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Charge asymmetry in He- H and the neutron-proton mass difference
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The dynamical effect of the neutron-proton mass difference on charge asymmetry in the trinucleon system is

investigated using perturbation theory and the Faddeev equations. The mixed symmetry components of the

wave function play an unexpectedly critical role and reduce the effect by roughly a factor of 2 from simple

estimates. A reduction rather than an enhancement occurs because the neutron-proton force is stronger than

the neutron-neutron or proton-proton forces.

I. INTRODUCTION

In his review of charge-symmetry-breaking
(CSB) effects in nuclei, Henley' divides physical
CSB processes into two categories: direct and

indirect. The direct processes include direct one-
photon exchange, which contains the dominant sta-
tic Coulomb interaction, and the dynamical effect
of the neutron-proton mass difference. Thus the
direct processes do not explicitly involve the
strong nucleon-nucleon force and are easier to
evaluate, while the indirect processes are more
complicated and model-dependent and in most cases
poorly understood.

A similar division arises naturally when consider-
ing single-virtual-photon processes inside a com-
plex nucleus. ' In addition to direct one-photon ex-
change between nucleons (the Breit interaction)'
and the n-p mass difference, retardation effects
(finite photon propagation time) and exchange-cur-
rent contributions also arise, which are model-
dependent but are better understood than the ma-
jority of the exotic indirect CSB processes. The
retardation and exchange processes, therefore,
occupy an intermediate position between direct
and indirect contributions. Recently, Branden-
burg, Coon, and Sauer' adopted a similar division
in their exhaustive discussion of charge asymmetry
in the trinucleon system (see Tables 1-3 of that
work).

Because of the complexity and difficulty of cal-
culation of many CSB processes, it is clearly in
our best interest to calculate the simpler direct
processes using the most reliable methods avail-
able. The dominant Coulomb part of the CSB en-
ergy is often calculated using the hyperspherical
formula, '"which appears to be considerably more
accurate than using wave functions calculated from
realistic two-body potentials; these wave functions
are too diffuse' and thus underestimate the Cou-
lomb energy. Although an error of uncertain size

is made in writing the hyperspherical formula, the
subsequent evaluation of the Coulomb energy is
model-independent; one uses directly the elastic
electron scattering data. The result4 is 638 KeV

compared with the experimental 'He-'H mass dif-
ference of 764 keV. The size of the remaining di-
rect processes is much smaller.

Several estimates have been made of the contri-
bution of the dynamical effect of the n-P mass dif-
ference &E„ to the 'He-'H mass difference. All
but one have implicitly or explicitly assumed that
the kinetic energies of each of the three nucleons
are equal. Folk' estimated &E„=28 keV, Ohmura'
estimated &E„~20 keV, Fabre de la Ripelle'
quotes 20 keV, while Okamoto and Pask" guess
20-30 keV. Using perturbation theory with Fadeev
wave functions, Brandenburg, Coon, and Sauer'
estimated &E„=12keV, which is surprisingly
small. They surmised that this resulted from an
unequal distribution of kinetic energies among the
nucleons; we will show in Sec. II that &E„can be
quite sensitive to the kinetic energy distribution
among the nucleons and that the decrease of 4E„
from the result of assuming a symmetric distri-
bution, AZ„', is due to ~V„~ & ~V ~. Anincrease
would result if the inequality were reversed. A

discussion of our numerical methods is presented
in Sec. IG and our numerical results confirm the
supposition concerning the unequal kinetic energy
distribution. We find 4E„—= 9 keV for our model.

II. PERTURBATION THEORY

We begin by examining the kinetic energy oper-
ator for a system of three particles in the three-
nucleon center-of-mass system. Two of the par-
ticles (denoted "even") have the same mass, m„
while the third particle (denoted "odd") has a dif-
ferent mass, m, . The system is depicted in Fig.
1, showing different forces between two even (like)
particles (e.g. , two neutrons) and between even
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nE„~ =(2T —To)
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(4c)

Taking differences, the 'He-'H mass difference
effect is given by

FIG. 1. Trinucleon system depicting even {shaded)
and odd {unshaded) particles. The odd and even forces
between nucleons are n-p {dashed) and n-g or p-p
{dotted).

