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The radial part of the matrix element of Goldhammer’s Hamiltonian is expressed in the integral form. The
variation principle is applied to give the maximum binding energy of the nuclear system. This results in a set
of Morpurgo type coupled differential equations corresponding to each quantum of excitation.

[NUCLEAR STRUCTURE A mathematical model for binding energy calculations.]

The radial dependence of Goldhammer’s two-body
interaction® contains both Gaussian and Gartenhaus
forms. In the appendixes, the radial parts of the
matrix element of the central and tensor forces
(in both forms of radial dependence) between two
states of angular momentum L,L’ and quanta of
excitation M, M’, respectively, are expressed in
the integral form in terms of a set of hypergeo-
metric functions. This is written as

Vur,wy =IML,M'L’')+ J(ML,M'L"),

where I(ML,M’'L) and J(ML,M’'L’) are given by
Egs. (C2) with (C3) and (C6) of Appendix C, re-
spectively.

The kinetic energy operator T under the trans-
formation to the internal coordinate system given
in Appendix A becomes
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For these diagonal matrix elements we have
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where L, is the m dimensional angular momentum
operator. To evaluate the eigenvalues of L,> we
consider a harmonic multidimensional function

S=R*Y®L
which satisfies A, S=0, where Y®’ is a hyper-

spherical harmonic defined by Eq. (B4) of Appen-
dix B. Since

T|S) =k(m+k-2)R* YL -R*2L,2Y®L=0,
we get

L2Y®L=p(m+p-2)y®L,
Therefore it follows that
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which shows that the kinetic energy operator does

not affect the hyperspherical harmonic whose or-
thogonality gives
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where we have put

ULLR)=RO™2G,, (R).
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The expectation value of the total Hamiltonian H =T +V, where V is the two-body interaction given by

Goldhammer is now written as
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Integrating by parts and making use of the fact that G, (R)(d/dR)G ,.(R) vanishes at both R=0 and R=w

we get
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The radial part of the total wave function is now varied to produce the maximum binding energy. This

gives
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Since 6G%} is arbitrary we must have

® (m-=3)(m-1)+4M(M+m — 2)
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with € =2ua2E/#2 The last equation represents a
set of coupled second order differential equations?
corresponding to possible values of the total angu-
lar momentum L and the total quanta of excitation
M. A numerical solution of the above set of differ-
ential equations will produce the binding energy of
the nucleus E.

APPENDIX A: INTERNAL COORDINATE SYSTEM

An internal coordinate system is set up charac-
terizing a 3(P —1)=m dimensional hyperspace. In
this space the orbital part of the total wave func-
tion is constructed from products of single parti-
cle oscillator well wave functions which led to the
definition of hyperspace spherical harmonics.

This form of the total wave function will ensure the
expression of the kinetic energy matrix element
in the required integral form.

To eliminate the center of mass motion, the non-

dimensional vectors

Qn=Tu/a,

are employed, where T, is the position vector of
the kth particle and a, is the oscillator well pa-
rameter. A set of orthonormal vectors

?,‘,i)dﬂ =0.

4,,8,,...,4ap is then built up as a linear combina-
tion of the vectors §, transforming according to
the representation [ P-1, 1] of the permutation
group Sp as given in Table I, where 1//N is the
normalizing factor. The last vector 4, is taken as
the center of mass vector and the first (P-1) vec-
tors describe the internal motion of the P particles
relative to the center of mass of the nucleus.
These (P -1) vectors characterize the 3(P ~1)
=m dimensional space in the following manner.
The polar coordinates 6% and ®,, are introduced
for each vector as

diy=a,” sinf,, d6,, d®,, =ay” day dWa,

with 0<6, o <T 0<®, <211, and £=1,2,3,...,(P
-1).
The volume element in this space is

dQ=da,da, -+ da,_,. (A1)

Introducing the set of variables R,x,,Xz, - -Xp-2
such that

=R cosy,,
a,=R siny, cosy,,
as=R siny , siny, cosy;,
c;,....1=R siny , siny, -« « sinx,_,
with O0<y; <n/2, i=1,2,...,(P -2), and
a’+a,’+ ¢+ +ap_°=R?

it follows that the volume element in the last (P - 1)
dimensional space is
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TABLE 1. [P-1,1] representation of Sp.

