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A coordinate-space method is developed to solve the three-dimensional time-dependent Hartree-Fock
equations. It is applied to the study of "0+"0 collisions at E„,= 105 MeV for incident angular momenta
from 0 to 4% We find fusion for L = 13' through 27A' and highly inelastic scattering for L (12k.

NUCLEAR REACTIONS 0( 60,x) in three-dimensional time-dependent Har-
tree- Fock approximation. Fusion and strongly damped collisions.

I. INTRODUCTION

Time-dependent Hartree-Fock theory' (TDHF)
has emerged in recent years as a promising can-
didate for a tractable microscopic theory of large-
amplitude collective motion. Although investiga-
tions of TDHF's theoretical content date from the
last decade, "' current interest in the method is
due largely to the realization that it might ad-
equately describe heavy-ion reactions and fis-
sion. ' ' The first application of TDHF to reaction
phenomena was made by Bonche, Koonin, and
Negele, ' who numerically studied the one-dimen-
sional collision of slabs of nuclear matter. This
work was followed by the studies of Cusson and
Maruhn for "C+"C (Ref. 10), and by those of
Koonin" and Koonin et al."for "0+' 0 and
"Ca+ "Ca. These calculations were two-dimen-
sional in the sense of treating axially symmetric
three-dimensional systems. In the latter paper
some effects of finite impact parameters were
accounted for by a phenomenological rotating
frame approximation. The axially symmetric
work has been extended to the mass-asymmetric
system "N+ "C by Maruhn-Rezwani, Davies, and
Koonin. " Some truly two-dimensional calcula-
tions of the collisions of disks of nuclear matter
which allow for axial asymmetries have been per-
formed by Bonche et al. '4 Fully three-dimensional
calculations were first reported by Cusson, Smith,
and Maruhn, "who studied some collisions of "0
+ "0using a zero-range effective interaction, and
then included the Coulomb force in a more exten-
sive series of calculations which treated the '4N

+ "C system as well. " Detailed reviews of much

of this activity have been given by Kerman" and
Bone he."

In this work we present a technique for solving
the TDHF equations in three dimensions (3D) and
demonstrate its application by an extensive study
of the ~ 0+' O system at Ey&b=105 MeV. Qur study
is complementary to that of Bonche, Gram-
maticos, and Koonin" who have explored many
energies at a limited number of impact parameters
in order to determine the fusion excitation func-
tion. %e feel it is important to do these calcula-
tions in 3D so as to eliminate the necessity of as-
sumptions other than the TDHF approximation.

Our calculations have been motivated by sev-
eral considerations. At the most practical level,
the nonlinear nature of the TDHF equations makes
analytic study impossible and numerical calcula-
tions essential. Our understanding is still at the
stage of asking questions about mhat the TDHF
equations "do." The calculations presented here
impose a minimum of constraints on the symmetry
of the TDHF determinant and so begin to give an-
swers to these questions which are free from the
uncertainties due to simplified geometries. They
are also stringent tests of the validity of the sim-
pler two-dimensional calculations. At the phe-
nomenological level, TDHF has the appeal of nat-
urally extending the shell model to dynamical
problems. As a result, phenomenological models
of heavy-ion reactions such as the liquid drop
model" and the one-body viscosity" can be re-
lated to the independent particle picture realized
in the Hartree-Fock (HF) and TDHF approaches.
These are also natural analogies between TDHF
and a fluid dynamical picture. "'" Our results
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help us to understand these connections. Finally,
at a fundamental level, many aspects of TDHF re-
main unclear. Some results have been obtained
in connection with the translational invariance, '
rotational invariance, ' and continuity equations""
of the theory and both the small amplitude [ran-
dom phase approximation (RPA) ] and adiabatic~ '
limits have been related to ordinary quantum me-
chanics. However, the interpretation of the re-
sults of the general theory remains vague and has
been limited almost exclusively to the most naive
classical picture. In particular, a precise under-
standing of the relationship between the TDHF in-
itial conditions and the Schrodinger wave packet
used in ordinary time-dependent collision theo-
ries" is still missing. Quantal and classical as-
pects are intertwined in a way such that it is dif-
ficult to determine the predictive powers of the
theory. However, our complete comprehension
does not mean that contact with experiment is not
possible, but only that we do not know how to fully
extract the information contained in our results.

The remainder of the paper is organized as fol-
lows: In Sec. II we review the basic TDHF equa-
tions and present the effective interaction we have
used. The symmetries imposed on the TDHF de-
terminant for computational reasons are treated
in Sec. III. Section IV presents the initial condi-
tions and Sec. V contains our results. Section VI
is a discussion of the results, and Sec. VII is our
conclusion. The technical details of our calcula-
tions are contained in the Appendixes. Appendix
A is concerned with the numerical discretization
of the TDHF energy functional and its effect on the
translational invariance properties of the finite
difference equations. In Appendix 8 we discuss
several methods for evolving the three-dimen-
sional TDHF equations with a finite time step.
Finally, Appendix C contains a discussion of a
method for solving the discrete Poisson and Helm-
holtz equations which are necessary for obtaining
the one-body Coulomb and Yukawa potentials.

11. TDHF EQUATIONS

A detailed discussion of the TDHF theory can
be found in many papers ' "x"" For complete
ness, we will only outline the derivation of the
equations here.

In the TDHF approximation, the many-body
wave function of an A-nucleon system is con-
strained at all times to be a single Slater deter-
minant 4. The equations governing the evolu-
tion of the associated orthonormal single-par-
ticle (s.p. ) wave functions Q, , j= 1, . . . , A) can be
derived from a variational principle which makes
the "action"

dt(4(t)
i
N —H-i +(t))

1

stationary with respect to the variation of these
wave functions. "' Here, H is the many-body
Hamiltonian operator, which in practice is taken
to be the kinetic energy and a two-body effective
interaction. The variation of Eq. (1) then leads
to the coupled TDHF equations

iX =h(t)g;, j= 1, . . . ,A,8$~ (2)

A

p(r) = P ~
t(;(r)

~

' (4)

and the kinetic energy density

i(r) = Q
2 I

E= dr --- T+ -top + —t3p

, exp(- I r r' I/a)—
Ir-r'I a

+ —'e dr dr'p r), p (r' .
lr —r'I

The first term in the brackets is the kinetic en-
ergy, while the following two terms are the ex-
pectation value of the zero-range density-depen-
dent two-body effective interaction

t, (r, —r,)+—'p ' ' 6(r, -r,).2

The last two terms in Eq. (6) are the expectation
values of a Yukawa interaction and the direct Cou-
lomb interaction [p~ is the proton density defined
similarly to Eq. (4)].

The functional variation of the energy E, as de-
picted in Eq. (6), with respect to the Qz) leads di-

where h is the time-dependent Hermitian one-body
HF Hamiltonian. A nonlinear coupling among the
equations (2) arises from the functional depen-
dence of Ii upon the {gi). As a consequence, the
superposition principle does not hold for these
equations. Two important properties of the TDHF
equations are the conservation of the total energy

z= (e(t) iai e(t)), (2)

which follows directly from the variational formu-
lation of the theory, and the time independence of
the inner products of the {g&J among themselves.

The most general expressions for E and h in
terms of II can be found in Refs. 3-6. We shall
henceforth consider only the effective interaction
used in our work and follow Ref. 12 in writing the
total energy as a functional of the nucleon density



1684 H. F LOCARD, S. E. KOONIN, AND M. S. WEISS 17

TABLE I. Values of the coefficients of the Skyrme
and Yukawa interactions.

