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Bloch-Horowitz perturbation theory is applied to the calculation of approximate energies and model-space
eigenvectors, for the solvable large-matrix Hamiltonian H used by Pittel, Vincent, and Vergados. Two types
of upper and lower bounds to the energies are discussed: moment-theory bounds, obtained by applying
moment theory to the terms of perturbation theory, and norm bounds, derived from the expectation E and
varianceo. ~ of H with respect to an eigenvector approximated by n th order perturbation theory (n & 6). It is
shown that lower bounds cannot be constructed unless some fourth-order quantity is known. The upper
bounds are generally stricter than the lower bounds. All of the bounds apply even when back-door intruder
states cause perturbation theory to diverge; but they lose their rigor and become "quasibounds" when there
are physical intruders. The moment-theory and norm lower quasibounds always require estimation of a
parameter. For the solvable Hamiltonians, it is shown that this can be done quite reliably, and that the
resulting quasibounds are tight enough to have some practical utility. The energy-independent effective
interaction V is constructed and its errors are displayed and discussed. Finally, a certain f1/2] pseudo-Pade
approximant is empirically shown to give energies with a mean absolute error of less than 0.3 MeV in all
cases.

NUCLEAR STRUCTURE Effective interactions, ~80. Perturbation theory for
energies and bounds to them; used large solvable matrices, included intruder

states. Pads approximants.

I. INTRODUCTION

The calculation of nuclear spectra from a given
many-body Hamiltonian H is a familiar problem
in theoretical nuclear physics. Often it is hoped
that comparison of the results with experiment
will permit conclusions regarding the physical val-
idity of the basic Hamiltonian. Calculations that
simply diagonalize the bare H within a space span-
ned by a large number of shell-model basis states
are found to be inadequate for this purpose. For
this reason, it is usual, instead, to include only
a small number of configurations (which span a
space called the "model space"), and compensate
approximately for this truncation by replacing the
bare H by what is called an "effective Hamiltonian. "
This maneuver has some hope of succeeding, be-
cause it is in principle possible to define an ex-
act effective Hamiltonian which, acting on the
model space, will exactly reproduce a few eigen-
states of the original K Given the effective Ham-
iltonian, one can also construct a two-body ef-
fective interaction, whose matrix elements can be
used for calculations involving more than two val-
ence nucleons. Effective transition operators are
also often introduced. In practice, all these ef-
fective quantities can, of course, be calculated
only approximately; an exact calculation would be
as impossible as an exact diagonalization of H.
One of our major purposes, then, is to investi-

gate the errors that arise from these inevitable
approximations.

In this article we examine perturbation theory
(PT) as a method of approximating effective Ham-
iltonians and interactions, describe techniques for
estimating the accuracy of our calculations, and
test these methods by comparing their results
with exact results for some solvable many-body
Hamiltonians. More specifically, we use the
Bloch-Horowitz' method to obtain effective Ham-
iltonians whose solutions represent the predomin-
antly two-particle 8 =O', T= 1 states in "0 [com-
posed mainly of (d», )', (s,&,)', and (d, &,)' config-
urations], the ground state of'"0, and the single-
particle states in "O. In addition, we construct
the corresponding Z = O', T= 1 two-body effective-
interaction matrix elements for the s-d shell. The
present work is closely related to the earlier work
by Pittel, Vincent, and Vergados, ' henceforth re-
ferred to as PVV. PVV used the same Hamilton-
ians as we do, but investigated the energy-indepen-
dent (Brandow) effective Hamiltonian rather than
using the Bloch-Horowitz energy-dependent Ham-
iltonian, and did not attempt any theoretical error
analysis.

Except for solvable models, PT can in practice
be carried out only up to third and possibly fourth
order. Therefore, tests of the accuracy of PT
have no practical significance beyond fourth order.
The PT series will diverge when there exist in-
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truder states (i.e. , collective states, lying mainly

outside the model space, which are depressed
enough to enter the energy region of those states
that lie mainly inside the model space). How-

ever, even if the PT series ultimately diverges,
it has been found (at least in some cases"')
that low orders of PT can give results of useful
accuracy. The investigation of this possibility
is one of the objects of our study.

Since the pioneering works of Schucan and

Weidenmuller, ~" the analytic properties of the

effective Hamiltonian have been much discussed' "
because of their implications for the convergence
properties of the perturbation series. Like Refs.
2 and 3, the present paper focuses attention on
the estimation of the errors incurred by truncating
the PT series, rather than on the question of
mathematical convergence. However, unlike Refs.
2, 3, and 10, the present work departs from the
Schucan-Weidenmuller approach in no longer using
analytic properties of the effective Hamiltonian to
estimate the errors of low-order PT. Instead,
we use methods of estimation that are familiar in
the numerical analysis of the algebraic eigenvalue
problem. ""These simple ideas depend on the
notion of the vector-space norm, and allow us to
restrict the coupling parameter to the real axis.
Our approach avoids a persistent difficulty of the
analyticity approach: that the strengths of singu-
larities are harder to estimate than their loca-
tions. Related approaches have long been used in
quantum chemistry and atomic physics. "'"

As already mentioned, our work differs from
that of PVV in that we use the energy-dependent
(Bloch-Horowitz) type of effective Hamiltonian
rather than the energy-independent (Brandow)
type. One advantage of this is that perturbation
theory for the Bloch-Horowitz method is much
easier to analyze, because it is based on a simple
geometric series. It is also plausible that the
Bloch-Horowitz perturbation theory may give
better approximations, because it is not affected
by the gap-cut singularities" that are often prom-
inent in the Brandow method. Thus, part of the in-
terest of the present work arises from the possib-
ility of comparing the results of the Bloch-Horo-
witz and the Brandow methods.

Perturbation theory is by no means the only
possible method for calculating effective Hamil-
tonians. Indeed, several other methods are known
to converge in some cases for which PT diverges,
and some of these" "seem to be successful even
in quite low orders. Of course, every one of
these methods is still capable of benefitting from
an error analysis. In this regard, it is worth re-
marking that some of our methods for estimating
bounds are equally applicable to nonperturbative

calculations. Although we are using PT largely as
a technique for generating approximate results
to which we can apply our error estimates, we
actually find that PT is encouragingly accurate in

the cases we consider. We can also point to other,
more qualitative, advantages of PT. First, PT is
a particularly systematic and well-known pro-
cedure, with a well-studied diagrammatic inter-
pretation. "" Second, the unperturbed Hamilton-
ian need not be an independent-particle Hamilton-
ian; this opens up the possibility of using a sophis-
ticated nonperturbative method to construct a zero-
order solution, and then using PT to refine this
solution.

In Sec. II we establish necessary notations and
formulate the energy-dependent effective Hamilton-
ian and the effective interaction. In Sec. III we
describe techniques for calculating upper and
lower bounds to the energies of simple states.
The numerical results of calculations that use the
solvable test Hamiltonians are given in Sec. IV,
together with a discussion of the PT approximations
and the error bounds, and a comparison of the
present results with those of PVV. Finally, in
Sec. V we summarize our conclusions.

H,yq =(~yq (j =1,2, . . . ), (2 1)

and we assume that (, & e, & &,-.. . .
The perturbation expansion of any effective oper-

ator is a power series in a parameter z, intro-
duced as follows:

H(z) = Ho+ z V. (2.2)

The parameter z essentially modifies the strength
of V. The value z = 1 is called the physical value
of z, as H(1) is the actual Hamiltonian of the sys-
tem. By (P&) and (E&) we denote the set of the
eigenvectors and eigenvalues of H:

Hg ~= E~ g~ (j = 1, 2, . . . ) . (2 2)

To define formally an effective Hamiltonian we
introduce some additional concepts and notations;
The model space is a space spanned by a subset
of the states (P~). This subspace, of a finite
(and small) dimension M, is chosen on physical

II. FORMAL THEORY

A. Energy4ependent effective Hamiltonian

Let H be the full Hamiltonian of a system of
nucleons. We denote by (P&,j= 1,2, . . .j a com-
plete set of orthonormal basis states of the sys-
tem. With respect to this basis, H can be written
as Hp+ V, i.e. , as the sum of a zero-order Ham-
iltonian H„which is diagonal on the P& basis, and
a perturbation term V. We denote by &z the eigen-
values of H, :
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grounds and usually is spanned hy the M energet-
ically lowest configurations. The proj ection oper-
ator P onto the model space is defined as

C~)X = E(~)X

~= E(~)

(2.11)

(2.12)

nlsf N

We also define, by

Q=l —P,,

(2.4)

(2.5a)

P =P, Q =Q, PQ=QP=O. (2.5b}

In a realistic problem the excluded space has an
infinite number qf configurations. However, in our
solvable test problems, this space has finite di-
mension.

Let y~ denote the projection of g& onto the model
space; that is

(2.6)

Of particular interest is the set of M states P
that have large components in the model space.
We call these states the "represented" states, and
regard X as the representation of g .