N 4 4§ 4y 3 (<79 [ g, N
A 1 1 1 1 1 1 1 ~(P-1) P(P-1)
3, 1 1 1 1 1 1 —(P-2) 0 (P-1)(P-2)
a3 1 1 1 1 1 —(P-3) 0 0 (P-2)(P-3)
EN 1 1 1 1 —(P-4) 0 0 0 (P-3)(P-4)
3,3 1 1 1 -3 0 0 0 0 12
3, 1 1 -2 0 0 0 0 0 6
4 1 -1 0 0 0 0 0 0 2
3, 1 1 1 1 1 1 1 1 p

da,a,- - “ap. Ni

da,da,das-**dap., = 3(RX Xz " * Xpog)
P-2

= (RP~?dR)(sin®°x, dx ) (sin®"

Substituting in Eq. (Al) we get the volume element
in the m dimensional space as

dQ =(R™ 'dR)(cos?x, sin™*x,dx,) §
x(cos®X, sin™ "y, dx,)
X (cos®X,_, sinz)(,_zd)(,,_z)(dc.u,,1du.v¢,2 crdwg,_)
or, in short,
dQ=R™ 'dRdQ% dw, dw,,"*
Using

/2 . _1 TGu+1))TG@p+1))
fo (cosx)(sinx)dx = TCR+v+2)

‘duwg,_, -

the surface area of a unit sphere in the m dimen-
sional space is

2 m/2
Jaon= e fao= gy

since
f aQ, =

APPENDIX B: VECTOR COUPLED ORBITAL STATES

,,%(P 1)
2P (3m)

The oscillator well wave functions for a single
particle that belong to the eigenvalue r%/
2mayi(n+3%) is of the form

(bnlm(a) =B,,,(a)Y’,"(9, Q) 3
where

- 2))\/2

and Y7(6,®) is a three dimensional spherical har-

*X2dX2) *

dRdy dy,*** de-

<+ (sinXp_ 3dX p-3) dX p- -

s

monic with the normal quantum numbers =, [, and
m. This wave function can be expressed in the
shell model form using the relation

en=(ZL)" (G2 ) ),

where € is a unit vector. It follows that the gener-
al shell model state in the vector a4, can be written
as

|@r+1,1) = ( 71 (2 +1)(2)! )1/2

21T (r +1+3)2"111
e~21% g1t 127 (51 ]1)

where (27 +1) =M stands for the number of quanta
of excitation. When such shell model states in the
(P -1) vectors are vector coupled together, the re-
sulting total shell model states of angular momen-
tum L in the hyperspace take the form

I(Ml)lal’ (Ma)laz;Lz' ‘0 (Mp-z)la,_zy Lp_,,
(MP‘-I)ZP-].’ L> ’

which could always be expressed as the sum of a
number of terms each of which is of the form

¥y =UYPR) YT, (B2)

where U {%(R) is the multidimensional oscillator
well radial dependence given by

1 /!
USR) - (e =L w2 o s

I'(z(M+L +m))
(B3)

satisfying the orthonormal relation

f UuL(R)U L AR)R™*dR =8(L, L")5(M, M')
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and Y{% is a hyperspace spherical harmonic de-
fined by

v fdsz yE Yei e Yig@ten e YiZe lop, .

(B4)
APPENDIX C: EVALUATION OF THE RADIAL INTEGRALS
The matrix element of a two-body interaction
V with Gaussian radial dependence of the form
Jyy=expl-(1/a)(~q,+q,)],
where ¢ is a constant, can be written as
@up|V @y 1) = 3PP - 1)@ |J 5.y, p|27),
where
Jpoy,p= exp[-(Z/a )(ap_lz)]

and & and &’ are identical shell model states in the
particulars of the first (P - 2) particles; other-
wise the matrix element is zero. This is because
dJ p.;, p Operates only on the coordinates of the last
pair of particles (see the table). The problem of
calculating the above matrix element is therefore
reduced to the three dimensional problem of eval-