~0

(MeV fm3)
t3

(MeV fm')
~a

&Mev)

-497.66 172 88 -363.044 0.4598

rectly to the TDHF one-body Hamiltonian

h V2+ 3 top+ 3
t3p + N Y+ N C.

2m 4 16
(sa.)

Here, the Yukawa potential is

W„(r)= Vo dr', p(r'),, exp( —I r —r'
I /a}

Ir —r'I a
(Sb)

and the Coulomb potential (which is effective only
for protons) is

(Sc)

Equations (2) and (8} are the TDHF equations we
solve by means of the coordinate-space methods
outlined in the Appendixes. The parameters to,
t3 VQ and a used in the present paper are those
of Ref. 12 and are given in Table I.

III. SYMMETRIES

The history of numerical TDHF calculations has
been one of the gradual relaxation of symmetry
constraints imposed on the determinantal wave
function. Such symmetries have been useful in
reducing the magnitude of the numerical effort in-
volved and have therefore all.owed basic investi-
gations of the TDHF equations. However, it now
seems probable that a full test of the possibilities
of the TDHF theory in realistic situations will re-
quire the breaking of as many symmetries as is
possible. Unfortunately, while we would like to
relax as many "built-in" constraints as we can,
practical reasons have forced us to retain the
four symmetries we discuss below.

In solving the TDHF equations we have assumed
a perfect spin-isospin degeneracy, so that each
spatial orbital is occupied by four nucleons. In
this case, the proton density in Eqs. (6) and (Sc) is
replaced by one-half of the nucleon density and the
Coulomb potential [Eq. (8c)] acts on all spatial or-
bitals. This imposed degeneracy makes our cal-
culations applicable only to 4-X systems. One- or
two-nucleon transfers are not accurately described
in our model and nucleon emission is incorrectly
accounted for. The isospin degeneracy, which is
very accurately conserved in TDHF calculations
of light systems which allow for the neutron-pro-

ton degrees of freedom, "can easily be removed
with an increase of a factor of 2 in computing time
and storage. Removal of the spin degeneracy
would be more complicated. A spin-orbit interac-
tion demands that each wave function be partially
spin-up and spin-down. Therefore, including the
spin degree of freedom would increase storage
and computation by at least a factor 4.

We have also imposed two spatial symmetries
on the TDHF determinant. These are reflection
symmetry with respect to the reaction plane (taken
to be the Z= 0 plane} and point reflection symmetry
through the center of mass (c.m. ) of the total sys-
tem (taken to be the origin). These symmetries
reduce our numerical effort by a factor of 4. In

Appendix A we show how they have been imple-
mented practically in our calculations.

Of the two spatial symmetries, the second is
probably the more restrictive since it limits the
calculations to systems of two identical ions.
However, it seems unlikely that mass-asymmetric
degrees of freedom would be significant in an un-
constrained calculation of the light symmetric
systems we consider here. Despite the four sym-
metries we have imposed, our calculations rep-
resent a significant advance over the previous
two-dimensional work. "" As we shall see in
Secs. V and VI, the inclusion of triaxial degrees
of freedom leads to substantial qualitative effects
on the TDHF results, although axial symmetry
appears to be an adequate approximation for graz-
ing and nearly head-on collisions. (In terms of
the usual P, y parametrization of triaxial shapes, "
the dynamics of the two-dimensional calculations
are restricted to the lines y= 0 and y= 3m, while
our three-dimensional calculations cover the en-
tire range 0 —y —3m. ) Of course, the effects of
the centrifugal force due to finite impact param-
eters are naturally taken into account in our 3D
calculations and we do not have to make any as-
sumptions about the moment of inertia, as is done
in Ref. 12.

IV. INITIAL CONDITIONS

The TDHF equations (2) are first order in time,
so that the values of all of the single-particle
wave functions at some time t= 0 are required as
initial conditions. Since we solve the equations in
the overall c.m. frame, these should be chosen to
represent identical nuclei approaching one another
at a finite impact parameter with equal and oppo-
site velocities v=~/m. We have therefore con-
structed the initial state by multiplying each of
the single-particle wave functions of the static
HF solution of each nucleus by the phase e'"'.
[To find the static HF solutions used in our cal-
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vu'
Prz, „r(transl) = exP~-i & g Ez+

22m

x G(R-vt}X. (10}

In Eq. (10), the Ez are the static HF single-particle
energies. For a "0nucleus of oscillator wave
functions, the kinetic energy associated with the
c.m. motion is 1/24 of the total kinetic energy.
Using this ratio for the static HF wave function
we find a spread in energy of about 10 MeV. A
direct correspondence of the TDHF wave packet
to a Schrodinger wave packet would lead us to con-

culation, we evolve equations similar to (2) and

(8), beginning with an arbitrary tria, l determinant
constructed from single-particle orbitals with the
required symmetries. The evolution is done on

the discrete spatial mesh described in Appendix

A, using an evolution method similar to those de-
scribed in Appendix B with the replacement 4t

-i4t. %hen the single-particle wave functions
are orthonormalized after every "time" step,
there is rapid convergence to the ground state
solution provided the magnitude of 4t is sufficient-
ly small. ] In the absence of numerical inaccu-
racies (cf. Appendix A) this determinant repre-
sents two "0nuclei which translate uniformly
with the required velocities prior to collision. In

practice, we start the nuclei along the classical
Coulomb trajectory they would have followed from
infinity to the relatively large separation we choose
at t= 0 (-16 fm}. Our initial conditions therefore
neglect the demonstrably small effects of Cou-
lomb-induced deformations prior to t= 0.

Such an initial condition is usually interpreted
as a wave packet despite the fact that we have
only multiplied the static Slater determinant by
the plane wave exp(ik R), where R=Z&, rz. In fact
the wave packet is already contained in the static
HF solution, which is not an eigenstate of the total
momentum. If we assume that we can factor out
the center-of-mass motion we may write

g»(static) = G(R)X, (9)

where G(R) stands for the wave function of the
c.m. and X for the internal wave function. This is
certainly a good approximation for an "0 nucleus.
Indeed, the HF single-particle orbitals of light nuclei
are very close to oscillator wave functions, for which
the factorization is exact. The Fourier transform
of G(R) would be the wave packet in momentum
space. The only result achieved by the multiplica-
tion by e'"'R is a shift of the center of momentum
of this wave packet by the vector k, without any
change in its shape. The translating TDHF wave
function would then be

elude that 10 MeV gives a measure of the energy
resolution of the incident beams associated with

each "0 nucleus.
There are, however, several crucial differences

between a translating TDHF solution and a Schro-
dinger wave packet. These come mainly from the
restricted variational space (one Sister determin-
ant) used in the theory. We a,re not free to change
arbitrarily the shape of the c.m. wave packet. The
static HF equations give at the same time the wave

functions for the internal degrees of freedom and

for the center of mass. In contrast with the Schro-
dinger picture, all the degrees of freedom are
coupled by the minimization process in the space
of the Slater determinants. (One could imagine
changing the shape of the HF wave packet by solv-
ing the static equations with an external constraint
like P' where P is the total momentum. However,
this would induce a change in the internal wave
function X.) The same coupling is responsible for
the fact that the TDHF wave packet does not spread
as a function of time, as does the Schrodinger
wave packet (except for the trivial case A = 1,
where the HF and Schrodinger wave packets are
identical). In fact, Eq. (10) is identical to
formula (15) of Ref. 25 describing a Schrodinger
wave packet in the limit where spreading is ne-
glected. In the same reference one finds an ex-
pression (formula 19}for a quantity e which should

stay small for the spreading of the wave packet to
be negligible:

m 2svM

Here bt is the total time during which the wave
packet is followed, sv is the spatial width of the
function G(R), and M is the total mass of the sys-
tem. If we use 4t= 10 "sec, which corresponds
in our calculations to a typical full collision time,
then e=0.5 (we take ~=2 fm). This number is cer-
tainly not negligible, but may be sufficiently small
to allow correspondence between the TDHF solu-
tion and a Schrodinger wave packet. If we were
to adopt this viewpoint, then a quantitative compari-
son between our results and a normal Schrodinger
equation would require an understanding of the
evolution of a Schrodinger wave packet with a 10-
MeV spread during a collision over times of the
order of 10"sec.

