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The fused system formed in a heavy-ion collision breaks up immediately if the longitudinal energy per

particle is greater than 2 MeV/A (c.m.). This result is derived using the classical theory of compression and

rarefaction waves. The dependence of the result on the equation of state of nuclear matter is slight. There is

some dependence on the range of the interaction.

NUCLEAR REACTIONS Heavy ion reactions, nuclear matter, fragmentation.

To obtain a qualitative understanding of heavy-
ion collisions at higher bombarding energies, it is
desirable to delineate the conditions for the fused
system of nuclear matter to break up immediately,
and the conditions for the system to remain fused.
On the experimental side, the phenomenon of deep
inelastic scattering shows that rapid fission is ex-
tremely probable when the mass of the system is
large enough, even when the bombarding energy is
relatively low. On the theoretical side, numerical
studies of one-dimensional dynamics's3 show that
nuclear matter is not very strong: when the energy
exceeds 2 MeV/nucleon, the fused system quickly
splits apart. At first sight this breakup threshold
seems low, since the most obvious controlling pa-
rameter is the equilibrium binding energy which
has a value of 16 MeV/A. In this note we will show
how this result arises from continuum mechanics.

Before proceeding, it is necessary to justify the
application of continuum mechanics and one-dimen-
sional models. It is always possible to define for
a many body system the local density p(r), current
j(r), and the stress tensor S,&. The equation of
continuity relating p and j can be derived from the
quantum equation of motion. 4 An equation of mo-
tion for the sj/st can also be derived, relating it
to S,&. Classically, a closed system of equations
is obtained when S,z is expressed in terms of local
quantities such as p and the gradient ]. The sim-
plest approximation, giving the Euler equation of
hydrodynamics, is that S,&

depends on p alone:

S)~ ——6(~P(p) .

In this situation the motions in the three dimensions
are strongly coupled together. On the other hand,
if the stress associated with a distortion a,z=-,'

(&,uz+ Vp. ,) is given by

then the three directions are essentially uncoupled

in the equation of motion. In mean field theory,
with parameters in a range considered reasonable
for nuclear matter, there is in fact considerable
decoupling. More compelling than the theoretical
argument is the experimental evidence on the dy-
namics from the giant multipole vibrations. There
is a well-established quadrupole mode at 68/A'~'
and recent evidence for a monopole at 80/A' "(Ref.
5). The near degeneracy of these two modes implies
that distortional motion along the different coordi-
nate axes is nearly uncoupled, and thus the motion
is essentially one dimensional. Of course, we
know that the fluid description also has a realm of
validity. The liquid drop formula for nuclear
binding describes the potential energy of the usual
fission process quite well, at least before the
scission point. The difference is the time scale.
The stress tensor remains anisotropic on a time
scale characteristic of the damping of the giant
quadrupole state. The giant quadrupole has a width
of about 3 MeV in "'Pb, which implies a damping
time for the stress tensor of about 60 fm/c. The
usual fission of nuclei near their ground state
takes a much longer time. An appropriate measure
is perhaps the residual interaction between quasi-
particles. Estimating this as 100 keV, the iso-
tropic fluid description holds for times -2000 fm/c.

We will consider two basic models for the stress
tensor. The first is the Thomas-Fermi model, in
which the particles are assumed to occupy a Fermi
sphere of minimum radius. In that case the stress
is isotropic and given by

aE, BE/A
S]]——P =—= p2

BV Bp

This requires knowledge of the relationship between
energy and density. We will follow Zamick' and
parametrize the equations of state by an equation
of the form
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I;2
E/A =—(k') + A p +Bp" ' .

2M

matter. This is the negative maximum of the
stress, and can be computed from

The first term represents the single-particle
kinetic energy, and the last two terms represent
effects of an ordinary nucleon potential and of a
density- or velocity-dependent potential. The con-
stants are adjusted to reproduce the equilibrium
binding and density. The dynamic Thomas- Fermi
model results when Eq. (2) is substituted in Eq.
(1), where the explicit dependence of the kinetic
energy on density is

Iz' 3A' p—(k') = k+2 — (fluid)
2m 10nz ~ p,

with p, the equilibrium density and k~ the Fermi
momentum at equilibrium.

The second model of the stress tensor, based on
mean field theory, assumes that the Fermi surface
of the nucleon distribution deforms as the system
becomes distorted. In mean field dynamics, a
compression in the x direction produces a change
in the x component of the momenta, only. Thus,
the dependence of the kinetic energy on density will
be

O' Iz', , k'—(k }=—(k'+k')+ —(k')2' 2m ~ ' 2)w

(elastic). (4)

In the two models, the stress in the x direction is
given by

—= —, k —— +Ap+ (cr+ l)Bp"P, k~ p f1+ 1

p 2mp,
(fluid)

= 2 (elastic) (6)

We now examine when a colliding system will break
up. The most important continuum concept for dis-
cussion of breakup is the tensile strength of nuclear

(6)

This equation is equivalent to the classical condi-
tion for the sound velocity to go to zero, and for
the system to become unstable against density fluc-
tuations. When Eq. (2) is derived from Hartree-Fock
theory, the same condition is obtained for the random
phase approximation vibrations to go to zero fre-
quency, and for the system to become unstable.

The critical density corresponding to Eq. (6) is
given in Table I for a range of assumptions about
the equation of state. It may be seen that the criti-
cal density falls in the range of 0.6-0.7 p, . Note
that it makes very little difference in the critical
density, whether the fluid or elastic description is
used. This point has also been noted by Holzwarth. '
The energy needed to distort the system from
equilibrium, to achieve the critical density, is
also given in the table. The elastic model requires
a greater energy to lower the density to critical.
This energy is less than a quarter of the equilib-
riam energy. We also quote the value of the maxi-
mum negative stress. It is interesting to note that
this is larger than the Coulomb stress that would
be present in any system that could be made in the
laboratory.