-

Pn+k+1)x”
T'n-7+1)L(k+7r+1)T'(r+1)

Lix)= D (-1)"
r=0

we get.
(M=L')/2 (4*-L')/2

IML,M’L") =§ > Y

r=0 $=0

(_l)ﬂ-s Bl/ 2(L+L’'+27+25+3)

uating the radial integral:
I(ML,M’L’):[ U (a)e/ 2UE),. (a)a? da.
)
Substitution from (B3) gives

IWL MILI) Af -azlﬂ (LQL’+2‘LL4£I/‘2)/2

xgLiz (0% da, (c1)
where

B=a/(a+2)
and

A-( 4l - L) B’ - L))t )uz
T\TGM+L+3)TGM +L"+3))

Putting a®=
A > - +L'+ +
IML,M'LY) =5 [ e™(By) ™" 285015 /2 (By)
]

By we get

x&EL2, 5 (By)d(By) .
Using

TM+L+3)TM'+L"+3) f“e"yl/ 2(L+L'+znzsu)d

D(L+7+ )L’ +S+ITGEWM - L - 27+ 2))L'(G(M' -

(M=L)/2 (M’'=L')/2

—-25+2))Lr+1)T(s +1)

(_1)r+331/ 2(L+L’+272s+3) r‘(%(L +L"+ 21'+ 2S + 3))

where C=3AT(M+L+3)T'(M’+L’+%). To express
the final result (C2) in the integral form we use
the following relations® for the hypergeometric
function &(a, c, x):
(i)

&(a,c, -x)=e"*®(c -a,a,x),

(ii)

fw e~ x"1®(a, c, x)dx= (c) (s—l)a .

[}

Combining these two we get

f e S 5x1$ (a, ¢, —x)dx=—z- (c) (s — 1>m .

v

T(L+7+3)T (L' +s+3)T(r+1)L(s + 1)IEM - L - 27+ 2))Tz(M’ - L’

-25+2))
(c2)

M

Putting S=3(a+2), i.e., S/(S+1)=1/B, we get

- . I'(c) -
(a/2)x 1 - = a=c
/; e x°1®(a, c, -x)dx Tia+ 2 e .

Substituting ax =2R2 we get

[ e ®R*"18(a, ¢, ~2R* /a)dR = 3T (C)B";

1]
putting c =3(M +M’ +m) we get
TG+ M +m))

xf e P RMM 13l (M + M’ + m) - 2R*/aJdR ,
[+}
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but from (B3)

(m)(RY = 2 )l/ze-nz/zRu N
UMM (R)— (I"(%(M+M'+m)) ’
therefore,
[TOn +3m)TM’ +3m)] 1/2
Bt= T GM +M' +m))

x [ UG U ®)

X ®(a, 3(M + M’ +m), =2R?/a)R™dR . (C3)

Substitution of (C3) in (C2) would finally express
the matrix element of a Gaussian radial depen-
dence two-body interaction in the required integral
form. Since the Gartenhaus radial dependence of
a two-body interaction is of the form (2a2/a)

x exp [-(24?/a)] we differentiate Eq. (C1) with
respect to B to get

-42/5( )L+L'+4 £Ls1/2 (@?)

d A
d—ﬁIWL;M'L')=?' (M=L)/2

[

x&fylz, (a®)da . (c4)

But the matrix element of a Gartenhaus radial
dependence two-body interaction is

J(MML,M’L")= f U$Na)U ), ()
0

% [(2a2/a)e‘2"2/°‘]a2da;

on substitution from (B3) it can be written as

JML,M'L’)= A<135>/; e /5(g)ErL 4

X L Gitl3 /20
X LGILLE ja(aP)da,
(C5)
JML,M"'L")=p(1 - BIML,M’'L"), (C6)

which gives the matrix element of the Gartenhaus
radial dependence two-body interaction in terms
of that with a Gaussian radial dependence. The
former, therefore, could be expressed in the
integral form in terms of a new set of hypergeo-
metric functions if we follow the same steps used
to express the latter in that form.
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