An alternative position one may take is that we
are really only interested in following the wave
packet for 2 x 10 "sec, the time for our nuclei to
move from their initial position to contact. Then
e= 0.1 and one does not have to worry about
spreading.

In the following we shal1. mainly interpret our
TDHF results from a classical point of view. This
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is consistent with the fact that a nonspreading wave
packet is the characteristic of a classical particle,
as can be seen from the linear dependence of the
spreading parameter e on ff (11).

V. RESULTS

Our numerical methods provide, at each time
step, the set of single-particle wave functions
g&( r, t), or equivalently, the one-body density ma, —

trix. Because this represents far more informa-
tion than can be comprehended easily, we have
elected to display some of the physically relevant
quantities derivable from these wave functions.

In Figs. 1-3 we show the nucleon density p at
various times for collisions with impact paramw
eters corresponding to L=40, 13, and 55. The
figures show contour plots of the density integrated
along the direction perpendicular to the reaction
plane.

For the largest value of the angular momentum
(L = 40k) the nuclei appear to pass each other with-
out excitation. A comparison with the classical
Coulomb trajectory shows that indeed no nuclear
interaction takes place and that Coulomb excita-

tion is negligible. Within the precision of our
calculation, L = 408 corresponds to the minimum
angular momentum for pure Coulomb scattering.

For a smaller value of the angular momentum
(L=135), the collision leads to fusion. The two
nuclei remain in contact for a time longer than
3 x 10 " sec; the time at which we stopped this
calculation. Some shapes exhibit strong nonaxial
deformations. In fact, the analysis of the quad-
rupole moment tensor shows that the y asymmetry
angle sometimes reaches values higher than 20'
(for L= 15h, y has temporarily exceeded 30').

At an even smaller impact parameter (L = 5h),
fusion no longer occurs and two fragments emerge
directly after the collision. (The density at the
origin does not go back to exactly zero after the
separation of the main fragments. It stays within
10"' to 10 ' of the density in the center of the out-
going fragments compared to the value 10 ' before
the collision. We cannot determine whether this
is due to some small probability fusion process or
to numerical inaccuracies. In the analogous
way, when a fusion takes place as with L = 138,
the density at the edges of the box gradually rises
to a 10 '-10' ratio to the density at the origin,
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FIG. 1. Contour lines of the density integrated over the coordinate norm@ to the scattering plane for an 0+ 0collision at E',~= 105 MeV and incident angular momentum L = 40A'. The time interval bebveen two pictures is2x10 2~ sec.
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~ '1 = Jj

t= l,6 t=3,2 t=4,2 t=4,8 t= 6,4

.~~j, P'1

t =8,8 t = l0,4 t = l4, 6

-(Q~l

t= l8,8 t=2I.8 t = 24.0 t=26Q t =278
FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an 80+ 60

collision at E&~-—105 MeV and incident angular momentum 1=13h . The times t are given in units of 10 ~ sec.

as if some matter were being radiated out of the
fused system. ) One must remember that these
fragments do not correspond to only "0nuclei
since some transfer has occurred during the re-
action. " In addition, a large amount of the initial
kinetic energy ( 809o) has been transferred to in-
ternal degrees of freedom, as can be seen in the
large octupole oscillations of the fragments after
the collision.

A more physical description of the collision
process can be obtained by plotting the trajectories
of the c.m. of each fragment for different L. How-
ever, the reduction of such a complex dynamical
system to a single coordinate can lead to some un-
usual effects, as we discuss below. In addition,
there is no unique way to define a fragment and
this notion even loses meaning for complete fusion
configurations. In this paper we have adopted the
following definition. After having determined the
principal axes of the inertia tensor of the mass
density, we define a fragment as the matter lo-
cated on one side of the inertial axis associated
with the largest eigenvalue and then take its cen-
ter-of- mass. Another possible prescription is to
diagonalize the mass quadrupole tensor and choose

the orientation of the c.m. 's axis as that asso-
ciated with the largest moment Q (Q&0). The dis-
tance R between the c.m. 's of the two "0 is then
defined as R=(Q/A)'~', where A=16 in our case.
For the results presented here, this definition
and the one above lead essentially to the same
trajectories. The difference in the angle never
exceeds 2' and the difference in distances R is
never larger than 0.3 fm. A significant difference
would only occur for very compact mass distribu-
tions.

In Fig. 4 we have plotted the trajectories of the
vector R joining the c.m. 's of the fragments for
several values of the angular momentum. The
trajectories can be divided into three groups.
Large values of L (L& 27k) do not lead to fusion.
As mentioned before, L «405 yieMs pure Coulomb
scattering. The rainbow angular momentum is
found around 35 8, and between L = 33 and 2VS the
deflection angle becomes negative as the nuclear
attraction overcomes the Coulomb repulsion.

The second group of trajectories leads to fusion
(135—I —27k). Different examples of these are
shown separately in Fig. 5. They are qualitatively
very different. For the large values of L (L= 27
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lo

L= 27.0 h

FIG. 5. Examples of different trajectories leading to
fusion.

t =4.6 1=5.4 t=6,0

t= 6.8 t=78 t=8.2

(QQc)'

t=9,6 t = l0.4 t= t l,4
FIG. 3. Contour lines of the density integrated over the

coordinate normal to the scattering plane for an '80+ ' 0
collision at F.,~ = 105 MeV and incident angular momentum
L=GA. The times t are given in units of 10 sec.

and 25ii) the dominant factors are the nuclear at-
traction combined with dissipation. These lead
to a smooth orbiting trajectory. For lower impact
parameters (I.= 13 and 20k) the trajectory is more
complex. Af'ter an initial attraction the two nuclei
reach a configuration where the collective poten-
tial leads to a repulsion. As the nuclei begin to
move apart under the influence of this repulsion,
they are unable to separate because of the large
amount of energy that has been dissipated.

The third group of trajectories (L & 13k) does
not lead to fusion. %e therefore do not find the
expected result that fusio'n, if it occurs, does so
at zero impact parameter. The existence of the
low I. window for which fusion does not occur is
energy-dependent. " Indeed, we show in Fig. 6
an example of a trajectory at. much lower energy
(E„»=32 MeV) for which a head-on collision does
lead to fusion. This had already been noted in
Ref. 12 for the "Ca+ "Ca system.

In Fig. 7 we display a collision at E„„=192 MeV
and a large impact parameter, 6 fm (L= 42I).
This figure complements Fig. 2 which showed a
fusion process for a small value of the impact pa-

lO

L 2 I

L=2+5h
L=ZOOh
I = I50h
L= l3OI
L= II 5h
L=IC 5h
L = 5.5 I'

L=0.5 h

IO.0—

L= 29 5"
L=520h
L=35 5h
L=39 5h

0.0
0,0 (0.0

-IO

FIG. 4. Trajectories of the vector separation R
between the centers of mass of the two fragments for
incident angular momentum values ranging from 0 to 40h.