Using the projection operators P and Q, w'e parti-
tion""'" the Hamiltonian as follows:

H = H~z+ H~++ H+~ + H++,

a pro)ection operator onto the space spanned by the
rest of the configurations. We call this space the
excluded space or Q space. The pro)ection oper
ators have the following properties:

We use the phrase "self-consistent solution" to
mean that these equations are satisfied simultane-
ously. We denote. a typical solution of Eq. (2.11)
as a function of &u by E(e); we denote a typical
self-consistent solution by E (without the argu-
ment ~). We remark that for &o different from all
eigenvalues, se, , of Hzz, each eigenvalue E(v)
of SC(e} is a decreasing function" of &a. The func-
tion E(~) has poles at the eigenyaiues of Hoo. In
Fig. 1, we show the behavior of the eigenvalues
E(&o) as a function of u&. The eigenvalues of H are
the points of intersection of the curves E= w and
E= E(&u). In Ref. 26 it is shown that the slope of
the curve E (v) at v = E is a measure of the Q-
space overlap of the eigenvectors (t), i.e. ,

dE (~}~d~= -&e. Ie le.V&V. IP )|(.) . (2.18)

Therefore, only the solutions for which dE~(a&)/
d&o („~ is small correspond to the energies of
represented states.

By using Eq. (2.8) one can expand the effective
Hamiltonian as a power series in z:

X(~,z) = H„+ gs'"a... ,
l so

where the notation A~+ -=PA@ is used. The H+
part of the Hamiltonian consists of an unperturbed
piece and a perturbation, i.e. ,

(2.8)

Equations (2.3), (2.6), and (2.7) lead to the rela
tion

h„,=PV(Q((o Hooo) 'Q—V}'P.

The Nth order apprcerimation to X(&u, s} is

(2.15)

K(E„,z)y„=E X (2.9} 'E

2 1
K((o,s) =H~~+s V~o Vo~.

(d -Hgg
(2.10) E(l)

2

This is the Bloch-Horowitz' expression for the
energy-dependent effective Hamiltonian, A sub-
set of the solutions Ez of Eq. (2.9) are the eigen-
values E of H corresponding to the represented
eigenstates g„, and the corresponding eigenvec-
tors y„are the projections of the g onto the
model space. In this work, the dependence on z
will be suppressed most of the time, being shown
only when needed for a specific discussion.

Since X depends on the energy, solution of Eqs.
(2.9) and (2.10) requires an iteration process for
each eigenvalue. Equation (2.9) can be regarded
as a combination of the equations

(()
E)

FIG. l. Schematic graph of the eigenvalues E~{ar) of
X{co), for model and excluded spaces of dimensions taro
and four, respectively. The curves E~{cv) (m=1, 2)
intersect the line co = E at points E&, ..., Ee correspond-
ing to the eigenvalues of H. The represented states are
E& and &3, 82 is an intruder state, while E4, 85, Se
are excluded states of higher energies. The poles are
at the elgenvalues of +qq, bv, , ..., Qp, .



1464 F. DAREMA-ROGERS AND C. M. VINCENT 17

3C ((diaz) —Happ++ z k)~~.
ja0

(2.16)

Qt(' =Q(E -Hgo) '@VX. . (2.1V)

We also write the nth order approximation to the
wave function g as follows:

The approximate eigenvalues of the effective Ham-

iltonian are found by self-consistently solving Eqs.
(2.11) and (2.12) with K replaced by its nth order
approximation X'"'. The resulting approximate
eigenvalues and eigenvectors are denoted, re-
spectively, by E'"' and X'"'.

The Q-space part of $„can be expressed in

terms of its P-space part as follows:

(2.26)

where

exists [the eigenvaiues of G'~'(u&) are the positive
square roots of the corresponding eigenvalues of

G(m)]. We have also defined the operator

&(~) = -G"'(~)VooG"'(~), {2.25)

which is Hermitian, so that its eigenvalues k~(~)
are real. To simplify subsequent expressions
we will omit the explicit dependence of G, K, and

k& on (d, but it is important to keep this depen-
dence in mind. The dispersion term has an ex-
pansion in powers of z of the form

$((u, z) = —Q z "k„,

,I, (n) g(n-&)
~

( n)'r tn m (2.18) (2.27)

where 0'"' is the nth order approximation to the
wave operator 0:

We introduce "moments" p.„, related to the ex-
pectation values of h„by

n'"'= g [zq(E H,«) 'qV]'S . (2.19)
p, „=-(g Ik„ I $) . (2.28)

For later analysis of the bounds it is convenient
to rewrite the effective Hamiltonian (2.10}as

These are used in the discussion of bounds [Eq.
(3.6}].

K ((o, z ) = H pp —z'$((o, z ), (2.20}
B. Effective interaction

where

n((o, z) = -Vpo[(u -Hoo(z)] 'Vop. (2.21}

min(H, oo) —&u & 0 . (2.22)

If, for a given H,+, the inequality above is not
satisfied, then a constant s can be added to
min(H, oo) such that min(Hooo) + s —&o & 0. On the
other hand, the same constant s can be subtracted
from Vz so that II&+, and consequently H, remain
unchanged. Henceforth, we always assume that
Eq. (2.22) holds.

Equation (2.21) can be written in the form

&((u, z) = VpoG'~'((u)[1-zZ((u)] 'G'~'((u) Vqp,

(2.23)
where

G((u) —= (H,oo —(g)
' (2.24)

is a positive Hermitian operator so that G' '(&u)

The operator just introduced is of particular in-
terest in that it contains the effects of virtual
excitations out of the model space. We call D(&u, z)
the dispersion term of X. In our discussions
we use a notation in which, for a Hermitian oper-
ator A, min(A) is the lowest eigenvalue of A and
max(A. ) is the largest one. We also use the concept
of a positive operator, which is an operator A
such that ($ IA

I
$)&0 for all vectors f To find.

a convenient power expansion for~(e, z), we first
remark that it is always possible to ensure that

The two-body effective interaction 'U is a quan-
tity of special interest in nuclear structure, be-
cause it can be used to perform calculations for
systems of several valence nucleons that are
distributed among the same set of orbitals for
which 'U was calculated. Therefore, one part of
our investigation is to examine the accuracy with

which we can estimate the matrix elements of U

by using PT.
Having determined the approximate eigenvalues

E and eigenvectors X of the energy-dependent
effective Hamiltonian, we can construct an en-
ergy-independent operator K with model-space
matrix elements (p IK IP ), such that its eigen-
values and eigenveetors are the E and y (m ~M).
( This effective Hamiltonian K is denoted by 3C in
PVV. )

In order to construct the effective-interaction
matrix, we need to subtract (from the diagonal ma-
trix elements of SC) the energy of the core and the
single-particle energies. As discussed in PVV,
the effective-interaction matrix elements are given
by the relation:

—6 .[E. E..i(ji) —E..i—(j2}1
(2.29)

where E„,(j,} and E„,(j,) are the correlated
energies of the predominantly single-particle
states of angular momenta j, and j, of the particles
in the state P . E, is the ground-state energy of
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the closed core containing c nucleons. The single-
particle energies and the core energy can be cal-
culated approximately by PT.

C. Intruder states

An "intruder state" is a state that lies mainly in
the Q space, at a perturbed energy below the en-
ergy of some represented states. The unperturbed
energy of an intruder state is higher than the un-
perturbed energies of the model states, but when
the perturbation z V is turned on, a collective ef-
fect depresses it below some of the represented
states. Intruder states that appear for z = i are called
"physical intruders"; intruder states appeariag for
z = -1are called "backdoor intruders. "' One of the
solutions shown in Fig. 1 corresponds to an intruder
state. As was mentioned previously, the slope of
H „(a&), at &a = &„(the self -consistent energy), is a
measure of the Q-spaceoverlap of this state. ~ A
large slope indicates that the state consists mostly of
configurations of the Q space. Because this slope
for an intruder state is extremely steep, the in-
truder solution is not likely to be found, unless the
grid of the values of &o on which the curves E(v)
are constructed is very fine. Since we are in-
terested in the represented states, not in the in-
truder, this is a convenient feature. If, by ac-
cident, an intruder state solution is found, its
nature will be revealed by inspection of the slope
d&, /du&.

Physical and back-door intruders cause di-
vergence of the perturbation expansion of X. This
is a consequence of the following theorem, whose
proof we relegate to Appendix A.

Define Zqq =- H, qq —Vqq . Then if relation (2.22)
holds:

(a) The condilon

min(Hqq) «o [or min(Zqq) «o] (2.30)

irqblies that at leastoneeigenvalueof H(&o) is
greater than 1 (or less than -1) and in either case,
the series 1+sE+s'K'+ contained in &q. (2.23)
diverges at z=1.

(h) The conditions

min(Hqq) ~ (d and min(Zqq) ~ (d (2.31)

together imp/y tha't the series converges at z = 1.
The above theorem is physically significant when

co is equal to the energy of a represented state.
This theorem also helps us to give a precise defin-
ition of an intruder state in the energy-dependent
effective-HamQtonian case. Intruders appear when
the energy of a represented state is above
min(Hqq) or min(Fqq); in the first case we have
a physical intruder an in the second case we have
a back-door intruder. Let h(~) = max[A(&o)] and

$= min[K(&g) j; then, according to the theorem,
physical intruders im ly that A'& 1 and back-door
intruders imply that & -1. Finally, although the
present work is concerned with the effects of in-
truders, questions of convergence are only a
minor concern.

