
PH YSICAL REVIEW C VOLUME 17, NUMBER 4 APRI L 1978

Integral form of energy matrix element
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The radial part of the matrix element of Goldhammer's Hamiltonian is expressed in the integral form. The
variation principle is applied to give the maximum binding energy of the nuclear system. This results in a set
of Morpurgo type coupled differential equations corresponding to each quantum of excitation.

The radial dependence of Goldhammer's two-body
interaction' contains both Gaussian and Gartenhaus
forms. En the appendixes, the radial parts of the
matrix element of the central and tensor forces
(in both forms of radial dependence) between two
states of angular momentum L, L, ' and quanta of
excitation M, M', respectively, are expressed in
the integral form in terms of a set of hypergeo-
Inetric functions. This is written as

VsL s&L =I(ML&M'L')+ J(ML&M'L'),

where I(ML, M'L) and J(ML, M'L') are given by
Eqs. (C2) with (C3) and (C6) of Appendix C, re-
spectively.

The kinetic energy operator T under the trans-
formation to the internal coordinate system given
in Appendix A becomes

S2 S2

2pao j ~ &-i 2pg

where I is the m dimensional angular momentum
operator. To evaluate the eigenvalues of L ' we
consider a harmonic multidimensional function

Pk Y(&)L

which satisfies 6 S = 0, where Y~ + is a hyper-
spherical harmonic defined by Eq. (B4) of Appen-
dix B. Since

Tis&=k(m+k —2)R' 2l'") R' 'L, -'l'"'L=O

we get

I. 'l (.")'=k{m+k-2)r(')'

Therefore it follows that

T i U
(m) (R) V())) L&

1 d, d
2)Ln '

M(M+ m —2) („) („)LU &2L(R) Ym

with d, d
glN-1 ~ dg g2 m y

which shows that the kinetic energy operator does
not affect the hyperspherical harmonic whose or-
thogonality gives

(U(„;)(R)r(„")'iTiU(„'),.(R) V(."')'& = &e„,l(T le„.L &

-5 1 d d
U (m)(R) R m-1

U (m) (R)
(M )

NL gm-1 dg ~ O'L'

x U(. ) (R) R 'dR5(M, M')5(L, L').

For these diagonal matrix elements we have

(+»Ll(T I)+» L &
=fG)IL(R) dR2-

d' (m —3)(m —1)+4M(M+m -2)
GL(R) dR,

where we have put

U ( I&&)(R) —R(1 m)/2 g (R)

The expectation value of the total Hamiltonian H =T+ V, where V is the two-body interaction given by
Qoldhammer is now written as
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(R„,IRIR„)= . ()((G, R(')()(G, G') fG„,(R)(, — ' '; ' ' ),
0

G„(R)dR+ Z G (R„)v ,„„G„.(R)dR Rf=G„(R)G „(R')dR.
~l Lt

Integrating by parts and making use of the fact that G»(R)(d/dR)G»(R) vanishes at both R = 0 and R =~
we get

d (m —3)(m —1) + 4M(M+ m —2)
2)La R dR NL 4R3 NI

~ I:fG, (R)V ...G. .(R)dR Rf (=)G)' d. R
J)I'L'

The radial part of the total wave function is now varied to produce the maximum binding energy. This
gives

f d (N) (m 3)(m 1) + 4M(M+ m 2)6» +
4R t(d NL

2&ap (z~ 2&ap ~ (s)+
e'.L' h

Since 56» is arbitrary we must have

d („) (m -3)(m —1)+4M(M+ m —2) (g)
4R2 G»

2&ap |z ye
~NL, N'L' GN L ~GN'3

,L' g2

with e = 2)daG'E/ff' The la. st e(luatibn represents a
set of coupled second order differential equations'
corresponding to possible values of the total angu-
lar momentum I, and the total quanta of excitation
M. A numerical solution of the above set of differ-
ential equations will produce the binding energy of
the nucleus E.

APPENDIX A: INTERNAL COORDINATE SYSTEM

An internal coordinate system is set up charac-
terizing a 3(P —1)= m dimensional hyperspace. In
this space the orbital part of the total wave func-
tion is constructed from products of single parti-
cle oscillator well wave functions which led to the
definition of hyperspace spherical harmonics.
This form of the total wave function wil) ensure the
expression of the kinetic energy matrix element
in the required integral form.