FIG. 6. Trajectory for a nearly head-on collision
(L=0.5A) at low energy (E,+——32 MeV) which leads to
fusion.
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F

a

FIQ. 7. Contour lines of the density integrated over the coordinate normal to the scattering plane for an '60+' O
collision at E&&——192 MeV and incident angular momentum I-=42h . The time interval between two pictures is 10- sec.

rameter. Nonaxial effects are very important.
A comparison of the shapes at I;=7 &10 "and 15
x 16 "sec shows two extreme stages of a wiggling
mode. Note how the shape becomes more com-
pact (i.e. , more fused) during the collision. A
more detailed study of the fusion regime may be
found in Ref. 19.

In Fig. 8 we give the deflection angle and the
total kinetic energy loss as functions of the angu-
lar momentum. For small impact parameters (L
&135) the kinetic energy loss is constant at about
35 MeV, to be compared with the 52.5 Me7 avail-
able initially in the center-of-mass frame. Because
of the total c.m. motion these trajeCtories would re-
sult in fragments moving forward in the laboratory
frame. According to our calculations, one would
expect heavy fragments moving with kinetic energy
ranging between 5 and 65 MeV in a forward cone of
about 35 . (Recall that the beam energy is 105 MeV. )
Since the fragments are strongly excited the mass
distribution mould certainly not be centered around

A = 16 due to deexcitation via nucleon or ~-particle
emission. %hen the fragments emerge, they have
nearly the same angular momentum with which
they enter. This is in spite of the fact that at
times during the collision the total angular mo-
mentum is almost entirely absorbed by the inter-
nal angular momentum of the fragments.

There is a difference between our results and
those of Ref. 16, since we do get fusion. Because
the energy used for the i6Q+i60 collisions in Ref.
16 is slightly higher than the one we use (8 in-
stead of 6.6 MeV per nucleon in the lab) we have
made one calculation with the energy of Ref. 16
and with an angular momentum L = 30h. Consis-
tent with our previous results we find fusion. The
trajectory was followed up to a deflection of -3v/2
without any indication of separation, in contrast
to the finite deflection angle -v/3 found in Ref.
16 (Fig. 7). The difference comes from our in-
clusion of a Yukawa interaction not present in
their calculation. Our interaction provides a
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FIG. 8. Deflection angle and kinetic energy loss as
functions of incident angular momentum at Ej~= 105 MeV.
The shaded area corresponds to the fusion window,

VI. DISCUSSION

The most striking feature of our results is the
absence of fusion for small values of the incident
angular momentum. We find that for any angular
momentum from 13 to 27k the nuclei "fuse" in the
sense that they remain either in close contact for
times longer than 3 x 10 " sec or that the deflec-
tion angle exceeds -180'. If we interpret this
range of impact parameters classically we obtain
a fusion cross section of about 0.8 b.

All trajectories with L & 20h exhibit a loop at
the point of closest approach, as can be seen in
Figs. 4 and 5. At this point, the relative orbital
angular momentum of the fragments becomes neg-
ative, changing sign from its value at t= 0. This
phenomena has its origin in the single-particle
degrees of freedom treated explicitly in a TDHF
calculation. Similar behavior, which is due to
the motion of the single-particle wave functions
in the time-dependent mean field, has been ob-
served in both one- ' and two-dimensional" cal-

better reproduction of the surfaces of the nuclei,
a feature which is certainly needed to describe
correctly heavy-ion collisions, as demonstrated
in Ref. 19. However, the apparent sensitivity to
the interaction indicated by their results leads us
to hope that TDHF calculations combined with ap-
propriate experiments will increase our knowledge
of the effective interaction.

culations; we shall sketch the same reasoning
here to explain our three-dimensional results.
When the two nuclei begin to interact, the barrier
between their separate mean-field potentials dis-
appears and all wave functions begin to move in
one large common well. The velocities of the or-
bitals from one nucleus as they traverse the other
nucleus differ according to their internal kinetic
energy Thus in the '60+'60 system, some 1p
orbitals move faster and reflect first from the op-
posite wall of the potential. Their resulting back-
ward motion cancels the still forward motion of
the remainder of the orbitals. As a result, the
net orbital angular velocity of the fragment c.m. 's
can become negative. This example of the ex-
change of angular momentum between single-par-
ticle and collective degrees of freedom is the es-
sence of the one-body dissipation process. How-
ever, in this relatively small system, the non-
statistical dynamics of a few orbitals soon re-
stores much of the angular momentum to the c.m.
motion. In fact, there is hardly any angular mo-
mentum loss in the low impact-parameter events.
In heavier systems, the greater diversity of sin-
gle-particle motions will affect the collective
variables in a much smoother manner, "so that
the notion of a macroscopic dissipation coefficient
may become applicable. Qne can also note that
the significant differences between the different
fusion trajectories 18h ~ L ~ 2'lh (Fig. 5) would be
difficult to reproduce by a model taking into ac-
count only the motion of the c.m. 's.

We have shown that it is unlikely that one could
explain a/l our results by a potential and a viscos-
ity coefficient. However, this is still possible
within a limited range of angular momenta. We
demonstrate this for the low values of the angular
momentum which lead to inelastic scattering.

For values of L between 0 and 20h, the point of
closest approach corresponds to an almost con-
stant value of the distance between the c.m. 's,
4.1 fm (see Fig. 4). This gives us the location Rs
of the internal repulsive part of the heavy-ion nu-
clear potential (Fig. 9). (Effective mass effects
are neglected, as it can generally be done in a
one-dimensional problem by a proper redefinition
of the potential. The mass is therefore the re-
duced maes p = 8 m. ) This internal barrier is of
dynamical origin and probably comes from the
inability of the fragments to significantly change
their shell structure during the collision. Static
constrained HF calculations performed for the
same system, "which can be thought of as de-
scribing the potential for an infinitely slow colli-
sion, do not give a potential with an internal bar-
rier. There, the system of 32 nucleons adjusts
itself to the best possible shell structure for a
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FIG. 9. Schematization of the nuclear part of a
heavy-ion potential. E„is the kinetic energy for
infinitely separated fragments. The dashed line is a
trajectory in the absence of dissipation. It is shifted
from 8'„bythe point Coulomb energy Ez. The solid
line is a trajectory with dissipation and H stands for
the energy loss.

3 .'
t(lo "s)

FIG. 10. Time-dependent single-particle energy
spectrum (see text) for a nearly head-on coll'. sion
(L=0.M, E,~=105 MeV).

given separation of the c.m. 's. For small separa-
tions, the "S configuration is energetically the
most stable. Figure 10 shows the behavior of the
single-particle (s.p. ) energies as a function of
time for a. nearly head on collision (L = 0.5h,
E„b——105 MeV). (We define the s.p. energies as
the diagonal elements of the matrix e,~

= fd r P,*kg~.
This is not an unambiguous definition since the

s are defined only up to a unitary transforma-
tion. Another possibility wouM be to choose as
s.p. energies the eigenvalues of the fe, ~) matrix.
This choice would probably not change the qualita-
tive aspect of our argument. ) Initially, this sin-
gle-particle spectrum exhibits the degeneracy
characteristic of two "0nuclei. (Recall that our

0
14-
12-
IO -"""" '. ': ": ~::""" * ~

E

8- A

D

C

2-
0
0 5 t(io-"s)

FIG. 11. Upper part: the point Coulomb energy Ec
and the mechanical energy I z (see text) as functions of
time for a nearly head-on collision (L= 0.5h, E,~=105
MeV). Lower part: the corresponding time evolution of
the fragment separation coordinate.

calculation does not include a spin-orbit force. )
The degeneracy is lifted during the collision, al-
though the shell structure is remarkably well
preserved and the spectrum never comes close
to that of "S. Since the distance of closest ap-
proach R~ is almost independent of the angular
momentum, the potential at that point must be
very steep. Indeed, although the classical cen-
trifugal energy h'L'/2pRa' changes by about 60
MeV for L varying between 0 and 20k, its effect
on R~ is very small. This stiffness of the poten-
tial is confirmed by the fact that R~ is indepen-
dent of the incident energy, as can be seen in Fig.
6 (E, b= 32 MeV).