Equations (4) are the primary relationships in this
work.

It is worthwhile examining a special case. If we
assume that the trinucleon system is described
solely by the dominant symmetric S state (the [4]
spin-isospin state} we find (T,) =(To) = s(p and thus

88 8H 8T 2T
(2a)

8mo 8mo 8mo mo
(21)

where we have assumed fAM this problem that the
potential is mass-independent (it is not). The
crucial step is the first and is known as the Hell-
mann-Feynman theorem "xs We further define
the average and difference of the neutron and
proton masses m„and m~ as

(3a)

&m=m -mt! p'

The change in energy of 'He in going from three
equal (average) masses to two proton masses and
one neutron mass is given by

and odd (unli}M) particles (i.e. , a neutron and a
proton). The kinetic energy is given by

m2+r2 r21 2 + 3 =2T +T (I)
2m 2m8 0

where m, is the momentum of the ith particle rela-
tive to the center of mass. These momenta satis-
fy the mass-independent constraint, Z, ~, =0. Note
the factor of 2 in the second definition. The Ham-
iltonian H is constructed by adding a potential V

to T. Variations of the total energy of the system,
E, with respect to small variations of the masses
can be obtained using E =(H) and the following iden-
tities

&E~ =(T) (5)

III. RESULTS

Because we are seeking large qualitative effects,
we make the simplifying assumption that the N-N
interactions can be represented by sepa|. able po-
tentials. We choose the original Yamaguchi- Yam-
aguchi" form for the triplet:

V'(k, k') =- (~,/m}g, (k)g, (k'), (6a)

This is also the result of assuming that 'He is com-
posed of identical particles each of mass —,'(2m
+m„) and similarly for 'H, —,'(2m„+m&). If (T) —= 50
MeV, Eq. (5) yields nE'„=—23 keV, in agreement
with the first four estimates discussed in the In-
troduction.

As illustrated in Fig. j. the odd particle is acted
upon by a stronger force than the even particles
feel, since the n-p force is stronger than the n-n
or P-p force (V„~= —,'V„' + —,'V'„~). This means that
the wave function of the odd particle is more con-
fined (compact) in space than those of the even
particles and consequently we expect its kinetic
energy to be greater. '4"' This difference is also
reflected in the appearance of mixed symmetry
components of the wave function (e.g. , S' and D
states). If (T,)&(Tg, we will find nE„(nE„' .
Were the inequality of forces reversed, we should
expect that nE„&&nE'„~. If V„~= V (or V») there
is no mixed symmetry component of the wave func-
tion and 4E„&=&E'„&.

In Sec. III we will calculate T~and To by varying
I, and I,; that is, the first identity in Eqs. (4)
will be used directly as our computational algorithm.

where Eq. (2) has been used, and similarly

9E dying BE am
(2

n m

8m 2 8m 0 2 2m

g, (k) =g,(k)+ [S„(k)/8! ]g,(k},

(gk)(k'+P, ') ',

gr(k} = -&rk'(k'+ Pr') ',

Sg)(k) = 3og 'k(F) 'k —o) 'o).
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Here the subscripts c and T refer to the central
and tensor components, respectively, and $T is
the ratio of tensor to central strengths. For the
singlet potentials (n-n =p-p and n-p} we have util-
ized the simple Yamaguchi'7 form:

For 'H the set of coupled linear integral equations
for the spectator functions comprising the three-
body bound state wave function can be expressed
schematically as

V'(k k') =ng, (k)g,(k'),

where

(7a)
ggs —pss ~s + pc gc +IsT T

nn ' nn in nn, np np n nn, np+np nn, nPnp

s ass
tlP tlP nPs tVl till 2 tlP nP nP

g, (k) =(k'+P, ') ' (7b)