To eliminate the center of mass motion, the non-
dimensional vectors

I R rR /a()

are employed, where r& is the position vector of
the kth particle and ap is the oscillator well pa-
rameter. A set of orthonormal vectors

dQ =da, da day, . (AI)

Introducing the set of variables R, X„X„.. .xp,
such that

a, =R cosx»

a, =A si~, cosX, ,

a, =R sinx, si~, cosx, ,
~ ~ ~

a&, =R sinx, sinx2 ~ ~ ~ sinx~ 2

with 0&X; &v/2, i=1, 2, . . . , (P —2), and

a~ +a2 + '''+Qg ~
=R

it follows that the volume element in the last (P —1)
dimensional space is

a„a~, .. . , ap is then built up as a linear combina-
tion of the vectors q& transforming according to
the representation [P- 1, lf of the permutation
group SN as given in Table I, where I/WN is the
normalizing factor. The last vector a& is taken as
the center of mass vector and the first (P- 1) vec-
tors describe the internal motion of the p particles
relative to the center of mass of the nucleus.
These (P —1) vectors characterize the 3(P —1)
= m dimensional space in the following manner.
The polar coordinates 8, and 4, are introduced'a
for each vector as

dRy = Qy Sln~g d 841 6f44I = Qy daI4 d 4Iy

with 0&8, &w, 0&4), &2w, and I)= 1, 2, 3, .. . , (P
—1).

The volume element in this space is
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TABLE I. [P-1, ll representation of Sp.

q2 q3 N

a4

1
1
1

-(P -4)

1
1

-(P—3)
0

1
-(P —2)

0
0

-(P-1)
0
0
6

P(P -1)
(P -1)(P-2)
(P-2)(P-3)
( -3)(P-4)

8-3
+g-2

p-1

1 1
~g

-1 0
1 1

0
0
1

12
6
2

P

()(a,a2" a, ,)da da da, . 'dap, =
&

— dR+ dX&''' dXp 2
~'L~XyX2' ' 'Xp-2)

= (R dR)(sin X,(fX,)(sin X2dX,) ~ (sinXz 3(fXR 3) dXR 2.

Substituting in Eq. (Al) we get the volume element
in the m dimensional space as

dO =(R" 'dR)(cos'X, sin" 'X, dX,) &

&(«»'X2»n 'X2dX2)"
x (cos Xp 2 sin )(p 2 dXp )(d2(d &da(da

''
2' (f(dap 1)

or, in short,

d0 =R QQ dQX d4)(2 de)g ' ' ' d(dg

Using

t

rnonic with the normal quantum numbers n, l, and
m. This wave function can be expressed in the
shell model form using the relation

'""=(
4K ) (2'pa!i I)

where e is a unit vector. It follows that the gener-
al shell model state in the vector a, can be written
as

the surface area of a unit sphere in the m dimen-
sional space is

QQ 4 P dQ

since
„kQ'-~)

x 22P-3Z (L~)

APPENDIX B: VECTOR COUPLED ORBITAL STATES

The oscillator well wave functions for a single
particle that belong to the eigenvalue h'/
2n2aa'(n+2) is of the form

e„,.(a) =&„,(a) Y, (e, O),

where

2F(2 (n l + 2)) a2/2 1 ) y 1/2Ba) (a} (j ( f 2)) e «(a 1)/2(a ) (B-l)

x e ~( 8"'/'(a', ) ( [5!] l ),
where (2r+l) =M stands for the number of quanta
of excitation. %hen such shell model states in the
(P —1) vectors are vector coupled together, the re-
sulting total shell model states of angular momen-
tum L in the hyperspace take the form

[ (M,)l, , (Mjl, ; L2 ~ ~ ~; (M p 2)f,

which could always be expressed as the sum of a
number of terms each of which is of the form

O'RL = URL(R)YR

where U „L(R) is the multidimensional oscillator
well radial dependence given by

U ( N)(R) L 2 ( )] R/2RLgL+( a! 2)/2(R-21-
r(-'. (M+L+In}} ( N-L)/2 4 I

satisfying the orthonormal relation

and Y) (8, 4) is a three dimensional spherical har- U~~ 8 U~ I 8 8 'dR=5 L,L' 5 M, M'
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and F„" is a hyperspace spherical harmonic de-
fined by

y(N)I 1 y(&) ~ y( 2) ~. .. y( g q)
sa (f dg )1/2 sl 1 ss 2''' ss 1 s- 1'