To pursue the analysis, the velocities of the
c.m. 's must be considered. We do this in Fig. 11,
which again corresponds to the L=0.5S, Ez b 105lab
MeV collision. The energy E~ in the upper part
of the figure is the point Coulomb energy Z'e /R.
We have also plotted the quantity E„which is larg-
er than Ec by the total kinetic energy of the rela-
tive motion of the c.m. 's. The evolution of E~ can
be understood in terms of a motion with dissipa-
tion in a collective potential well such as that
shown in Fig. 9. Between the initial time and point
A, Ze is constant. (The small decrease of -l MeV
is due to the numerical inaccuracies discussed in
Appendix A. It is a measure of the precision of
our calculations. ) The point A corresponds to the
beginning of the nuclear interaction; neglecting
internal degrees of freedom makes E„the total
energy before the nuclear interaction begins. We
have, therefore, an estimate of the distance at
which nuclear effects become important: RI= 8.5
fm. Between A and B, E„increases, correspond-



1692 H. F LOCARD, S. E. KOONIN, AND M. S. %EISS

ing to motion in the descending part of the poten-
tial. However, the increase of E„is less than the
depth of the potential V„because of dissipative ef-
fects. For the same reason the distance between
the c.m. 's at point 8 is larger than R„(Fig.9).
Between B and C the potential rises, therefore
E„decreases until it equals the Coulomb energy
E~. The distance between the c.m. 's at point C
gives the radius of the internal core R~. The
points D and E are the analogs of B and A on the
outgoing part of the trajectory. This time, be-
cause of the dissipative effects, the distance be-
tween the c.m. 's at point D gives a lower limit
for the value of R„.The distance at the last point
of interaction E is larger than the distance at
point A reflecting both fragment elongation and
an overall increase in the size of the fragments
after the collision. For example, the root-mean-
square radius of the fragments increases by about
0.3 fm as a consequence of the transfer of energy
to the internal degrees of freedom of the frag-
ments. If there were no dissipation of the radial
motion, all the curves shown in Fig. 11 would be
symmetric with respect to the vertical line going
through point C. Analyzing the extrema of the
energy curve E„(t)and the distance curve R(t)
with the above interpretation gives a minimum in
the nuclear potential between -14 and -24 MeV at
a distance between 5.5 and 6.5 fm. The upper
boundary for the depth of potential (24 MeV) is ob-
tained with the assumption that the dissipation of
E„occursonly when the two nuclei move toward
each other (faster velocities). If one were to as-
sume that the same amount of energy is lost dur-
ing the ingoing and outgoing phases of motion,
the lower value (14 MeV) would be obtained.

The energy loss for L = 0.5h, E„b=105 MeV is
about 35 MeV. Within the precision of our calcu-
lation (1 MeV) this number is constant for L vary
ing between 0 and 115 (Fig. 8). This indicates that
for these values of the angular momentum it is
not necessary to introduce a tangential friction.
Using a simple model, neglecting potential effects
in first approximation and assuming a viscosity
proportional to the relative radial velocity of the
c.m. 's acting for a distance equal to 2(R, -Rs},
we find that a radial viscosity coefficient of
2x10" MeV fm'sec explains our 35 MeV en-
ergy loss. Within the same crude model this
viscosity leads to a value of 0.9 MeV per nucleon
in the c.m. (E, b= 58 MeV) for the threshold of
no fusion at L= 08, in good agreement with the re-
sults of Ref. 19. Although we are not in a position
to discuss the energy dependence of the collective
potential, we note that this dependence will arise
naturally in similar analyses of TDHF calcula-
tions at other energies.

VII. CONCLUSION

The most interesting phenomenon we have ob-
served in our calculation is a region of fusion
which yields a fusion cross section consistent
with experiment. " This is in contrast to previous
calculations in two dimensions" "which showed
no fusion for high-energy collisions. Therefore,
nonaxiality is important in the dissipative pro-
cess that leads to fusion.

It is also important to note the lack of fusion for
small angular momentum at high bombarding en-
ergy. For these small values of the angular mo-
mentum we calculate the scattering angle and en-
ergy loss of the outgoing fragments. These pre-
dictions are amenable to experimental verification.
We also find that the absence of fusion for head-
on collisions dissappears at sufficiently low bom-
barding energies. However, our calculations con-
tain several technical restrictions (e.g. , spin,
isospin, and two spatial symmetries) which may
affect the specific numerical values presented in
this paper.

A comparison with other 3D calculations" indi-
cates a dependence of the results on the effective
interaction. This dependence is confirmed by the
detailed study of the fusion excitation function con-
tained in Ref. 19. For this reason the TDHF
method appears as a promising tool for extracting
additional knowledge of the nucleon-nucleon effec-
tive interaction from the experimental data on
heavy-ion scattering.
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APPENDIX A: DISCRETE REPRESENTATION
OF THE TDHF EQUATIONS

We solve the TDHF equations in coordinate
space using methods similar to those of Refs, 9
and 12. In our three-dimensional calculations,
the single-particle wave functions are described
by their values on a uniformly spaced Cartesian



17 THREE-DIMENSIONAL TIME-DEPENDENT HARTREE-FOCK. . . 1693

FIG. 12. The thick lines indicate the box in which the
calculations are actually performed and the thin lines show

the complete box deduced by means of the two spatial
symmetries imposed. The gray surface indicates a
possible equidensity contour surface with the same
convention.

mesh contained within a rectangular box. Vanish-
ing boundary conditions are imposed outside of
this box. The choices of box dimensions and mesh

spacing are influenced by two competing consid-
erations. On one hand, computing speed and stor-
age considerations favor a small box and large
mesh spacing to reduce the number of variables
describing the system. On the other hand, the box
must be large enough to contain the TDHF solution
without the system "hitting the walls" and the mesh

spacing must be small enough to give an accurate
representation of the TDHF energy functional.
Our method therefore employs a relatively large
mesh spacing (1 fm in all three directions) yet
uses high-order discretizations of the kinetic en-

ergy and Yukawa potentials. The box size has
been varied according to the collision being cal-
culated. We choose the center of the box to be
the time-independent c.m. of the whole system
and orient the reaction plane normal to one edge

(z axis). Typical box dimensions are 30 fm x 28
fm x 16 fm in the x, y, and z directions, respec-

a~ +6,x gy 2

Tf dx— (A1)

where x, is the coordinate at the ith mesh point,

tively. The spatial symmetries we impose on the
determinant (cf. Sec. III) restrict the actual nu-
merical work to one-quarter of the box volume.
How these symmetries are implemented in our
code is described in Fig. 12. As discussed in Ap-
pendix C, the nonconservation of energy associated
with the boundary conditions of the Yukawa poten-
tial provides a stringent check against spurious
effects of the mesh boundaries.