Having completed the formal description of ef-
fective Hamiltonians and interactions, in Sec. III
we now go on to discuss the errors of approximate
calculations of the energies.

HI. CONSTRUCTION OF BOUNDS

A. General

In this section we describe several methods for
upper and lower bounds to the exact represented
eigenvalues of K The methods to be described
are divided into two categories: (a) Those that
seek to use the numerical values of the terms of
the perturbation expansion of K as input, to give
moment-theory (MT) results characterized as
"MT bounds. " (b) Those that make essential use
of the norm of the error vector (H -&~'~')t}t)"'~',
will be referred to as "norm bounds. " These have
the advantage that they can be applied also to non-
perturbative calculations of g~'~" and E~' *

The idea of constructing bounds directly from
the terms of PT has great appeal, so we devote
considerable attention to the MT bounds. In atomic
physics, where the perturbation V can be chosen
to be non-negative, PT bounds have had some
success. Unfortunately, in nuclear physics it is
very difficult to ensure that V is non-negative, be-
cause the two-nucleon interaction has negative as
well as positive parts. For arbitrary V it is
actually impossible in principle to construct a
lower bound on an energy, from knowledge of the
terms of PT for K through fourth order only.
This is proved in Appendix 8, by constructing a
counterexample to any supposed lower bound. An
immediate consequence is that the terms of PT
must be supplemented by other information, which
can take various forms. We suppose first that
the additional information takes the form of one or
more bounds on K. Bounds on the energy can then
be derived from the theory of moments. It will be
seen that the lower bounds provided by this theory
depend on h= max(E). Unfortunately, obstacles are
encountered inapplying the theory for k&1, i.e. ,
if there is a physical intruder. However, back-
door intruders cause no difficulty.

The norm bounds can be applied even in the
presence of intruders. The most rigorous norm
bounds, called the 0 bounds, provide a calculable
interval inside which an eigenvalue is known to lie.
More practical bounds are also discussed, in
particular what we' call the o'le bound, which



F. DAREMA-ROGERS AND C. M. VIN CENT

requires an energy denominator to be estimated
nonrigorously.

l($ I V~oG~~'Ik~& I'
1 —zk~

(3.1)

We have left. irqpl. icit the dependence of G, K, and

k& on ur, for the time being.
Consider the function

(3.2)

which is non-negative. We call this function the
spectral distribution function" of O' ' Vz„g. In

terms of this distribution function, the expecta-
tion of the dispersion term can be expressed as

g( ) f=gg,
~4

where a is any upper bound to k, i.e.

k» a.

(3.3)

(3 4)

As long as Eq. (3.4) is satisfied, any value of a
can be used, because h(k) = 0 for k& k. We now

expand g(z ) in powers of z, with the result

g(z)= g p, , z', (3.5)
1=0

where the coefficients
a

k'h(k)dk
a 00

(3.8)

are the moments of the distribution h(k). They
are trivially related to the terms of PT though
Eq. (3.28). The problem of moments"'" is to
find bounds to g(z) using only a finite number of
these moments; its relation to our problem is
now clear. Calculation of pp p'g p2 is of the same
order of difficulty as carrying the perturbation ex-
pansion for X to the fourth order. Because (as we
have mentioned) higher orders are probably not
practically feasible, we will try to calculate

8. MT bounds

It is convenient first to derive bounds for the

expectation value of X with respect to an arbitrary
model state E B. ounds on the eigenvalues E (v)
of 3.' are then obtained by choosing $ to be an
eigenvector of K(~) or an adequate approximation
to one, a,s will be discussed later. Finally, bounds

on the self-consistent solution of &a=E (~) can be
found.

We introduce the notation g(z) for the expecta-
tion of s)(ro, z):

g(z) =- {( ~& (&o, z) ] g&

= (g )
V„G'~'(1 zff)-'G"'V„[ g&

bounds assuming we have at our disposition only
the three lowest moments.

The theory of moments is a well-established part
of mathematics, and several well-known approach-
es are capable of being applied to our problem.
The Tschebycheff inequalities" use the moments
to provide upper and lower bounds to the integrated
distribution function f „h(k')dk'. Bounds ong(z)
can then be calculated, provided that we know a
lower bound to 5, where 5—= ~l -k„~ is the sepa-
ration of the zero of the denominator at k, —= z '
= 1 from k„, the eigenvalue of K nearest to 1. If
k& 1 (i.e. , in the absence of intruders), we have
k„=k, so that only k is required. We see that k
is needed in this approach, as in other moment-
theory treatments, even in the absence of in-
truders. If k &1, so that one or more physical in-
truders exist, p„p„p„and 5 no longer suffice
for the construction of a lower bound on the ex-
pectation of X. Clearly, physical intruders in-
troduce severe difficulties for the MT bounds.

Hamburger's" bounds on g(z) require knowledge

of the radius of convergence R of the series (3.5)

and a finite number of moments. We have

(S.V)

with the result that

h[k(x) ] 1 —zk
u+zx ' 1 —k

In obtaining Eq. (3.9), we have assumed k& 1 (no
physical intruder}. For k& 1 the transformation
(3.8} does not lead to useful results. We there-
fore postpone the investigation of bounds in the
more difficult case k&1 to a later work. Be-
cause we are interested only in the physical value,
z = 1, for which u = 1, we can write

(3.9)

so that both phy sical and back-door intruders af-
fect the Hamburger bounds. We have chosen not to
apply the Hamburger bounds, because back-door in-
truders are important for our test case.""and

probably also for more realistic cases. We note
also that R-~ the Hamburger bounds reduce to
the Stieltjes bounds that we consider below.

Other treatments" give what are called "best
possible bounds. " A bound is a best possible
bound if and only if a distribution function h, (k)
exists such that: (a) h, (k) reproduces the assumed
properties of h(k) (e.g. , p,„p,„p„and k), and

(b) the bound is attained (or approached arbitrarily
closely) by the function g, (z ) obtained by substitu-
ting h, (k) in Eq. (3.3).

The theory of Stieltjes series yields best pos-
sible bounds in a natural way. First, Eq. (3.3)
can be subjected to the transformation

k = k(x) = (k —1)x + k, (3.8)
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g(1)=f(1),
where the new function f is defined by

(3.10) gL'0/g) (1) I 0 /(I 0 Pg)' (3.18a)

8[k(s)]dr
1+ tx

(3.11)

with coefficients given by

Because h[h(x)] is non-negative, the expansion of
this function in powers of f is by. definition a
Stieltjes series

g(f)= g m„(-f)", (3.12)

}/0('t g P—g) i g + Po(l y+ l"p)~ i"0 h

(1-}t)[u.- u, +h(u. - u, )]
(3.18b)

where we have applied Eq. (3.10).
Equations (3.16) and (3.18) finally provide bounds

to g(1) = (( ~&(~, 1)
~ 5), from which bounds to

(5 )X(~) ) $) can easily be calculated by means of
Eq. (2.20) (with z = 1). To obtain strict bounds on.
a represented eigenvalue of H, it is necessary
to have upper and lower bounds E"~(a&) and E"~(&u),
respectively, to the appropriate eigenvalue E(u&)

of X(~). Solving the self-consistency equations
h-h " k(k)
1-8 1-}t (3.13) ENU(ENU) END E//L(E//L) ENL (3.18)

For t ~ 0 and N ~ 1 the Pade bounds are

f r N-i/W (f) ~ f(f) ~fEN/Ni (f) . (3.16)

The highest Pade approximants that can be cal-
culated from m„m„and m, are

f„/,)(1)= m, '/(m, + m, )

and

(3.1Va)

f[g/g] (1) (BlptÃg Big MOBl2)/(m, +m, }

(3.1Vb)

In terms of the original moments p„, these are

The relation between the original moments p„and
the new moments m„ is easily derived from the
second half of Eq. (3.13). The result is

m„= (,„„Q (-1)'
~h p, . (3.14)

The moments p„are necessarily positive for r
even, while the m„are positive for all r. Note
that knowledge of po, p„and p, permits calcula-
tion of .m„m„and m, .