The singlet phases are adequately described up to
100 MeV. However, such a simple rank-1 poten-
tial cannot reproduce the known phase shift zero
near 300 MeV; we have tested the sensitivity of
our conclusions to the use of rank-1 singlet poten-
tials by comparing such quantities as kinetic en-
ergies with those from a calculation utilizing a
rank-2 singlet potential':

yacc c +lcT
2 nPsnP tlP tlPs nP tlP

T — t
Q~ =

Tnp
Ts s + Ts s

Inp, nn+nn ~lnp, ny+np

sc c + sT T
np ~+np+inp, ~+np

n

~np .np, n~lnn &-np, np+np

Vn(k, k I) = —(X,/m) g, (k)g,(k')+ (X,/m) g„(k)g„(k'},

(8a)
where

g, (k) = (k'+t), ') ',

g„(k) =k'(k'+P„') '
(8b)

are the form factors for the attractive and repul-
sive components of the potential. For the preferred
potential case discussed below with a 7% deuteron
D state, the kinetic energy with a rank-2 singlet
interaction differs from that for the corresponding
rank-1 singlet interaction by only 1.4 MeV (the
former is smaller than the latter), while the 4%
D-state case difference is 2.4 MeV. This differ-
ence is rather slight and we expect that a rank-2
singlet will not greatly affect our results. We
will use a rank-1 singlet potential.

I np, nplnp+. np, nplnp

where the subscripts describe the interacting pair
and the superscripts denote the singlet, central-
triplet, or tensor-triplet interaction of that pair.
These equations are well known"; we repeat them
here so that it will be clear which approximation
has been made when they are discussed below. It
should be obvious that the usual momentum vari-
ables arising in these integral equations have been
replaced by more complicated quantities which
account for the neutron-proton mass difference. "

Because the coupling of the tensor component of
the triplet force to itseU in the determination of
the spectator function has little effect upon the
binding energy, we have set jrr„-=0 in Eq. (8) for
all of the results that we quote. [The binding en-
ergy is increased by less than 0.6'Po by this apprpx-
imation (i.e., less than 50 keV), and it should have

TABLE I. Charge asymmetry effect of the n;p mass difference for various potential cases.

r. v'= vt

a. Vs Vsp Vtp

VT (PD= 0%)
m. v' ~ v„' ~ vt

VT (PD= 7%)
rv. (v' =v„'p) ~ vt,

v, (P~=7%)
V. v v~ v„p

VT [Pg=7% (2nd

VT (P0=4%)

order)]

J3 (MeV)

8.99

10.42

7.82

7.63

7.24

8.80

Te (MeV)

12.95

12.87

13.45

13.32

12.52

12.29

T() (MeV)

12.95

15.87

20.63

20.45

18.65

17.28

T (MeV)

38.86

41.61

47.53

47.09

43.69

41.86

~nsp (keg)

17.84

19.10

21.82

21.61

20.06

19.21

AE~ (keV)

17.84

13.60

8.63

8.80

10.04



CHARGE ASYMMETRY IN ~ He-3 H AND THE NEUTRON-PROTON. . .

TABLE IL Separable potential parameters used in
cases I-VI of Table I. In case V the same parameters
were used as in case III, as discussed in the text. The
units of X are hn. 3 and the units of p are fm ~.

VI

X~ 0.2355 0.1323 0.1323 0,1323 0.1323

p' 1.2722 1.13 1.13 1.13 1.13

0.2355 0.1456 0.1456 0.1323 0.1456

1.2722 1.15 1.15

0.2355 0.3815 0.142 97 0.142 97 0.2489

1.2722 1.406

$
T 0

1.2412 1.2412 1.3338

4.4949 4.4949 1.784

1.9476 1.9476 1.5682

an insignificant effect upon the binding energy dif-
ferences of interest. ] We also examine the ap-
proximation in which only the tensor force contri-
bution to I„'~ „~ fs retamed; i.e., N~r =-0 in Eq. (9}.
It wiO be seen that this approximation is useful
in uggierstanding the effect of the tensor nature of
the tri, plqt interaction upon the ~-p mass difference
effect. Finally, it should be remarked that we do
consider a triplet interaction without a tensor com-
ponent as well as singlet interactions which are
identical for both n-n and n-P systems. Vfe note
that in the latter situation, the n-p mass difference
leads to a difference in scattering lengths and ef-
fective ranges of some 0.23 and 0.0026 fm, respec-
tively, in our x;ank-1 separable potential model.