A discrete representation of the TDHF Hamilton-
ian can be obtained by the variation of a discrete
approximation to the energy functional with re-
spect to the values of the single-particle wave
functions at the mesh points. This procedure pre-
serves the variational aspects of the discrete
TDHF equations. It has been discussed in detail
for cylindrical coordinate systems in Ref. 12 and
can be extended directly to three Cartesian di-
mensions. We therefore discuss only those new

problems presented by the three-dimensional cal-
culations.

Experience has shown that the zero-range (t,
and t,) terms of the energy functional [Eq. (6) j
are accurately discretized on our large mesh
spacing by a trapezoidal approximation to the in-
tegrals (cf. Table II). Similarly, an adequate ac-
curacy is easily achieved for the Coulomb energy
(cf. Appendix C). However, the accuracy of the
discrete approximations to the kinetic energy and
short-range Yukawa potential is very sensitive to
the mesh spacing and techniques used. We treat
the kinetic energy below and discuss the Yukawa
potential in Appendix C.

The total kinetic energy is the sum of the kinetic
energies for each of the single-particle wave func-
tions in each of the three spatial directions. It is
therefore sufficient to consider a single wave func-
tion in one dimension. The fundamental quantity
we are interested in approximating is then

TABLE II. Contributions to the total energy of two '60 nuclei as described in the text
(values in MeV).

Kinetic Contribution of
energy t05(r& —r2)

Contribution of
—,
'

&3&~~i -~2~
Yukawa
energy

Coulomb
energy

Discrete
energy
functional

Analytic
value

457.560

460.504

-423.785

-423.784

230.088

230.100

-458.594

-458.393

36.752

36.489
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hx is the mesh spacing, and g(x) is the wave func-
tion. A Taylor expansion of T, in bx leads to

T gx
I )()(1)I2+ ((») )3 Rgy(l)gq(3)

I
y(2)

I
2)

TABLE III. The kinetic energy of the ground state of a
one-dimensional oscillator potential (m~/h = 0.275 fm ~)

calculated with the three- and five-point formulas. & x
is the mesh spacing.

+8((hx)') . (A2)

~+~'+""' Re(«"'*«"'+ 2&»"*&»"+ 3 I«"'I')

(fm

netic
nergy 3-point
(Me&) formula

5-point
formula

The notation g,'"' is used here for the nth deriva-
tive of P at@,

The lowest order difference approximation to

I
g»") I' results in the three-point approximation to

the kinetic energy"

Analytic value
0.5
0.75
1.0
1,25

2.8269
2.7968
2.7554
2.7034

2.8512
2.8507
2.8485
2.8430
2.8320

T»" = 2~ ( I e»., e» I'+-I e» t», I-') (A3)

+ 8((r x)') (A4)

so that the error term in T,"' is 8((»)x)').
The next order approximation to the kinetic en-

ergy is obtained by using an approximation of the
form

=2(&x) (Ib ~& (+boi(»+. b,

+ lbA, , +b.(, +bA. ..I'), (A5)

where the coefficients b, , are chosen so that T,"'
approximates T, to 8((hx)'):

2
bo= ~,

(A6)

The variation of T',."leads to a five-point approxi-
mation to g»")." The error term is 8((nx)'):

Re(y""y"'+ 2
I
y"'I')(»).x)'

i 90 i i

[Our choice (A6) is one member of a one-param-
eter family of complex solutions b, = 2/) 3, b,
= -1/v 3+ 2e»~, 0» u ~)». Equation (A7) holds for
any value of n. ]

The use of the five-point approximation for the
kinetic energy operator complicates the time evo-
lution of the TDHF equations. For example, in
one dimension the HF Hamiltonian is then rep-
resented by a pentadiagonal matrix, rather than
a tridiagonal one. However, in view of the 1-fm
mesh spacing we are forced to use, the extra ef-
fort is justified, as can be seen by a simple ex-

The variation of the quantity T,."' with respect to

g,*. leads directly to the three-point approximation
for g,

"' used in Ref. 12. A simple analysis of T,"'
gives

T,"'=nxlgu'I'+ 3(hx)'Re((()"'*»()"'+ —,'I(()»"'I')

ample. We have calculated the kinetic energy of
the lowest state in a one-dimensional oscillator
potenti ( with oscillator parameter m(d/)»= 0.275
fm ', a typical number for nuclear problems. The
results of the three- and five-point formulas with
various mesh sizes are shown in Table III. The
superiority of the five-point method is evident.
In fact, with a mesh spacing of 1 fm, this method
is more accurate than the three-point method
with l'x=0. 5 fm.

The translational invariance of the TDHF equa-
tions is also affected by our discretization pro-
cedure. We apply the gauge transformation e' '
t(.. he orbitals of the static HF solution in order
to generate the initial state of a nucleus moving
with velocity v=Kc/m. Because we use a Qali-
lean-invariant two-body interaction, the HF po-
tential is unaffected by this boost and the single-
particle kinetic energy of each orbital increases
by the translational kinetic energy E~= 2 mv'. Al-
though these properties are true for the TDHF
equations, they need not hold for their discrete
approximations. In order to test this aspect of
our discretization, we have applied various boosts
to the ground-state oscillator wave function used
to construct Table III. Our results are shown in
Fig. 13 where we display the fractional difference
between the calculated kinetic energies of the
boosted and stationary states. For the calcula-
tions presented in this paper (Er ~ 2 MeV), the
general level of accuracy should be 1 to 2~/() and
for E~& 25 MeV, the five-point formula with bx
= 1 fm is more accurate than the three-point for-
mula with be=0. 5 fm. Despite this encouraging
fact, some caution is necessary in applying these
results to our actual calculations. Figure 13 re-
fers to the lowest state of an oscillator well. How-
ever, our nuclei also contain p-shell orbitals.
The difference formulas are less accurate for
these higher lying states, so that for "0 the trans-
lational kinetic energy of the boosted nucleus is
in error by as much as 5%. The different errors
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energy density [Eqs. (4} and (5}]. However, it
is straightforward to show that our arguments
can be extended to the full one-body density op-
erator, i.e. , to any two-body interaction. We shall
also neglect the spin and isospin degrees of free-
dom which are irrelevant to the argument.

If Qi&"&] (1 ~ j ~A) is a. set of single-particle
wave functions at time step n, the HF energy at
that time step for a two-body interaction

v, =t,6(r, —r, )+ —,
' t,p[ ~(r, + r,}]6(r,-r, )

ls

000l 0.5 10 5.0 (00
E/A(MeV )

FIG. 13. Relative error in the kinetic energy of the
lowest state of an oscillator. The results are shown
for the five-point and three-point formulas of the
kinetic energy and different mesh sizes. The oscillator
parameter is mt'/h = 0.275 fm-2.

in the different wave functions also lead in a dif-
ferent way to the breaking of translational invari-
ance for the discrete equation. Because of dif-
ferencing errors, the transformation e'"' sets
each orbital in motion with a slightly different ve-
locity. Since the HF mean field binds all orbitals
together, some energy is gradually transferred
from translafion into internal excitation. In "0
+ "0, this phenomenon leads to at most a 7' loss
in translational kinetic energy in our calculation
over a time of 1.5 & 10 "sec.