Best possible bounds to the function f defined by
Eq. (3.11) can be derived either from the theory of
Pade approximants" or from the theory of Gaus-
sian quadrature. " For given input the results are
necessarily the same, since both methods give
best possible bounds. %e quote the Pade results,
which are more convenient in form. The [N/L]
Pade approximant to f(t), denoted by f,„/~,(f}, is
the ratio of two polynomials PN(t) and Qz(f), of
orders N and I, respectively, whose coefficients
are chosen so that PN(t)/Qz, (t) agrees with f(f)
through order t '~. For uniqueness, the con-
vention Q~(0) = 1 is used. Subject to these re-
strictions on PN(f) and QN(f) we have

f~N/ii(f) = PN(f)/@i(f) . (3.15)

then yields upper (lower) bounds E"~ (EN~), as
can be seen from Fig. 2. In this figure, we show
in detail a piece of the graph of E(~) in the vicinity
of the intersection with the straight line e= E(a&).
From the curves representing the bounds w' e
deduce that the bounds given by E""(E'"') and
E"~(E'"') will, if E'"'(v) lies between E"~(&o}and
E"~(up), be looser than the self-consistent values
~"~ and &"~. Thus we see that the bounds will
be tightened if they are obtained self-consistently.
Unfortunately, E"N(+) and E"~(&u) cannot be calcu-
lated exactly because we cannot simply take E = X

E
au)

FIG. 2. Schematic graph of several approximations to
an exact eigenvalue E(co) of X(~). PT of nth order givers
E " (co) E{~)is an upper bound to E(u) E(m) is a lower
bound to E(~). If E(~) &E»"){cu) & S(~), as assumed here
here, the self-consistent upper- and lower-bound solu-
tions E and E are closer to the exact E than the non-
self-consistent results S'(a) = E+ ) and S(co =E»" ).
Bee Eq. (3.22) of the text.
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in Eq. (3.1), since the exact X is not known. In-
stead, we have to use the approximations

E"'(~)= (x '"'((d) IK((d) Ix'") (~)&„&,), (3 2oa)

E" (&) = &x'") (~) IK(~) lx'")((d)&(,s,), (3.20b)

and

E)(v E)(U(E(n) )

-&x'"'(E'"') IK(E'"') Ix'"'(E'"')&

(3.23b)

where X'"' is the appropriate eigenvector of X'"',
the nth order PT approximation to K((d), and the
subscripts [1/1] and [0/1] refer to the bounds ob-
tained from Eq. (3.18). We can show that for the
cases we have tested, the errors of the approxi-
mations (3.20) are in fa.ct negligible compared with
the errors that result from replacing K(&u) by
K'")((0) in Eq. (S.20}. For the overlap between ex-
act and approxim. ate model wave functions we
~l~~y~ find that s = (x I

x'" '
& [&x I x ) ( x'" '

I
x'"'& ]'"

~ 0.995. An overestimate of the error in Eq.
(3.20) is then easily shown to be

(3.21)

This overestimate is approximately 0.13 MeV for
the highest and lowest represented states, if theirr
separation is about 13 5/feV, as in our test prob-
lems. We found that the actual values of this error
were less than 0.005 MeV, however, and so we
neglected them as small compared with the main
errors.

Instead of calculating the bounds using the self-
consistent Eqs. (3.19) with the functions E" (~)
and E" ((d) given by Eq. (3.20), one can make the
simplifying assumptions that their & dependence
is so smooth near (d = E'" ' that the curves E"~((d)
and E"~((0) can be taken as linear and that both
have slope ()(=dE(")/d(d I„~(n). Then we can de-
rive improved approximate expressions for the self-
consistent upper bound E ~ and the self-consistent
lower bound E"~ in terms of already known quan-
tities. The resulting expressions are:

EMU E)(U(E(n)) + ~(i ~)-1[E)(U(E(n) ) E(n ) ]
(3.22a)

and

E)(L(E(n) ) + +(I o, ) 1[E)(I(E(n)) E(n)]

(3.22b)
For small &, the absolute error involved in negI. ec-
ting the corrections in Eqs. (3.22a} and (3.22b)
is roughly Ia

I leo -E'"'I, as can be seen from
Fig. 2. For the cases we test, ~ is less than 0.36
but E ~(E(n)) E'"' can be 3.9, so that the error
of replacing ~ by E'"' is as much as 1 MeV.

If the terms proportional to n, in Eqs. (3.22),
are neglected, we obtain the following bounds from
Eqs. (3.19) and (3.20):
E)(L —E)II (E(n))

x '")(E'")) IK(E'")) Ix'")(E'"))) (3 &3 )

These bounds and the adjusted bounds using Eqs.
(3.22), are evaluated and discussed in Sec. IV.
The lower bounds depend on k, while the upper
bounds depend purely on the terms of PT. The
bounds remain valid when k is replaced by any
upper bound a, such that

k & a&1. (3.24)

Unfortunately, it is quite difficult to obtain esti-
mates of k that satisfy Eq. (3.24). We have tried
applying the method of Gershgorin disks" to
estimate 5 from the matrix elements" of K. The
results are discouragingly pessimistic; for the
first excited state in the DEG (discussed in Sec.
IVA) case the Gershgorin method gives

k- 1.997, (3.25)
cA

while the actual value is k= 0.743. Thus, we are
obliged, in practice, to rely on informal estimates
of k.

In passing, we mention the existence of some
simpler bounds, which are not the best possible
bounds, however. Leinaas and Kuo" show that in
odd orders Brillouin-Wigner PT gives upper
bounds to the ground-state energy:

E ~ E(2n+1)
1 1 (S.28)

f'"'(t)= g m, (-f)'.
f "-0

(3.28)

The right-hand side of Eq. (3.27) provides upper
(lower) bounds of f(1) for n even (odd), from which
lower (upper) bounds on the energy can be con-
structed.

C. Norm bounds

It is well known that a variational calculation
(i.e. , expectation value) for the ground-state
energy of a system gives an upper bound to its
energy. However, an expectation value of H with
respect to an approximate excited-state eigen-
vector is not guaranteed to be an upper bound to
the corresponding energy. Nevertheless, if M

Next we note that for the Stieltjes series, Eq.
(3.12), it can be shown that

( 1)n [f(1) f It)(1)] [ 1 d)((
1+x tt+1 y

(3.27)

where
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approximate eigenvectors (P~' *,m=1, . . . ,M]
are known, they can be used to define an M-di-
mensional subspace. Let p be the projection oper-
ator on this subspace. Suppose H~ is now di-
agona3. ized~ to get orthonormal eigenvectors $
(lying in the subspace) and corresponding eigen-
values Z', m= 1, . . .M. Then the Z are strict
upper bounds" to the corresponding eigenvalues
z.:

g oE
The construction of lower bounds is a more com-

plicated case. For any approximate eigenvector,
say $, let X be a corresponding approximate
eigenvalue. The variance of H about X,

o '—= ($ ~(H —A.)' ~g ), (3.30)

h((u) = H~~ —d(~),

in terms of the operator

(3.35)

state has been correctly identified.
&e now introduce a lower bound that makes use

of v, but is more dependent on assumptions than
the o„bound. Its advantage is that it is usually a
closer estimate than the 0' bound. %e use the pre-
viously mentioned orthonormal approximate eigen-
vectors $, which span the space on which P is
the projection. By introducing the complementary
projection

(3.34)

we can partition H, by analogy with Eq. (2.7), and
so introduce an operator h(cu), defined by

takes on its minimum value for d((u) —= H~, (H„—(o) 'H,
~ . (3.36)

X=(g ~H ~t„&=E„. (3.31}

If H has no eigenvalues in the interval [X —E
- a, it will follow, in contradiction to Eq. (3.30),
that ($ ~(H-X)' ~f ) will be larger than o ', be-
cause the mean square deviation is larger than the
minimum deviation. It follows" that H must have
at least one eigenvalue, say E, that satisfies

0 (g (g +O (3.32)

Only the first inequality is of much consequence,
since Eq. (3.29) already gives a good upper bound
to E . Note that if o = 0, Eq. (3.32) becomes

(3.33)

and Eq. (3.30) implies that $ must be an exact
eigenvector, because cr ' is a norm. To apply the
theory outlined above, we in practice use the nth
order PT eigenvectors P'"' given by Eq. (2.18) for
the approximate eigenvectors g~'~'. Because the
vectors g~' * are not exactly orthogonal, we
have to exercise appropriate care" in construc-
ting the projection operators p.

Of all lower bounds that we discuss, the bound
E —o is the least dependent on assumptions. It
is ironic to notice that even this bound is incom-
plete in quite an important respect, which can be
illustrated by imagining an attempt to calculate
the ground-state energy from an approximate wave
function. The o bound will tell us that at least
one state lies between E and E —a; but of
course it has nothing to say on the question of
whether the ground state is one of those states'
This seems to be a fundamental difficulty, which
cannot be rigorously solved without constructing
bounds on all eigenvalues (a most unwelcome re-
quirement in many-body theory}. In practice one
must rely on a combination of past experience and
experimental results for assurance that the ground

Carrying through the analogy, the represented
eigenvalues g and eigenvectors E of 0 satisfy

h(&)0 =El . (3.37)

It is easy to see that, if the quantity

e(&u) = min(H„) —(u (3.38)

is positive for ~ in the region of interest, the
following operator inequality holds:

d(u) & H&, H
&
j= (&o) .

