nucle-

In the limit of (v, —v, ~
—,we obtain ~g, (x, 0)

~

= ~g, (x, 0)
~
=p(x), and the nucleon density in the

&-& system at t =0 is exactly twice that in a single
0 particle. As we will illustrate below, the densi-
ty reaches its maximum at t =0.

The density p(x, t) for the "& nscatte-ring" with

v, = 0 and v, = v & 0 is shown in Fig. 1. For the pa-
rameters of the model we take the nucleon mass
mc'=936. 9 MeV, h'/m =41.47 MeVfm', and g
such that the "deuteron" binding energy becomes
2.2 MeV, that is'

(o', n) =(0, 0), (1, 1), and (2, 0). (4.2)

Each (o'. , n) orbital accommodates four nucleons.
It is possible to choose the oscillator constant so
that configuration (4.2) leads to an energy lower
than any others, such as (o.', n) = (0, 0), (1, 1), a,nd

(2 2)
The total energy of the system consists of two

parts, E =E„+E„where E„and E, are due to the
x and y degrees of freedom, respectively. E, is

where h„(y) with n =1,2, . . . are harmonic oscilla-
tor wave functions and are normalized by

f „h„'(y)dy =1. The oscillator constant is a fixed
parameter. For the index a we use o. =0, 1, 2, . . . .

First we consider a stationary state. For the
mass number A =4, there is no difference between
this model and the one considered in Sec. III. The
simplest nontrivial generalization can be seen for
A =12, which we now examine. For the ground
state of this nucleus let us assume the configura-
tion
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E„=4(&o
I
f

I
o&+ &1

I
f

I
»+ &2

I
f

I 2&)

+ 6«oo I v
I
oo&+ &11Iv

I
»&+ &22 I

v I 22))

+ 16&01
I
v

I
01&+ 12&02

I
v

I
02&+ 16&121v 112&

(4.3)

(4.4)E = 58co

Here co, is the harmonic oscillator constant with

respect to y.
The HF equations are given by

d2

z„.+x(( +-,'(..''~ 4.'() x.=&.(.,

(4.5)

for &=0, 2, and

just the kinetic energy with respect to y. Let us
denote the single-particle state attached to (t(„p„
and $2 by Io), I1), and 2&, respectively. Denoting
the Hamiltonian by H =,f, +2K. , &v, &, the energy is
given by

and

& —I +y e 22x+y c x2x+ (y y /y )s x&+22~x (4.14)

y=(((:,+~2)/(~, —((2) . (4.15)

The v and e are determined by Eqs. (2.4) and

(4.10); hence y=3. The occupation numbers for
levels 1 and 2 are 8 and 4, respectively. Unlike
the usual shell model, the lower level has larger
occupation number. The nucleon density in the
"carbon" nucleus is given by

p(x) = 4(2@,'+ @,') . (4.16)

Now recall that the choice of A in Eq. (3.4) was

simply related to that of the origin. Although we

did not discuss it, the choice of the A's of Eq.
(3.14) is related to that of the initial conditions for
the colliding "nuclei. " In all these cases the
structure of the nucleon density in an isolated nu-.

cleus is not affected by the choice of the A' s. For
the two level system described by the above P, and

P„however, the nucleon density distribution does
depend on the A's (or y, and y, ). If we put

Yj Y2 Y (4.17)

, +—(2(,'+(,')) (,=a,(, ,

which can be identified with Eq. (2.3), with

(4.9)

(4.10)

Let us examine the solutions of this case as an
approximation. '~ We will discuss the effect of the
ignored terms later.

The single-particle wave functions Q, and P, are
determined by Eq. (2.2). Unlike the cases dis-
cussed in Sec. III, however, the choice of A seems
to have a nontrivial consequence. If we put

(4.6)

These equations are not of the form of Eq. (2.3)
because the HF potentials in Eqs. (4.5) and (4.6)
are different. However, if we rewrite the potential
terms in the above equation as

40+-, &~ +~&2 ——, &2 y
(4 7)

(4 8)

and ignore the +-,' P,' terms, we can put Q, =P, and

e, =e„and (t(, (=(f(,) and $2 then satisfy

Q, and P, become even and odd functions of x, re-
spectively. For any other choice of y, and p„Q,
and Q, will not have any definite parity. Figure 2

compares the functions Q, and P, with p, and &,
of Eq. (4.17) with those of

1
Y] Y Y2 Yio (4.18)

0.6

0.0

In the latter case the center of mass of the nucleus
is still at the origin (see Appendix A).

Scattering between two nuclei, with mass num-
ber 12 and 4 (carbon and n particle) can be
examined in a manner very similar to the scatter-
ing in the model of Sec. III. The only difference
is that we now have three single-particle wave

A =2m y

we find

(4.11)
-06

(

-4
(

2
I I

3 4

y =(A, ' '/a)e" *[1+(y, /y)e'"2"],

(A (/2/Q)ex2x[1 (y /y)e2x(x]

where

(4.12)

(4.13)

x(fm)

FIG. 2. The single-particle wave functions @& and

ft)2 given by Eqs. (4.12) and (4.13), respectively. The
solid lines are those with y& and y& of Eq. (4.17), while
the dotted lines are for Eq. (4.18).
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the area of the slab in the yz plane. The normal-
ization is

E K'2g (12 ) (5.13)

g) r 2dr = Q ~2 x dx = 1 . (5.3)

The single-particle energy is given by (hk, }2/2m

+e where (Nk, )~/2m is the kinetic energy due to
the yz degrees of freedom, while e is determined
by solving Eq. (2.3) with

2m 6z —6&
Xg=gQg y Qp= @2

(5.4)

where &„ is the fermi energy, 8& is the number of
particles in state P per unit area. Incidentally, the
density per unit area is given by

p(x)=4 g~/, ~

2/II= g 8 y 2(x), (5.5)

and the number of particles per unit area by

A/0=8= g 8

Equation (2.4) reads

g8, =4K, and e, =-@v )'/2m.