We close this Appendix with an overall assess-
ment of the accuracy of our discretization of the
energy functional. We consider two "0 nuclei
built from oscillator wave functions (m&olh = 0.275
fm ') and positioned 16 fm apart. They are boosted
toward each other with a translational kinetic en-
ergy per nucleon of E~=1.74 MeV. In Table II we
show the calculated (4x = 4y = 4z = 1 fm, five-point
formula) and analytic contributions to the energy
functional. The Coulomb and Yukawa energies
have been calculated as described in Appendix C;
the overall accuracy is quite acceptable, with the
most serious discrepancy being some 3 MeV out
of 460 MeV in the kinetic energy.

APPENDIX B: SOLUTION OF THE TDHF EQUATIONS
WITH A FINITE TIME STEP

Conservation of the total energy

Although the discussion contained in this ap-
pendix is valid for any two-body interaction, we
discuss here only the case of a zero-range inter-
action which depends linearly on the density. We
therefore deal only with the density and the kinetic

E(tt) 8 r(l&)(r} + 3 t p(&l)(r}2
2m

—'& n'"'& )'),16
(Bl)

where p'"'(r) and r&"&(r) are, respectively, the
density and kinetic energy density a.t time step n.

If Qz""&) is the set of single-particle wave func-
tions at time step (n+ 1}, we define the quantity
6p as

A

6p p«+ p«g (yn+
)

(yn
)

(B2)

In the same way we have

7(n+1 ) &(n) (BS)

A
E(tt+1) E(tt) + /. I (n+1 )&t&h (tt+1/2). t, (tt+1 )

*h(n+&t2&~&n&) (B6)f

where the Hamiltonian h'"" " is defined as
g'2

h&"+&t 2& — /2+ ~ t (p(&&& / p(&&+(&)
8 0

(p(&&) y p(n&p&n+) & + p(n+1 ) )16

In order to conserve the energy exactly, the
gf'""'s must be constructed so as to cancel the
second term of the right-hand side of (B6). Then
choosing

y
(n+1 ) Uy fn)

where U is any unitary operator which commutes
with h'"" "will lead to an exact cancellation of
(E'""'—E'"'). Since we want to use a numerical

Some algebraic manipulations then show that

p(ll+&) p(&l) + 6p(p(n+&) + p(n)) (B4)
(n+()~ (n) + 6p(p(«+&& + p(«)p(n+&) + p(n) ) (B5)

These equations are exact and do not represent
(n+1) (n+1 )~a truncated expansion of p'""' and p'""' . With

Eqs. (B4) and (B5} the energy at time n+1, E&"")
can therefore be written as
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h'
+-&op+ 3

~ p2
2m 4

(89)

we can use the unitary operator

scheme for approximating the continuous TDHF
equations

~ 8
iS ~ =hP~,

we found that to reach a precision of 1 MeV in the
conservation of he energy, one iteration in the
calculation of h'"" " sufficed (t1t= 4)& 10 "sec).
In addition, the precision required {i.e. , the num-
ber of terms in the expansion of UE) to obtain the
first estimate of Q&""'] is less than the precision
needed for the final set of P&"+"s. In practice,
the first two terms in the exponential operator
are sufficient.

{B10)

or any unitary approximation to the exponential,
such as the Crank-Nicholson (CN) operator:

(tt t/2n)h&""l»
1+ (tt), t/2h)h'""l" (811)

h'"'= — p 2 -'t p'"'+ —' t p'"' (812)

For the calculations presented in this paper we
have expanded the exponential operator UE in a
power series to B(n.t'). Indeed, as the dis-
cretized operator h'""~' amounts to a 3000 x 3000
dense matrix for a typical mesh size, it would be
difficult to use the exact exponential operator. In
fact with a time step of 4 x 10 "sec, five terms
in the exponential suffice to conserve the wave
function norm to one part in 10' and the total en-
ergy of the system to better than 0.5' ( 1 MeV}
over periods longer than 1.5x 10 " sec, a typical
collision time.

The relation between h'"" ", and the Hamilton-
ians h'"' and h'""' defined by

Comparison with the exact solution

We will restrict our discussion to the case of
the exponential operator Uz [formula (810}]and
mention at the end of the Appendix the results ob-
tained with the CN method and two approximations
to the CN method: the alternating direction (AD)
and the local one-dimensional method (LOD)."

With the exponential operator the wave functions
at time t).t, QI')), are obtained from the wave
functions at time zero, Q»(o)), as

exp —ggg ~

h
(814)

where the operator h" " is constructed accord-
ing to formula (813). It will make the discussion
shorter to restrict ourselves to the case where
only two-body interactions are included in the
Hamiltonian H. The reader may convince himself
that the results presented hereafter remain true
when the zero-range density-dependent interaction
is also present. For a Hamiltonian with only two-
body interactions the operator h" ' may be writ-
ten as

1s
h(&lo) 1(h(o)+ h(1)) (815)

h(n+)I &) 1 (h&n) + h(n+1))
2

1 t (p(n+1) p(n))2 (813)
32

Thus the construction of h'"" '~ requires the know-
ledge of the {gl("")},which are not known ahead of
time. In practice we use the following procedure.
From the Hamiltonians h'", h ', and h'
construct with I agrange extrapolation a first
guess of O'"" ". We then compute a first esti-
mate of {pl(""))with Us. We can then obtain h'""'
and a better approximation of h'"" "using the
formulas (812) and (813). Finally we compute the
g&"""swith UE. It can be shown that further itera-
tions of this procedure combined with an exact
handling of the operators UE or Uc„would lead to
a convergence toward the exact solution h'"" "
and therefore an exact conservation of the energy.
The method used in this paper has therefore the
advantage of being easily controlled for any value
of the time step by increasing either the number
of terms in the expansion of UE or the number of
iterations in the calculation of h'"" ". In practice

For our purposes, it is convenient to emphasize
the functional dependence of the HF Hamiltonian
h"' and h"' on the wave functions g& and their con-
jugates g*. by writing

h(o) h(Q, (o) y(o)n))

hu. ) h({((1) ((1)n))
(816)

In this paper the functional dependence comes only
through the density p [E(I. (4)] but with other in-
teractions, such as the full Skyrme force, ' the
kinetic energy and the current would also appear
in the expression of h. In order to determine the
precision of the exponential scheme, we shall
study the derivatives

tfg (1)

()(«)"
„

(817)

and compare them with the derivatives of the exact
solution P~{t)
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of the TDHF equations

i=-—hg,

(816}

(819}

A similar derivation gives for the third-order de-
rivative

(1)
h(o) ~(o)

8(nt) gg, p h

+ 3 (h(1/2) ) y(o)

h (0)~ (o)
8t, h

(820a)

tg(t= o) =-4g".