Because e(&u) has only one zero, the equation

(3.39)

[ H H H /~ (ENL)] yNL Esl, yÃL (3 40)

can be shown to have exactly M solutions E„"~

[m ~ M, &" ~ min(H„}]. A well-known theorem"
states that the effect of adding any positive Herm-
itian operator to a Hermitian operator is to in-
crease each of its eigenvalues. From Eqs. (3.35),
(3.36}, (3.37), and (3.39} this theorem can be used
to show that. each solution E" of Eq. (3,40) is a
lower bound to the corresponding eigenvalue E
of 0 so that

(3.41)

Use of the bound given by (3.41) involves esti-
mation of the energy denominator

6 (E~ ) = min(H ) —E~ (3.42)

if the vectors Q'~~ * (m & M)) are all close ap-
proximations to the corresponding exact eigenvec-
tors, the space on which q projects will be almost
an invariant subspace of H. Consequently, min(H„)
can be approximated by &, , the lowest excluded
eigenvalue of II. If E,. & E„~, the method fails be-
cause & is no longer positive. Therefore, the
method is adversely affected by the presence of
intruder states. If it is assumed that the lowest
intruder-state energy is above the M'th repre-
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sented-state energy, then E„, can be used as a
lower bound on E, , so that

ENL (3.43}

where the dependence of e on m is left implict.
If intruder states are absent, one can take E„,

In practice we take the self-consistency aspects
of Eq. (3.40) into account only approximately.
First, we replace E"i in Etl. (3.43) by a fixed
estimate

ENL ~E
?5

(3.44)

E„—&r '/e (E, (3.46)

which closely resembles well-known results given
by Wilkinson" and Temple. " We call Eg. (3.46}
the a'/s bound; this bound and the a bound [Eq.
(3.32)] will be applied to get the lower bounds in

Sec. IV. Upper bounds are available from Eq.
(3.29).

IV. NUMERICAL RESULTS

A. Solvable test Hamiltonians

The model space chosen for 0' states of "0
consists of the three 0' configurations of two
particles distributed in the s-d shell outside
the "0core. 'We call these states 2p-Oh states,
where p (h) denotes a particle (hole) relative to
the "P closed core. For our solvable test Ham-
iltonians, the excluded space consists of 168
3p-1h and 4p-2h 0' configurations, altogether.
Holes are restricted to the 1py/2 shell; particles
are restricted to the 2s-1d and 2p-1f shells. Con-
figurations with holes in the 1p,l, shell are im-

Second, we approximate the appropriate eigen-
value of the full operator in Eq. (3.40) by the ex-
pectation

(g I
[H„-H„H„/'e] lt )=E -a '/c, (3.45)

where a is given by Eg. (3.30). The errors of
these approximations are small, of the same order
astheerrorof Eg. (3.20}. The end result is the ap-
proximate bound

portant in producing collective effects, but we
omit them to keep the problem computationally
feasible.

Two sets of single-particle energies were used.
The first choice, denoted STD, arbitrarily uses
experimental single-particle energies with re-
spect to the "0core N. amely, we use e(lp, i,)
= -10.67, s(1d, is) = -4.15, s (2s, i,) = -3.28, and

s(ld, i,}=+0.96 (henceforth, all energies are given
in MeV units). The p and f shells are taken to be

degenerate at the unrealistically low energy of 8.83
MeV. The second choice, denoted DEG, differs
from the STD case only in the choice of the single-
particle energies in the s-d shell. Here we use a
(2j+ 1)-weighted average energy of -2.3017 MeV,
degenerate in the three s-d orbitals. For the ma-
trix elements of V, the two-body matrix elements
of Kuo and Lee ' were. used. PVV' give an ex-
tensive discussion of the above choice of the con-
figuration space, the single-particle energies, and
the two-body matrix elements, so it will not be
repeated here.

In the STD case, a physical intruder state
arises, as well as several back-door intruders,
but there are no intruders in the DEG case. This
permits study of the influence of the intruders.

In the next two subsections, we will discuss
calculations of the energies of the 0' represented
states and the 0' matrix elements of the effective
interaction. The PT results are compared with
exact calculations. Results with Pade approxi-
mants to the perturbation series and error bounds
to the energies are also given and discussed.

8. Energies

The exact energies & and the (normalized) mo-
del-space projections g of the corresponding rep-
resented states P are given in Table I for the
STD and the DEG eases. Considerable mixing of
model-space configurations is seen, although |t}

lies mainly in the model space.
The PT calculations of the energies were car-

ried out through sixth order. In effective-inter-
action calculations that do not arbitrarily limit
intermediate-state degrees of freedom, the num-

TABLE l. Exact eigenvalues Ee and amplitudes (Qe. IXe} for model-space projections of
represented eigenvectors lie, with norms (XJXe}.

Em -57.689
STD

-54.775 -44.806 -55.695
DEG

-52.603 -49.095

{d3l2)
(S|(2)
(dg(2)

&x Ix &

0.212
0.354
0.808

0.823

-0.059
0.831

-0.373

0.833

-0.815
0.039
0.179

0.679

0.491
0.361
0.668

0.819

-0.230
0.835

-0.305

0.843

0.720
0.013

-0.507

0.776
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TABLE II. Terms of PT for expectation g=&X '(I&&E~', z&~X & =go+zg&+z gt+

go
A
g'2

X~
(x(i)

(
x&4)&

-57.689
0.611

-0.669

-3.683
-0.120
-0.304

0.318
0.839

-0.192

-54.775
0.687

-0.779

-3.307
-0.076
-0.235

0.289
0.841

-44.806
1.229

-1.836

-4.101
+ 0.129
-0.717

0.385
0.743

-0.346

-55.695
0.653

-0.587

-3.377
-0.303
-0.262

0.353
0.843

-0.186

-55.603
0.743

-0.669

—3m 137
-0.122
-0.195

Q.285
0.853

-0.172

-49.095
0.881

-0.796

-3.896
+ 0.096
-0.400

0.295
0,801

Defined by Kq. (4.2).
'D«f «by o = &I- &X"'IX"'&&&&X"'IX"'&.

ber of intermediate states increases rapidly with
the order of PT. This fact has so far prevented
the application of PT beyond the third order, "
except for averaged matrix elements. " In the
present calculatiom, we have made a concession
to practicality by keeping the number of inter-
mediate states fixed, and so we are able to carry
the calculation to higher orders (at least 20). This
helps us to observe the dependence of the errors
and bounds on the oxder of PT. Table II shows the
terms through sixth order in PT for g(1), defined
by Eg. (2.9}, for the STD and DEG cases, taking
&=X'4', (d=E'4', and z=1. Even in those cases
where the series is known to converge (because the
values of k and A are both numerically less than
unity), the (fourth-order term g, is often larger
than the (third-order) term g, . On the other hand,
the (third- and fourth orde-r} terms g„g, are
always much smaller than the second-order term
go. This behavior contrasts with that of the Ray-
leigh-Schrodinger (RS) perturbation series, ""
where the third-order term is often larger than
second order (but nevertheless produces an im-
provement}. The tiuantity g(1} represented by this
series i.s not directly meaningful, so we do not
quote its value.

Each energy E'"' was calculated by constructing
and diagonaiizing K'"'(v) and then solving Eqs.
(2.11) and (2.12) self-consistently by the Regula
Falsi method. " Because we preferred to eliminate
contamination of the errors studied by spurious
errors from lack of self-consistency, we iterated
until self-consistency was achieved to four decimal
places. Four iterations usually sufficed.

In Table IG we display the errors of PT for the
energies in the STD case and the DEG case. From
column 3, we see that the energies obtained from
PT are higher than the corresponding exact values,
with only one exception: in the STD case, the

energy of the third state for sixth-order PT is
lower than the exact value. Vfe believe that this
exception is associated with the interaction of this
state with the intruder, whose influence becomes
stronger as the order of PT increases. However,
we are not aware of any general proof that PT en-
ergies are upper bounds, except in the case ef odd
orders when physical intruders are absent. Our
observation that odd orders of PT form upper
bounds, even w'hen k&1, can be interpreted as
evidence that the intruders have limited influence,
in these low orders.

In the STD case, the errors of second-order PT
range from 0.343 to 0.574, while the errors of
third-order PT range from 0.263 to 0.755. Thus,
the quality of agreement is about the same in sec-
ond and third orders; and the DEG case is simi4r
in this respect. In both cases, fourth order brings
a considerable improvement: the error becomes
less than 0.18 MeV for all three represented
states. This is a good enough level of accuracy
to be very useful, if it couM be attained in realistic
calculations. In both DEG and STD eases, the
error for the two lowest energies continues to
decrease as the order n increases, although odd
n produces less improvement than even n. For
the third energy, these same remarks apply to
the DEG case, but in the STD case higher orders
behave unpredictably. This feature of the STD
case is probably due to the intruder state.

In column 2 of Table III, we tabulate the radian
measure of e, the (positive) angle between the
exact and approximate model-space projections
of the represented states, defined by

«»g= l(x Ix'"') l&((x Ix )(x'"'Ix'"'))"'.
(4.1)

This way of representing the overlap between
states is especially convenient when a small. num-
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TABLE III. Errors of Bloch-Horowitz perturbation theory for energies. All results in a given row n use wave opera-
tors 0 through order n —1.