A first guess for the breakup threshold is that it
equals the critical energy for maximum stress. In
fact the breakup takes place at lower energies; to
see why we need to trace the history of the colli-
sion in more detail. There are three important
stages in the course of the initial collision:

(1) After the nuclei make contact, a step-func-
tion wave of compression propagates in both direc-
tions from the point of contact to the back sides.
The density in the compressed region p' approxi-
mately satisfies

TABLE I. Properties of nuclear matter at breakup threshold. She critical density is deter-
mined from Eqs. (5) and (6).

Eq. of state 0 Critical density p,

Max. pressure

(Me V/fms)

E E
~ «.)- ~ ()o0)

(Me V)

Fluid

Elastic

1

1

0.68

0.64

0.68

0.64

3.5
2.4

5.2

4.2

2.2

1.8

3.5

3.2
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where Eo in the incoming energy of the nuclei in the
c.m. The leading edge of the wave is sharp in con-
tinuum mechanics, and may or may not be sharp in
mean field theory, depending on the specific equa-
tion of state.

(2) When the compression wave hits the back
sides of the nuclei, it is reflected as a decompres-
sion wave. The decompression is adiabatic and
the density on the decompressed side is p„ the
normal density. In principle this wave does not
have a sharp edge; the thickness of the edge de-
pends on the difference in the sound velocities on
the two sides.

(8) When two decompression waves meet in the
middle, they essentially add and produce a second
decompression that propagates outward. This
rarefaction has a density below normal density. If
the density in the rarefaction is below critical den-
sity, the system will split apart.

An analogy to this wave behavior is the propaga-
tion of waves on a string. The boundary condition
on the surface of the nuclear slab, that it be free
and uncompressed, corresponds to a fixed boundary
condition for the displacement of the string. A
step-function wave propagating to the end is re-
versed upon reflection; the displacement behind the
wave is zero.

This picture is reasonable for the compressive
and first decompressive stages of the collision. It
suggests that the density change in the third stage
should be the same as the density change in the
second stage, but in fact when the density becomes
close to critical this linear analogy is inaccurate.
We need to consider in detail the behavior of rare-
faction waves. Analytic solutions can be obtained
for the shape of rarefaction waves, as well as re-
lations between velocity and density across the
wave. ' For our purposes, it is only this latter re-
lation that is needed, which is

(8)

Here u is the change in velocity of the medium

TABLE II. Dependence of critical velocity on equation
of state, from Eq. (8).

Eq. of state cr Critical velocity
Critical energy

(Me V)

Ela,stic 1

0.048

0.045

0.062

0.058

0.94

1.S
1.6

Thus the critical energy for the collision is

E j 2 leo 2

if we assume that all of the initial energy is con-
verted to compressional energy in the first stage
and back to kinetic energy in the second stage.
Since co is about 0.2c, the critical energy is slight-
ly greater than l MeV/A. More accurate numeri-
cal values are given in Table II, along with the
implied initial energy. The dependence of the
threshold on the parameter 0' in the equation of
state is slight, but there is a significant difference
between the elastic and fluid models. As mentioned
earlier, the elastic model, being based on mean
field theory, is more realistic.

We have also studied the breakup threshold

across the rarefaction, c is the sound velocity,
and p, and p are the initial and final densities. In
the third stage rarefaction of nuclear matter, the
velocity of the matter moving outwards changes
from some value slightly less than the incident
velocity, to zero. To find the critical velocity for
the second stage decompression, we solve Etl. (8)
with p" = p, . The integral may be roughly estimated
assuming a linear dependence of c on p. Since c
varies from co to 0 when p changes from p, to p„
the critical velocity u, is

po- pcc2o4o.

TABLE III. Breakup threshold from numerical hydrodynamics.

Fluid model a

Breakup
energy
(Me V)

Static properties of model
Range of interaction Surface energy

(fm) (Me V/fm')

1 with extended interactions

$ with extended interactions

1.2

1.4

0.61

0.8

2.0

0.31

0.31

1.4
2.2
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of state. The breakup threshold tends to be some-
what higher in the numerical calculations than in
the analytic treatment. 'There are two reasons for
this. The nuclear matter can be below the critical
density for a short time, and still not break apart,
due to the finite time required for the instability to
build up. Also, the finite range of the interaction
can cause the system to pull together again after it
has snapped apart. We introduce a finite range into
the numerical model by allowing nonadjacent mass
elements to interact, and also by varying the size
of the mass elements. Collected results for the
breakup threshold are shown in Table III. We de-
fine the range of the interaction as the distance at
which the potential energy between the slabs is
half the value it has when the slabs are touching.
The threshold for breakup is seen to depend on this
quantity. We also compute the surface energy in
these models, shown in the last column of the table.

The model with the greater surface energy has a
higher breakup threshold, but we feel that this is
just a consequence of the interaction having a
longer range.

In conclusion, we have exhibited the dependence
of the breakup threshold on the equation of state of
nuclear matter. The threshold also is somewhat
sensitive to the range of the interaction. There
remain many important questions which we have
not addressed. The dissipation in the first stage of
the collision will increase the threshold energy,
and it is important to develop a useful character-
ization of the dissipation. We also need to under-
stand how to modify the arguments in the presence
of Coulomb and centrifugal fields. Finally, with
these three-dimensional aspects of the collision
considered in a minimal way, it should be
possible to calculate cross sections in actual
nuclei.
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