The expressions for the first three derivatives of
the exact solution at t = 0 are

h 8 b, t 2 (826)

Using the formulas (824) and (826} and a relation
similar to (B24) for the second derivative of h" ",
one obtains

82 2 '
8 (0)

h (0),~, (o)
y

(o)
8t' @ " @ 8t (820b)

83' (1)

s(zt)' „sp
h(0) y

(0)

8h(o) 8h(o)
h(0) + 2 h(o) y(0)

8t 8t

82h(0)
~tt (»

8t2 (820c)

In Eqs. (820a)-(820c) the expression Sh"'/St
should be understood as the one-body operator

(822)

and

i 8h(1/2)
h(o) y

(o) 2 y
(0)

8(~t)' „ef n

(823)
From relation (815) one has

8h(1]2) g 8h( )

8b, t «~ 2 8b, t

1 8h 8g" 8h 8')"'"
2 2 sf~ &n, t 8$~~ sdt

1 " 8h 8$f 8h 8gf*

sy, st'+sq,' st'
fa1

S 8h")
2 8t (824)

In order to obtain the last equalities in the above
formula, we have used the result (822}. Finally,
combining (823) and (824), we get

82' (1) 82'
(a25)

8h' 8h 80 8h 8t/)f

8t 8gf 8t 8g& 8t
f~1

From the definition (814) and using (815), we have

(1), 88~f ~ h(o)~(0)
84t gg~ 8 8t

8'h' ' i 8h' '

2@ 8t' 8 8t 8t

(82'I}

From the results of (822), (825), and (82"I) one
sees that the exponential method with the operator
defined by (815) ensures that the numerical solu-
tion obtained at time bt is equal to the exact solu-
tion through order (ti. t)'.

A similar analysis of the CN scheme leads to
the same condition but with another value for the
difference between the exact and numerical third-
order derivatives. The reason for our choice of
the exponential operator was therefore not the
better theoretical precision achieved, but the
analytical properties of the exponential. Indeed,
it is difficult to apply the exact operators U~ and
Uc„. (In fact we tested the CN method with the
exact inversion performed by means of the con-
3ugate gradient method presented in Appendix C.
However, this proved to be more time consuming
for a given accuracy than using the expansion of
the exponential. ) Instead we use an expansion in
powers of 4t for which the always convergent ex-
pansion of the exponential is more appropriate than
the expansion of 1/(1+ x) associated with the CN
method. IFrom the above analysis one could be led
to believe that an expansion of the exponential up to
the order (nt)' is sufficient. However, one has to
use more terms in order to conserve both norm
and energy]. Two other methods, the alternating di-
rection method and the local one-dimensional method
have been shown to be equivalent to the CN method
up to the order (nt}' (Ref. 30). They therefore achieve
the same precision as the method used in this pa-
per, although with a somewhat greater numerical
complexity.

It should be noted that the analysis made in this
Appendix is restricted to one time step (local er-
ror analysis). As far as we know there is no rig-
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orous way to estimate the error after a given num-

ber of time steps, or better, a given evolution
time (global error analysis). In order to estimate
the quality of the method used in this paper we
have made a calculation of a nuclear collision
with time steps differing by a factor 2 ((k(& =2
and 4 x 10""sec) and checked that the results re-
mained identical up to the fifth figure during and at
the end of the collision.

APPENDIX C: DETERMINATION OF THE COULOMB

AND YUKAWA POTENTIALS

The one-body Yukawa and Coulomb potentials
a,re given by Eqs. (Bb) and (Bc) as convolutions
over the nucleon density (recall pk= kp because
of the isospin symmetry we impose). Since these
potentials are evaluated many times during each
collision (twice per time step), a direct integra-
tion is not possible. We therefore follow the strat-
egy of Ref. 12 and calculate the potentials as the
solutions of the discrete Poisson and Helmholtz
problems

V'm'c = -2me'p,

(V2 —1/a') Wr= -4w V,ap.
(C1)

Here, 5'c, 8'~, and p are column vectors whose
components are the values of these functions on
the mesh points and V' is a sparse matrix ap-
proximation to the three-dimensional Laplacian
operator. S'c is a smooth potential due to the long
range of the Coulomb force, so that a "three-
point" approximation to V'5'c is adequate. How-
ever, W'~ varies relatively rapidly in space and
a "five-point" approximation to V'W'~ is necessary
(cf. Appendix A).

Given the values of W on the mesh boundaries
(see below), the solution of Eqs. (C1) amounts to
the inversion of a sparse matrix of dimensionality
equal to the number of mesh points. It is not pos-
sible to invert directly and exactly such a large
matrix. We therefore use an iterative method for
solving Eqs. (Cl) which constructs successive ap-
proximations to the solutions and continues the
iteration process until sufficient precision is
achieved. These methods have the added advan-
tage that the potentials at the previous time step
are excellent starting points for the iteration pro-
cedures. Recently an old and rediscovered meth-
od, the conjugate gradient method" {CGM) has
proven to be more rapid than the conventional suc-
cessive over-relaxation methods or the alternating
direction methods. " We shall present the CGM
for the Poisson equation and discuss briefly the
precision achieved. The transposition to the Helm-
holtz problem is straightforward.

Our iterative scheme is a slight modification of

that proposed in Ref. 33. At the beginning of the
time evolution we start with a first guess that the
potential W'c {r}is identically zero. Here, the
upper index labels the number of iterations per-
formed with the CGM method. At the following
time steps we use as a starting point of the CGM
the la.st computed value of Wc(r). The calculation
of the boundary conditions is discussed at the end
of this Appendix. In order to begin the iterative
scheme we need two additional vectors, Z"' and
~(o) .

Z"'= -[2ve'p(r)+ (7'Wc"'(r)],
~(0) Z(o)

(C2)

The iterative scheme which, in order to save com-
putational time introduces an additional vector T
and two scalars A and C, is then

T(k+1) V2g(k)

A &k+1& (Z&k&. Z&k))/(Z(k&, T(k+&))

~(k+1 ) ~(k) +g (k+1 )p (k)c c

Z (k+1 ) Z (k) ~ (k+1 ) T (k+1 )

C(k+() (Z(k+ ' Z k+ )/(Z k), Z&l&))

~(k+1) Z(k+1) + C(k+1)g(k)

(C3a)

(C3t)

(C3c)

{Csd)

(C3e)

(C3f)

In formula. s (C3a)-(C3f) the symbol (Z T) is the
scalar product of the two vectors Z and T. The
method, in addition to its rapidity, provides a
natural way to check the convergence. One can
show that

Z(k) [2&(e2p(r)+ V2W(k)(r)] (C4)

so that the norm of this vector is a measure of the
remaining inaccuracy of 5'ck'{r}. In our calcula-
tion we required this norm to be less than 10 ".

The solution of both Eqs. {C1}requires a know-
ledge of the potential boundary conditions. We
have assumed that the Yukawa potential is zero
at the mesh boundaries. Because of the short
Yukawa range {a=0.5 fm), this assumption is
valid if there is no appreciable density within
about 1 fm of the boundaries. When the system
approaches the mesh edges, this boundary condi-
tion results in a repulsive image potential and de-
stroys the conservation of the total energy. We
have therefore used this phenomenon as a signal
for spurious effects from the mesh edges and have
stopped the calculation when the total energy was
not conserved to within a precision of about 1 MeV.

The long range of the Coulomb potential forces
an explicit evaluation of Wc at the mesh bound-
aries. Indeed, setting the boundary conditions to
zero would result in some 20/o error in the Cou-
lomb energy for the box dimensions used in our
calculations. One possibility for evaluating the
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boundary conditions for Wc is to evaluate Eq.
(Bc) at selected points on the box faces by means
of Simpson's rule and then to compute the re-
maining boundary conditions by polynomial inter-
polation. This procedure requires relatively many

sweeps of the mesh, but need only be carried out
every 3 or 4 time steps. However, a far simpler
procedure which is just as accurate is to perform
a multipole expansion of the Coulomb potential.

If we assume that the system is always separated
into two fragments in the way used to define the R
coordinate in Sec. V, then the multipole moments
of the fragments through order three are suffi-
cient to give the required accuracy. This method
has the additional advantage that it makes use of
information which is interesting and would have
been computed anyway, the lower multipole mo-
ments of the total system and of the fragments.
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