(1) (2)

n 0

Iq n —1

(3)

E(n) E
n —1

(4) (5)
Upper bounds

ENv

2n —2 n —1

(6) (7)
Lower bounds

2n —1 2n —1
(E 0') E (E 02/g)

(8)

L

n —1

(9)

0'

2n —1

(10)

kvsr
~ ~ ~

(a) STD case

E = —57,689
S = 0.613
k = -0.669

1 0.022 4.227 4.227
2 0 075 0 4SO 0 377
3 0.020 0.384 0.087
4 0.018 0.121 0 ~ 029
5 0.006 0.094 0.010
6 0.006 0.039 0.004

a
0.372

5.512
2.290
1.105
0.624
0.220
0.362

35.903
2.184
0.422
0.121
0 ~ 068
0.043

a
0.232

9.73g
2.667
1.193
0.652
0.223
0.372

a
0.385

22.44
18.87
16.36
14.66
4.97

35

E = -54.775
k = 0.687
k = -0.779

E = -44.806
5 = 1.122g
k = -1.836

1 0.045
2 0.103
3 0.034
4 0.033
5 0.013
6 0.013

0.035
0.026
0.053
0.012
0.062
0.026

3.677
0.343
0.263
0.059
0.051
0.014

4.815
0.574
0.755
0.098
0.439

-0.074

3.677
0.259
0.047
0.014
0.005
0.002

4 815c
0.689
0.484
0.356'
1.535
1 458c

0.255

a
0.648

4.966
1.947
0.852
0.452
0.179
0.269

3.748
2.030
2.282
2.090
3.920
3.918

27.933"
1.494 "
0.243"
0.062'
0.006
0.024

26.208 ~

1 197
2.255 b

1.741"
8 544
8.839 b

a
0.338

a
2.884'

8.643
2.206
0.899
0.466
0.181
0.275

8.563
2.719
2.765
2.446
5.378
5.454

a
0.320

a
0.402

20.32
18.79
17.20
15.51
6.55

38

15.23
10.73
15.80
16.81
18.84
20

(b) DEG case

E = -55.695
$ = 0.653
k = -0.587

1 0.048 4.108 4.018
2 0.049 0.675 0.400
3 0.023 0.406 0.107
4 0.014 0.178 0.040
5 0.008 0.114 0.016
6 0.005 0.064 0.007

0.363

5.350
2 ~ 094
1.039
0.614
0.385
0.248

8.984
0.588
0.091
0.026
0.009
0.003

a
0.243

9.457
2.493
1.145
0.654
0.401
0.255

a
0.434

21.77
15.54
12.25
10.69
10.05
9.3

E = -52.603
k = 0.743
k = -0.669

E = —49.095
k = 0.881
k = -0.796

1 0.034
2 0.071
3 0.037
4 0.026
5 0.016
6 0.012

1 0.072
2 0.011
3 0.029
4 0.016
5 0.018
6 0.013

3.527
0.357
0.243
0.073
0.048
0.020

4.339
0.369
0.453
0.115
0.124
0.044

3.527
0.242
0.045
0.013
0.005
0.002

4.339
0.452
0.115
0.044
0.018
0.009

a
0 ~ 235

a
0.452

5.091
1.774
0.758
0.380
0.212
0.131

4.560
2.105
1.156
0.682
0.441
0.304

13.659
0.913'
0 ~ 130~
0.030'
0.008'
0.003

13.987 8

1.405 ~

0.3208
0.104 ~

0.041 ~

0.0198

a
0.394

a
1.845 "

8.617
2.016
0.803
0.393
0.217
0.133

8.898
2.556
1.272
0.727
0.458
0.313

a
0.346

a
0.410

21.05
16.79
14.33
11.88
9.42
9

18.25
14.45
14.06
12.01
11.65
11

No MT bound exists.
Quasibound, using e =E2" —E&", appropriate to the E = —57.689 case.

'Quasibound, because an intruder state lies below this represented state.
~Quasibound, because k & 1, although the value is independent of k.

Quasibound, using k from the corresponding DEG case.
Rigorous bound, using e=E3" -E2" ~

Quasibound, using E = E3" —E2", appropriate to the E = -52.603 case.
"Uses exact k, corresponding STD case.

ber of decimal places is desirable in the presenta-
tion. For small ~, 0 is approximately the norm of
X -X'"', the error vector. Overlap cosI9~ 0.99 cor-
responds to 8 ~ 0.14. Our results show that, for

every order of PT, the overlap between the exact
and the approximate model states is good, at worst
0.9947. The reason for such high overlaps may be
connected with the fact that the energy range of the
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represented states is quite large, so that the off-
diagonal elements have rather small influence.
However, the overlaps are very similar in the
STD case (where the energy range is E, —E,
= 12.883) and the DEC case (where the energy
range is only E, —E, = 6.600), and the mixing
among model-space basis states is quite st'rong
(Table I). This suggests that y is determined
mainly by H» and is little affected by @ in Eq.
(2.20). The procedure of ordinary" degenerate
PT begins by diagonalizing H~~; the 8 values
show that this may be appropriate for our cases.

C. Norm bounds; quasibounds

Before comparing the different bounds shown
in Table III we must discuss what comparisons are
most appropriate.

Table III is arranged so that all results in a
given rom are obtained with the use of a wave oper-
ator 0 approximated to the same order n —1. For
orientation„ the reader may like to think in terms
of the nondegenerate case, M = 1, where the wave
operator is essentiaUy just 0'"'= ~tj,'"')(P, ~, b«
with g,

'"' normalized so that (g,'"' )4,) = 1. For
example, the n=3 row contains E"'-E; E"' is
calculated from 3C"'(&o), which uses 0"' [be-
cause of Eq. (2.18)]. Therefore, the 8 in this row
is obtained from g"', which also uses Q"'. Sim-
ilarly, the calculation of all the bounds shown in
this rom involves at most 0"'. If the calculation
of a wave operator 0' " of given order n —1 is
considered to be the limiting factor, this type of
comparison is appropriate.

However, a different criterion of difficulty may
be more relevant in practice: I~, the maximum
number of Q-space intermediate-state sums that
must be performed to construct a given term. Ex-
pressions for I@ are therefore shown in the first
rom of Table III. As an example, E'"' and E"~
for n= 4 involve the same value of I~ as 7 —cr

and E —o'/e for n= 2, nealmy lz= 3. We shall
often give weight to the I criterion.

Column 4 of Table DI shows the deviations from
the exact energy of the variational upper bound E;
we see that the quantities E are indeed upper
bounds, as the theory predicts. They are always
closer to the exact values than are the E '"', and
more so for higher orders (which is not unreason-
able, since fo=2m —2 for E). The errors are very
similar for E"' and for E in second order, even
for the third state in the STD case (in spite of the
presence of intruder states).

The quantities Z can be regarded as norm upper
bounds to the energies, so discussion of other
norm bounds is now appropriate. In column 9 of
Table III, we display the values of cr, defined by

Eq. (3.30). They decrease with increasing order
of PT except for the third state in the STD case,
where a„ increases, probably because of mixing
with the intruder state. For all other cases in
second-order PT the lower bounds Z —o (column 6)
are about 2 MeV below the exact value, but the
difference decreases to about 1 and 0.5 MeV in the
third and fourth orders. Except for solvable test
cases, the quantity 0 is not calculable for n ~ 3,
and computing o for n= 2 is about as difficult as
doing fourth-order PT. Nevertheless, we calcula-
ted norm bounds for higher orders to examine
their behavior.

The other norm bounds, E —o'/a, are usually
better than the E —cr bound, as shown by comparing
columns 6 and 7 of Table III. Exceptions occur
both when the estimate of e is small (& o) and when
e is nonexistent (because an intruder state lies be-
low the represented state). To simulate a possible
practical procedure, we began by assuming only
that no intruder exists in the DEG ease, so that
E = E3 —E~ ' and e = E3 ' -E,' ' were justifiable
estimates for the E, and E, cases, respectively.
This provided no estimate of e for the E, case,
so e = E,' ' —E,'~' was arbitrarily tried. Although
there is no proof that E —o'/e will generally give
a lower bound, for this value of c, we find that E
-(E —&r'/e ) in fact turns out to be positive.

Except where noted, z = E„'",' -E~™is used in
Table III. This choice corresponds to Eqs. (3.43)
and (3.44).

To discuss other possible choices of &, we in-
troduce the idea of a quasibound'. Given a formula
that has been proved, under certain conditions,
to give a rigorous inequality, a quasibound is any
number obtained by substituting, for some input
data, ad hoc values that may violate one or more
conditions of the proof. A quasibound may or may
not be a bound; its use as an estimate involves
some element of risk. The concept can be useful
only if there are simple empirically founded rules
for choosing the ad hoc data. One method of formu-
lating such rules is to use solvable test cases to
compute virtual values of the ad hoc data, i.e. ,
values such that they give the exact energy, when
substituted into the formula for the bound.

In this spirit we have computed virtual values
e„,of the parameter e, which are tabulated in
column 11 of Table III. The smallest value of
e„, is 4.97; consequently, the quasibound E —o'/e
will be a bound in all our test cases, provided that
0& e &4.9V. The small and systematic variation of
c„,gives hope that a minimum value can be quite
easily and safely inferred from experience. For
comparison with the other lower bounds, we can
mention that e = 4 would give E (E —o'/c) = 0.267
for the STD ground state in third order.
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Quasibounds are of course not a new idea. For
examyle, in variational calculations of the energies
of three-nucleon bound states, lower bounds are
estimated by techniques ' very similar to those
giving our quasibound~ E —0 /e

D. PT bounds and quasibounds

The simplest MT upper bound, E~, given by

Eq. (3.20), depends only on knowledge of g, and

i.e., on inf orm ation through third order in PT.
A V'

No knowledge of k of k is needed, as is shown ex-
plicitly by Eq. (3.18). Column 5 of Table III lists
the deviations of these MT upper bounds from the
exact energies. Encouragingly, , they are slightly
tighter upper bounds than the Z bounds for n= 2,
and are equally easy to calculate, requiring at
most I& intermediate-state sums. Because of this
success, we do not need to discuss higher-order
MT upper bounds, which would correspond to odd
n& 5.