Equation (4) was used directly to calculate T,
and T„where the expectation value of the opera-
tors is implied. A standard nucleon mass of 939
MeV was assumed for m and binding energies
B(=-E)were calculatedform, =m, m +1.0 MeV,
and~, = m. , m+ 1.0 MeV. Appropriate energydif-
ferences directly yield right and left numerical deri-
vatives of 8with respect to m, and m„which are
found in all cases tobe nearly equal. Taking the
averages of right and left derivatives yields BB/sm,
and sB/sm„ from which T, and T, are calculated
using Eqs. (2a) and (2b). The charge asymmetry
effect is calculated from Eq. (4e) and, similarly
the estimate for a totally symmetric wave function
is determined from Eq. (5). Results for a variety
of potential combinations are presented in Table I
and the corresponding parameters which were used
are listed in Table Q.

Case I has no tensor force and equal singlet and
triplet forces. Since V (or V~) = V„~, there are
no S or D states and thus we find T, = To, as shown

in the first row. The total kinetic energy is rather

low by comparison with results for realistic local
potentials. ' The solution of the 'H problem with

the Reid soft-core potential yields T =49.1 MeV,
for example. ~' The latter potentials underbind the
trinueleon system, however. Case II has no ten-
sor force, but different singlet and triplet forces
as well as charge dependence (V'„v V' ). This ease
has an S' state but no D. state. Although T, changes
little, T, changes dramatically and AE„&AE,
as discussed earlier. If the singlet and triplet
forces are reversed we find that the inequality is
reversed, as expected. Adding a tensor force in
case IG, which produces a deuteron with a 7%0

D state, increases T, slightly but changes T, even
more, which is reflected in a further reduction in
A,E„. The binding energy is somewhat smaller
than case I, although the total kinetic energy is
almost 25% greater. The odd particle's kinetic
energy is more than 50% larger than the kinetic
energies of the even particles. Case IV examines
the effect of charge dependence by equating V' and
V„' . A slight reduction of both T and 8 results and

&E„&is only marginally affected. The mixed sym-
metry effect (ratio of To to T,) is essentially un-

changed. Since the tensor force plays an import-
ant role, we investigated the effect of the D state
probability on charge asymmetry by deleting aLL

coupling between the tensor and central forces in
the Fadeev equations. The sole effect of the tensor
force is then a second-order (tensor} force in the
central channels [see the discussion following Eq.
(9) ] and there is no D state. The result of this
approximation is a drop in the binding and all kin-
etic energies. Comparing cases III and V we see
that T, is Lowered by a somewhat greater fraction
than T, or T, which is the reason why 4E„ is
s'lightly greater in case V than in case III. The
ratio T,/T, decreases from the latter to former
cases and the mixed-symmetry effect on 48„& de-
creases; that is, the & states increase the mixed
symmetry effect, as expected. From the numeri-
cal results in the table, it seems Likely that a sub-
stantial part of the tensor effect on charge asym-
metry in our model is due to an enhanced S' state.
Vfe note that the kinetic energy has no matrix ele-
ments between S and D states, while there exist
S-S' matrix elements. Thus although the S' state
has a very modest probaNlity compared to that of
the D states, the amplitlde of the S' state is not
similarly small.

For comparison, we have also listed results
corresponding to a tensor force which generates a
4% deuteron D state. The binding energy is similar
to case I. Comparing eases III and VI, we see that
the decrease of the mixed symmetry effect (T,/T, )
more than compensates for the decrease in all
kinetic energies.
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Qur best estimate of &E„ is 8.6 keV, which com-
pares with 12 keV in Ref. 4. We believe that the
separable potential approach to this aspect of the
trinucleon problem is not necessarily unrealistic.
Qur results indicate that the mixed symmetry ef-
fect is appreciable and must be taken into account.
It is also likely to be potential-dependent. Because
4E„~ is completely calculable when T, and T, are

known, we recommend that these numbers be deter-
mined, if possible, when Faddeev calculations of
trinucleon properties are performed and published.
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