Hence,

(5.6)

(5.7)

8=, —p (ez —e,) =—g v = (4v/g) .5'm g

(5.10)

This means that this case could hold only for this
specific density.

The energy E of the slab is given by

x ' (4v/g)~ +(2m/R)er=0, (5.8)

K = (2v/g) + [(2v ~g)' —(2m h')e ]' ' (5 9)

If &~&0, there is only one acceptable (positive)
root. In this case there is only one orbital and the
model essentially reduces to the model of Sec. III.

If (2m/g')ez& (2v/g), there is no solution.
If (2m/II')ez& (2v/g)', there are two acceptable

roots, z~ and K2. However, it follows from K, + K,
=4m/g and Eqs. (5.4) and (5.6) that

Now the question we ask is as follows: What is
the ground state energy for given g and 8? For
this we have to determine ~'s and a~. We can pro-
ceed as follows. (i) For the special value of 8
given by Eq. (5.10) there are two K s K, and x„
such that v, +tr, =4m/g. However, the minimization
of E of Eq. (5.13} requires v, = K„and hence the
model in this case essentially reduces to the model
of Sec. III. (ii) For other values of 8 there is only
one value of ~ at most, and ~ is related to 6 by
8=4'/g. If x&4v/g, then ez&0, which corre-
sponds to the first case discussed below Eq. (5.9},
and the model reduces to the model of Sec. III. If
x&4v/g, there is no acceptable root for K.

VI. DISCUSSION

We have presented models of quantum mechani-
cal many-body systems such that the HF and TDHF
equations can be solved analytically. The solutions
we obtained simulate an isolated nucleus or nu-
cleus-nucleus collision. The models are all es-
sentially one dimensional, and this is a severe
restriction. Neverthel. ess, our models exhibit
some interesting features. In Sec. III we illus-
trated that the Pauli principle is not as effective
in the collision process as in the stationary state.
This helps in building up a high density. In Sec.
IV we showed that the solutions of the approximate
equations exhibit degeneracy with respect to the
shape change of the model nucleus. We conjec-
tured that this degeneracy might be related to the
vibration in the solutions of the correct equations.
We discussed how the nucleus is deformed, or vi-
brationally excited, through the collision process.

In the model discussed in Sec. V, there is no
saturation in the sense that E--~ as 8-~. This
could be remedied by introducing a repulsive
three-body force of the form of 5(r; -r,)5(r&-r,).
With this additional force, the TDHF equation be-
comes

E m52 +8,'+ ,'(T„++8 e -). (5.11)
2 + Xp —A.'p g =gh

2m ex2 ~t
(6.1)

The first term on the right-hand side is the trans-
verse kinetic energy, while

(5.12)

is the longitudinal kinetic energy. Using the virial
theorem as in Sec. III we find T„=-3Z 8 e, and
hence, ~(T,+Z 8„e,)= ~K 8 e . Equation (5.7)
then enables us to write

We have been able to solve this equation only for
the one-component, stationary state case, i.e.,
P(x, f) =Q(x)exp( iat/K) We-show t.his in Appendix
B. It would be very interesting if Eq. (6.1) with
many components could be solved. "

Apart from specific features of our models, we
feel that the TDHF method is too deterministic.
We mean by this that, for a given initial state of
nucleus-nucleus scattering, the density distribu-
tion in the final state is uniquely determined. The
TDHF method is, in this sense, almost a classical
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description of nucleus-nucleus scattering. The
TDHF method could be extended in this respect by
quantizing solitons. Such an attempt has been done
for bound states recently by Klein and Krejs."
Quantum effects would probably be much more im-
portant for scattering problems than for bound
states, and we are hoping that our models would
serve as a starting point for such an extension.
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APPENDIX A

We will show for our model of the carbon nucle-
us, Sec. IV, that, if y, =y=3, the center of mass
is at the origin, that is

From the definition of D, Eq. (2.1), follows

APPENDIX 8

For the one-component, stationary case. Eq.
(6.1), with

y(x, f) = y(x) exp(in~'f/2m),

is reduced to

(
d

+X/dx2 (81)

This equation can be integrated in the same man-
ner as that for the case of X' = 0, yielding

4v

X+ [X2 —(316K,'x )]' cosh(2xx) ' (82)

Here it is understood that A. &0, but A.
' can be posi-

tive or negative. Also we have chosen the origin
such that P(x) becomes an even function of x. If
we require that (t) be normalized by

P dr=1,

D '(0)=—x ' for n= ' (A4)
1 1+y 1,

1+y~ 2.
where I'=1+y, +y, +(y,y,/y'). Equations (A2-A4),
wi yi =y yield

2(f. I ) (f. )
(3-y)(y-y, )

yr
which vanishes if y=3, irrespective of the value of
y„ hence Eq. (A1).

f CO 0

(24, '+0,')d*=f (24,'+0, ')dx.
0 CO

Using Eq. (2.6) we obtain

I'= P dx=D 0 -O' =D' 0,
0

I =— P,'dx=l D'(0). -

(Al)

(As)

I(; is determined to be

3A.' tanh'[ (X'/3)'i ']
161 X'I

tang( y'/6)&~'] y'(0.
(84)

For X'-0, x- -A, and Eq. (82) is reduced to Eq.
(2.4).
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