The simplest MT lower bound, &", depends on

p p p g and p „ i.e. , on inf ormation through fourth
order in PT, and on k in addition. As the deriva-
tion of Eq. (3.18b) for g&,«,(1) shows, only a quasi-
bound results if k&1. Of course the value of k is
not known, in a realistic calculation, but must be
estimated. To develop a strategy for this, we

first calculate the exact values of k, by numer-
ically diagonalizing K Table III shows, in column

8, values of E-E"~ calculated with n=4 and the
exact values of k. These are best possible bounds,
and any larger value of 5 would lead to looser
bounds. These E"~ bounds tend to lie between
the E —o and E —o' le bounds. For the third state
in the STD case, the value of &"~ was calculated
using 5 = 0.881, instead of the true value 1.229
(which would not be admissible). Therefore, this
entry in the table is only a guasibound.

Virtual values 5„,of 5 can also be computed"
such that E"~(k„,, po, p,„p,,) = E These appe. ar in
column 10. They are strikingly uniform, ranging

from 0.320 to 0.434 for all the STD and DEG cases
considered. It may, therefore, be easy to estimate
k„„which might perhaps be related to the quant-
~t 48

(4-2)

which was given in Table II. Apparently such a
choice as

k&2X (4.3)

would provide quite safe quasibounds, in our
cases. Fortunately, E" is a slowly varying func-
tion of k, so that the exact value does not matter
much, as long as it is not too near k= 1. Using
Eq. (4.3) gives E —E "~=1.140 (0.184) for the
third state inthe STD (DEG) case, and E —E"~
& 0 always.

g (n)
ff (4.4)

between the exact and the approximate &. In the
last column an average absolute error, e„, was
calculated for each order of PT as a guide to the

K. Effective interaction V from the Bloch-Horowitz method

(Ref. 49)

The energy-independent interaction is obtained
from Eq. (2.29). From the self-consistent eigen-
values and eigenvectors of the lowest three rep-
resented states, obtained for each order of PT,
we constructed the effective HamiLtonian Ã. The
energy of the core and the single-particle energies
were also calculated self-consistently for each
order of PT. The errors in the energies for "0
are displayed in Table IV, together with norm
and MT upper and lower bounds, for STD and DEG,
as for the "0case. Perturbation theory succeeds
much better here than for "0. The exact effective
interaction matrix elements are shown in Table
V, together with the matrix elements of the dif-
ference

TABLE IV. Energies for 60 (STD case) with error analysis.

(1) (2) {3) (4) (5) (6) (7)E) E E E Ev E & (E 0
(8) (9) {10)

E = -44.770
k = 0.297
k = -0.536
X=0.166

2.090
0.019
0.079
0.004
0 ~ 005
0.000

2.090
0.079
0.004
0.000
0.000
0.000

a
0.078

3.681
1.198
0.256
0.084
0.024
0.011

0 463b
0.046 b

0.001
0 000b
0.000
0.000'

a
0.010

5.770
1.276
0.260
0.084
0.024
0.011

0.228

15.93
20.6
17

~No MT bound exists.
Quasibounds using e = 13.04, the lowest zero-order excitation energy.
Four-decimal accuracy is inadequate to compute &«~.
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trend of agreement. In the DEG case the error
decreases steadily by uniform factors, whereas
in the STD case the decrease is less rapid for
the first three orders and there are fluctuations
rather than a monotonic decrease. For both STD
and DEG cases, the average absolute error 'V4 for
the matrix elements calculated through fourth
order is less than 0.05 MeV. %e note that the
Bloch-Horowitz" errors are smaller than the
Brandow' errors, for orders m~4; however,
Brandow PT gives better approximat'ions in third
order. The errors in the STD case are dominated
by the (1,3), (2, 3), and (3, 3) matrix elements, as
in the PVV calculation by Brandow PT. The be-
havior of the individual errors is not so obvious
in the DEG case.
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F. Energies from the Srandow method (Ref. 50)

PVV' calculated X for the STD and DEG cases,
using the Brandow"'" version of PT. Since K'"'
is neither symmetric nor equal to X, it is not
a prior clear that it has real eigenvalues and
eigenvectors. However, consideration of the
Gershgorin disks" shows that if the antisymmetric
part of X'"' is sufficiently small compared with the
spacing of the eigenvalues of the real part, the
eigenvalues and eigenvectors are exactly real.
This turns out to be true for both the STD and DEG
cases, so we obtain real energies from the ap-
proximate X'"'. These are compared with the ex-

COQQQ00O~Q
CO M 0O

0 0 0 0
I + I I

CO

I

TABLE VI. Comparison of errors of eigenvalues
(B-RS) computed from Brandow (Ref. 50) calculation
(Ref. 2) of energy-independent X, with present results
(B-H) from Bloch-Horowitz (Ref. 49) PT for 80.
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E = -55.695

E = -52.603

8 = -49.095 1
2
3
4
5
6

4.108
0.778
0.263

-0.272
-0.032
+ 0.116

3.527
0.497
0.314

-0.162
-0.066

0.061

4.339
-0.059

0.417
-0.036
-0.127
-0.001

4.108
0.675
0.406
0.178
0.114
0.064

3.527
0.357
0.243
0.073
0.048
0.020

4.339
0.369
0.453
0.115
0.124
0.044

4;227
1.001
0.186

-0.166
-0.354

1.044

3.677
0.664
0.354

-0.416
-0.147

0.191

4.815
0.198
0.757

-0.347
0.105
0.688

4.227
0.480
0.384
0.121
0.094
0.039

3.677
0.343
0.263
0.059
0.051
0.014

4.815
0.574
0.755
0.098
0,439

-0.074
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act energies, and with the present results of
Bloch-Horowitz PT, in Table VI. The results are
hard to interpret. The Brandow results depend
less sytematically on order n than the Bloch-
Horowitz results.

G. Pseudo-Pade approximants

This subsection deals with empirical tests of
an arbitrary method that aims to improve on PT.
We write the energy E of a represented state as
a power series in x, as follows:

E(x) = E"'+xhE"' +x 'nE"' +

where

gg(n) —E(n) g (n-&)

(4.5)

(4.6)

TABLE VII. Differences E-E~iL~ of pseudo-Pade ap-
proximants from the corresponding exact energies for
18p

STD DEG
[N/L] [2/1] [1/2] [2/1] [1/2]

Eg —Eg[N/L]
E2 —E2 [N/L j
E3 —E3[N/L]

-0.382
-0.261
—0.747

-0.084
-0.017
—0.293

-0.383
-0.240
—0.452

-0.120
-0.009
-0.079

[Note that Eq. (4.5) is not the Rayleigh-Schrodinger
perturbation series. ] Then we calculate the Pads
approximants to the series (4.5).

The Brillouin-Wigner perturbation expansion for
the effective Hamiltonian is a geometric series,
so the Pads approximants to the matrix X(v)
[denoted K f N/ j ]((0)] would be a natural approxima-
tion. Kuo and others~e2 have tested Pade approxi-
mants, and it has been found that approximate en-
ergies obtained from X,„„&„,(&u) are better than
those obtained from K'"'(&u). In contrast, our
method is orQy empirically motivated, and so we
call the Padeapproximants in the series (4.5)
"pseudo-Pads approximants" (PPA).

In Table VII, we display the results of the [1/2]
and [2/1] PPA to the series for E(x= 1). The
[0/1] PPA (not tabulated) gives poor approxima-
tions. Both the [1/2] and [2/1] PPA use informa
tion from PT through third order. The [2/1] ap-
proximants are negligibly better than the third-
order PT results. However, the [1/2] PPA pro-
vides remarkably better approximations than the
corresponding third-order PT.

We also applied the same technique to the in-
dividual matrix elements of the effective inter-
action 'U[Eq. (2.29)]. The [1/2] PPA in the DEG
case gives an average error e„&» = 0.053 com-
pared with e4= 0.048 from PT. In the STD case

the [1/2] PAA error is ~e„~&"»= 0.095 compared with
e4=0.158. So this method does not give reliable
improvement over PT.

It would be interesting to see whether the ob-
served success of the pseudo-Pade approximants
to the energies persists for other Hamiltonians.

V. CONCLUSIONS

From the present study of solvable test prob-
lems, we see that low orders of Bloch-Horowitz
PT (especially n= 4) can provide satisfactory ap-
proximations to the energies and the effective in-
teraction. This hoMs even in the presence of
intruder states, which cause the PT expansion to
diverge. Experience with Brandow PT, applied
to the same Hamiltonians, has previouslyled""
to similar conclusions for that method, ex-
cept that the optimal order of PT was n= 3, rather
than n=4.

In even orders, Bloch-Horowitz PT seems to be
much less affected by intruders than in Brandow
PT. Although odd orders of Bloch-Horowitz PT
do slightly improve the approximation, even
orders provide more marked improvements. No
general reasons for this are known.