X

APPENDIX C: EVALUATION OF THE RADIAL INTEGRALS

The matrix element of a two-body interaction
V with Gaussian radial dependence of the form

vrhere z is a constant, can be written as

(e„,(V (e„,, &=-,'P(P I}!e(d....(C'&,

uating the radial integral:

r((AM's, ') f =s„",'(a)a"a'st"., (a)a.'aa
0

Substitution from (B3) gives

PggL MtL I) g @
6 /g (L+Ia +2+~L+j./2

(e-I, ) /s
0

I '+1/2 g
(S(a-L )/2(

where

I=a/(a+2)

(Cl)

d/, , /
= exp[ (2/(2)(a-s l'))

and 4 and C' are identical shell model states in the
particulars of the first (P —2} particles; other
wise the matrix element is zero. This is because
J~, ~ operates only on the coordinates of the last
pair of particles (see the table). The problem of
calculating the above matrix element is thexefore
reduced to the three dimensional. problem of eval-

~

~

4[-,'(M —L)]t [-,'(M' —L')]!
I'( 21 Qf + L-+ 3))I'(-,'(M '+ L'+ 3))

Using

XZ(„,' L, )/2(Py)d(Py) .

Putting a'=Py we get

MaLa) e-y(Py)LaL'a2gLal/2 (Py)
4

I'(n+ 0+ l}x'
1 (n —r+ 1)1'(k+ r+ 1)1'(r+ 1)

we get (N-l;)/2 (Ns-r. e)/2

I(ML, M'L') =
rW (I~

( I)ras Sl/2(L+L'asrassas)

P(M + L+ )P(Ma+ L + 2) f e-yyl/2(LaL'+2rrss 1)d

I'(L+ r+ L}I'(L'+S+ ', )I'(-,'!/)I —I —2-r+ 2))I'(-,'(M' L' —2s+ 2—))L(r+1)1(s+1)
(//// I ) /Q (Af' -L ' ) /2

=c
mo 8~0

( I)""O' " 'L'"-~")I'( '(L+ L'+ 2r+ 2-s+ 3))
~(L+ r+ 2)I'(L'+ s+-,'}I'(r+ 1)I'(s+ I)g-'(M —L —2r+ 2))I'(—,'(M' L' 2s+ 2))

(C2)

where 6 = 2AI'(M+ L+ ,)I (M'+I'+q-). To express
the final result (C2) in the integral form we use
the following relations' for the hypergeometric
function 4(a, c, x):

f

Putting S=s((2+2), i.e., S/(S+1}=1/p, we get

e's 2)y2(' '4(a, c, -x)d)(=, ', P' ' .I'!c
2(((+ 2)'

4(a, c, -x) = e 4 (c —a, a, x),

e "x' 'C (a, c, x)dx =f I c s
S' s —1

Combining these two we get

e" '"a"S(a a -«)ax= )
rc} s
Ss 1

Substituting egg =~' we get

e +R" '4(a, c, -2R2/(2}dR = 2'I'(c)P';-

putting c=2(M+M'+m) we get

P'= I'(-.'(M+ M'+)y()}

e-+R" "'" -'C [a-'(M+M'+ m) —2R2/a]dR,
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but from (BS)

2 X/2

U (m)(gy /AN,
N-,'(M+M'+m))

therefore,

[I'(m+ ~m)I"(M'+ —,'m)] '~

r(-;(M+M +m))
'

j(ML, M'L') = V„",'(a) u„'V„(a)

x [(2a2/&)s-2a la]a2da.

on substitution from (BS}it can be written as

But the matrix element of a Gartenhaus radial
dependence two-body interaction is

N N hfdf
0

x C(a, —,'(M+M'+m), 2R /n}-R 'dR. (CS)

d A.

dP
'

~P
f(ML M~L~} = e~ &8(a)&+~'+ 4 g~+~ I2 (a2)(N L)/2

0

x4, („',"i'. ) i2(a')da . (C4)

Substitution of (CS) in (C2) would finally express
the matrix element of a Gaussian radial depen-
dence two-body interaction in the required integral
form. Since the Gartenhaus radial dependence of
a two-body interaction is of the form (2a'/n)
x exp [-(2a'/a)] we differentiate Eg. (C1) with
respect to P to get

z~z, M'z, '&=a( ~) e-""()*""
0

X g l'+1 ~2 (Q2)

x ~,",,"~2„,(,2}d, ,

(C5)

4(MI, , M'L') = P (I —P)Igf L, M'L'), (c6)

which gives the matrix element of the Gartenhaus
radial dependence two-body interaction in terms
of that with a Gaussian radial dependence. The
former, therefore, could be expressed in the
integral form in terms of a new set of hypergeo-
metric functions if we follow the same steps used
to express the latter in that form.
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