The model-space projections of the PT and exact
represented wave functions have overlaps better
than 0.99, even in first-order PT. This suggests
that diagonalization of Hr~, followed by nondegen-
erate Brillouin-signer PT, may be a successful ap-
proach. It also means that the pseudo-Pade ap-
proximants discussed in Sec. IVE are close to
true Pade approximants, because the model-space
vector X'"' can be regarded as the same in all
orders. Thus, some theoretical basis might be
found for the success of the [1/2] pseudo-Pads
approximants.

Two varieties of upper bounds are available:
the MT upper bounds E", and the variational
bounds E Both types are rigorous when no phys-
ica/ intruder states are present. They are un-
affected by back-door intruders. The third-order
E" bounds, which require only the terms of PT
through third order, are better than the second-
order bounds Z; both involve two intermediate
state sums. When either the E"~ bound or the E
bound is applied to a state that lies above an in-
truder state, the result is only a quasibound, in
the sense that the conditions of the derivation are
not satisfied. Nevertheless, &" and Z' give satis-
factory bounds in our test cases.

Lower bounds are more difficult to calculate
than upper bounds, and tend to be looser, though,
again, they are unaffected by back-door intruders.
The MT lower bounds require at least fourth-order
PT. They can be derived rigorously, but because
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they require estimation of the parameter 5, in

practice they are only quasibounds. In the same
way, the iower bounds of the form & o'-/» are in
practice only quasibounds, because 6 must be
estimated. Nevertheless, the H"~ and E- o'/&
lower quasibounds are both quite reliable, be-
cause they are not very sensitive to the estimated
information. They are tight enough to be useful,
though they are noticably looser for the third
energy in the STD case, which is influenced by an
intruder state.

The behavior of the quasibounds suggests that
physical intruder states have more effect on the
tightness of the bounds than on the accuracy of the
simple fourth-order Bloch-Horowitz results. The
sensitivity of the quasibounds to intruder states
is a real difficulty that remains to be solved.

It is desirable to have lower bounds as well as
upper bounds. %e have seen, however, that MT
lower bounds require at least fourth-order PT, and
useful norm lower bounds require calculation of o
with eigenvectors correct to first order, at least.
Both types of bounds require threefold intermedi-
ate-state sums. Nevertheless, the results of the
present study should encourage calculation of the
lower bounds, wherever possible.

Finally, we consider some of the inevitable
limitations of our investigation. Our solvable test
problems involve at most only 1'68 intermediate
states; realistic problems are much larger.
Therefore, it is possible that the errors will be
much larger in realistic problems. Some idea of
how the errors depend on the size of the problem
can be gained by considering Table IV', which
shows results for '60, with only nine intermediate
states. The third-order error is 0.079 Mev for
"0, whereas the largest corresponding error is
0.755 MeV for ' 0, a large increase. The errors
of the effective interaction 'U, displayed in Table
V, are considerably smaller than the errors of the"0energies; this must be due to cancellation of
errors in Eq. (2.29). To use our methods to esti-
matetheerrors in , upper and lower bounds
for all the quantities on the right hand side of Eq.
(2.29) would have to be combined in the most pes-
simistic possible way. The resulting bounds would
inevitably be discouraging, because they would
neglect the tendency of the errors to cancel.

This last difficulty is avoided in the standard
linked-cluster methods, which formally exploit the
cancellation of the separated core energies, to
obtain direct approximations to Q. Unfortunately,
the linked-cluster methods obscure the vector-
space properties that make our error analysis pos-
sible. A task for the future will be to combine the
linked-cluster approach with sufficient vector-
space concepts to permit analysis of the errors.

We thank the University of Pittsburgh for a
specially enlightened administrative decision
which made our collaboration possible. %e are
grateful to Dr. E. M. Krenciglowa for a critical
reading of the manuscript.

APPENDIX A: PROOF OF THE THEOREM IN SEC. II C

As a preliminary, we state the following three
lemmas and a corollary.
Lemma 1. If &o & min(H, qq), then the eigenvalues
kg of E have the property

(kg) 'dkgldur ~ 0. (A1)

Corolfary 1. If kg(sr, ) & 0 (or kg(v, )& 0) then
dkg(&o)/dgv&0 (or dkg(v)& 0) for a» &o, .
Lemma 2. The operator

(A3)

and

(~g Hoqq+ Vqq} I~-Mg)=0 ~ (A

it follows that A(~) and K(&o} have an eigenvalue
equal to 1 (or -1) for e=gv, (or s&=gv, ). These
values are the points (A, B,C) of intersection of
the curves k(gv) with the lines k= 1 (or -1) as is

A =—((d Hoqq) Vqq = G Vqq (A2}

has the same eigenvalues as K—= -O' 'VzzG' ',
if G&Q.
Lemma 3. The series 8 =1+zK+z'EP+ con-
verges if all eigenvalues of K are less than 1 in
absolute value; it diverges if any eigenvalue of K
is greater than 1 in absolute value.
Proof of Condgtgon (a): Given a fixed value of
+& gv„where gv, =m. in(Hqq), let IXg(&o}) be an
eigenvector of A(&o) corresponding to an eigenvalue
kg(&c&), so that

(~ -H.qq} 'vqq ll'g(~)& =kg(~) l&g(»&.

Let
I gq, &

be the eigenvector of Hqq corresponding
to the eigenvalue so, :

(~g -Hvqq —Vqq} I4', &=o. (A4)

Equation (A4) means that A(gv, ) has an eigenvalue

kg (gv, }= 1. Then according to Corollary 1, since
&o& gv, it follows that k, (&o}& k, (gv, ), i.e. , k, (~)

Since A and K have the same set of eigen-
values, it follows that K(gv) has at least one eigen-
value larger than 1. Let k, &1 be such an eigen-
value and Ik, (&o)) be the corresponding eigenvec-
tor. Then by Lemma 3, the powe r series 3 will
diverge at x=1. [The proof for the case ~
&min(H qq) is similar. ]
Proof of Condgfgon (b}: Let gv, be an eigenvalue
of Hz+ and co, be an eigenvalue of Hzz, where so,
and gv,. are less than min(Hqq). Then from

(gvg —H qq —Vqq) Ig )= 0 (A5)
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kI

k~

Ag

Wp

is as large or as small as desired. This
means that knowledge of only pp, p„and p.,
(for a given 10 value) can never be sufficient to
construct bounds on g.

The normalization of I f) can be chosen to satis-
fy p0= (f I f); I f) is otherwise undertermined
(arbitrary). Define a normalized vector

I Q,)
= (p 0}

' '
I f) and choose any vector

I p,) such
that &p, lp, ) =1 and (p„ lp, ) =0. Then define a
Hermitian operator K as follows:

K=K„ ly, ) &y, I+K„ ly, ) &y, I

+K. Ie,) &y. l+K- ly.)&e. I,
FIG. 3. Schematic graph of the eigenvalues k; of E

[Eq. (2.25)], for a three-dimensional excluded space.
Points A and B correspond to eigenvalues so& and so2

of H+, point C corresponds to an eigenvalue as~ of
H Qg HOQQ VQQ If (0 + ZIlin(graf Rlf ) all eigenvalues k

&

satisfy (k&( &1, so that PT converges. If ~ &&do:min(Hoqq) Eq. (2.22) is not satisfied, and the analysis
fails.

where

K11 i lfi 0

and

2- 1/2
K~2= K2q =

Pp Pp

(82b)

(82c)

shown in Fig. 3, for the case of a three-dimension-
al Q space. The indicated behavior of the eigen-
values k(10} is a consequence of Corollary 1. From
this figure it is seen that if ~ is less than both
min(Hoe} and min(Hoo}, the eigenvalues of K(00)

will be within the interval (-1,1), and then by
Lemma 3 the series 3 will converge at z= 1.
Otherwise, the series diverges.

APPENDIX B: COUNTERKXAMPLE TO BOUNDS

BASED ON &0' &c ' AND &2ONLY

Let us assume that three constants p„p.„and
p., are given, with pp and p, positive. We first
show that it is always. possible to choose a vector.
I f) and a Hermitian operator K such that

(81a)

1,=&f IKlf&, (81b)

1,=&f IK' If&. (81c)

Then we show that this Kwhic, h satisfies Eqs. (Bi),
canalwaysbe chosen so thatg= &f l(1 -Z) '

I f)

The remaining matrix element K» may be re-
garded as an unconstrained parameter. It is
easily verified that Eqs. (81}are satisfied, in-
dependent of the value of K». Now consider

K,K„—(K, )

The denominator vanishes when

K„=(K„}'/K„.

(83)

(84)

For slightly larger or slightly smaller values of
K», (f l(1-K) '

I f) can therefore be made arbi-
trarily large, and either positive or negative. At-
tempts to construct bounds to this quantity in
terms of p„p„and p,, alone are therefore futile.

It is also impossible to bound the spectrum of
K using only p„p„and p, Taking IP, ) as an
approximate eigenvector, we evaluate &Q, IK lg, )
=K„and o,'=(y, IK' (K„)'Iy,& =(K;,)'. lt
follows that K has an eigenvalue in the interval
(K» -K„, K»+K»). However, because K» can
be made arbitrarily large or small without chang-
ing p„p,„and p.„this eigenvalue can also be
made arbitrarily large or small.
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