Nuclear charge distributions deduced from the muonic atoms of ²³²Th. ²³⁵U, ²³⁸U, and ²³⁹Pu[†]

D. A. Close, J. J. Malanify, and J. P. Davidson*

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545 (Received 25 October 1977)

The muonic x rays from four highly deformed actinide nuclei, ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu, have been measured. A four parameter Fermi charge distribution with distortion terms of the form $\beta_{2n} Y_{2n0}$, $n \le 2$, was used to characterize the nuclear charge distribution. A least squares fit was made to the energies of the 2p-1s and 3d-2p muonic x rays and their fine and hyperfine structure splitting. The 4f-3d and 5g-4f muonic x rays were measured for the four nuclei as well as the 5-3, 4-2, and 3-1 muonic transitions for ²³²Th and ²³⁸U. The intrinsic electric quadrupole moments were deduced. Our results are compared with those from earlier muonic experiments, as well as with proton, α , and electron inelastic scattering.

NUCLEAR STRUCTURE Muonic ²³²Th, ²³⁵U, ²³⁸U, ²³⁹Pu; measured transition energies and relative intensities; deduced nuclear charge parameters in distorted Fermi charge distribution; deduced intrinsic electric quadrupole moments.

I. INTRODUCTION

It is well known that the muon in muonic atoms is a useful probe of nuclear structure.¹ In particular, for highly deformed nuclei, muonic atoms provide a way to measure the intrinsic quadrupole and, in some cases, hexadecapole moments.²⁻⁴. The actinides make ideal systems to study because they have high Z (yielding high energy x rays) and because they are highly deformed (yielding complex spectra from the large hyperfine interactions). Indeed, it is interesting to note that in their original papers on the subject, both Wilets⁵ and Jacobsohn⁶ took as some of their examples the actinide nuclei ²³⁰Th, and ²³⁵U and ²³⁸U, respectively. These theoretical demonstrations that the dynamic quadrupole hyperfine interaction could leave the deformed nucleus in an excited state a significant fraction of the time preceded, by almost a decade, the experimental verification.

The earliest experimental work in the actinide region^{7,8} was with NaI detectors and the even-A nuclei 232 Th and 238 U. A short time later the odd-A nuclei 235 U and 239 Pu were similarly investigated.⁹ While the resolution of the NaI detectors was sufficient to prove the existence of the hyperfine interaction, it was insufficient to reveal the complicated spectra predicted by Wilets and Jacobsohn.

Shortly thereafter these investigations were repeated using Ge(Li) detectors, first using natural uranium targets¹⁰ and then using the four actinides reported here.¹¹ The even-even muonic atoms of ²³²Th and ²³⁸U have most recently been studied by McKee¹² and Cote *et al.*¹³

With the availability of more intense muon beams it seemed worthwhile to repeat these investigations on the four actinides ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu. We report here the results of this investigation.¹⁴ In particular, we wanted not only to measure the quadrupole deformations and intrinsic electric quadrupole moments again, hopefully to greater accuracy, but also to see if it was possible to measure the higher deformations and associated intrinsic electric moments.

Section II explains the experimental procedure, including data acquisition and reduction, and Sec. III presents the experimental results. The theory is outlined in some detail in Sec. IV; Sec. V deals with the fitting procedure and other analysis techniques used for extracting the nuclear parameters from the x-ray energies and intensities. The results of this analysis are presented in Sec. VI. Finally, Sec. VII presents a discussion of our results and comparisons with the work of others.

II. EXPERIMENTAL PROCEDURE AND DATA REDUCTION

The data were collected at the 600 MeV synchrocyclotron at the NASA Space Radiation Effects Laboratory (SREL). A thin carbon filament was used as an internal target to produce negative pions. These pions were captured into an alternating gradient channel¹⁵ and were allowed to decay in flight. The backward decaying muons were focused onto a standard beam counter telescope shown in Fig. 1. The beam size was about 200 mm by 200 mm. Counters 1 and 2 were plastic scintillators and served as a beam monitor. The polyethylene absorber was used to slow the muons so as to maximize the number which stopped in the target material. Counters 3 and 3' were adjacent to and the same size as the targets and defined the incident muon beam; counter 4 was a large area

1433

FIG. 1. Block diagram of muon telescope including the position of the Ge(Li) muonic x-ray detector.

anticoincidence counter used to define a muon stop. A stopped muon was signified by coincident signals from counters 1, 2, and 3 or 3', with no signal from counter 4. Muon stopping rates were typically 25000 per second. The muonic x-ray detector was a large volume (75 cm³), high resolution ($^{1.8}$ keV at 1.33 MeV and 7 keV at 6 MeV) Ge(Li) detector.

Table I shows the area, mass, and isotopic purity of the targets. All targets were of pure metallic form. The plutonium target was hermetically sealed by a 0.5 mm thick welded aluminum shell.

The data from the even-even targets (232 Th and 238 U) correspond to approximately 4×10^9 muon stops while the odd-A target (235 U and 239 Pu) data correspond to only about 1×10^9 muon stops. The Ge(Li) detector was surrounded by a graded shield to prevent its singles rate from exceeding 10 000 counts per second during data acquisition. This shielding significantly reduced the number of low energy events, particularly for 239 Pu.

The analog-to-digital converter (ADC) for the Ge(Li) detector was stabilized both in gain and in zero setting using a precision pulser. Data runs were limited to 6-8 hours with the expectation that small spectral shifts might occur and would be minimized by analyzing the data for short time periods. However, no detectable shifts occurred and runs were simply summed prior to analysis.

The counter telescope permitted the collection of data from two targets simultaneously. One of these targets was the actinide isotope under study while

TABLE I. Target characteristics.

Target	Area (cm ²)	Mass (g)	Isotopic purity (%
²³² Th	174	442.9	100.0
²³⁵ U	174	669.5	95.6
²³⁸ U	174	670.9	99.8
²³⁹ Pu	58	185.1	97.7

FIG. 2. A typical time spectrum, having a resolving time of about 10 ns.

the other target was 208 Pb, which provided the energy calibration and detector line shapes.

For each target, three spectra were collected. A 1024 channel spectrum of the time elapsed between the muon stop and the detected muonic x ray permitted time windows to be set such that both an 8192 channel prompt energy spectrum and an 8192 channel delayed energy spectrum were acquired. The energy scale corresponded to 1.1 keV per channel. Figure 2 displays a typical time spectrum for the ²⁰⁸Pb data. A resolving time of ~10 ns was normally achieved for all Ge(Li) events greater than 200 keV. A time window of 3 to 4 times this value defined a prompt event. The delayed time window was typically ~50 ns. The sharp time resolution helped to minimize the number of uncorrelated natural radioactivity events in the prompt energy spectrum, leaving a relatively clean spectrum of muonic x rays. The delayed spectrum permitted us to identify capture γ -ray events as well as the natural radioactivity from the actinide targets. The SREL IBM 360/44 computer was used to collect, sort, and record the data on magnetic tape.

The peaks in the ²⁰⁸Pb muonic x-ray spectrum were fitted to a line shape consisting of a Gaussian function having exponential tails on both sides of the peak.¹⁶ These standard line shapes were then applied to the more complex actinide spectra yielding accurate values for the channel location and the uncertainty in the channel location for all peaks in all spectra. The number of counts in each peak and its uncertainty were also determined.

The energy calibration for the actinide data was provided by the energies of the ²⁰⁸Pb muonic x rays¹⁷ and the accurately known ²³²Th natural γ -ray lines at 238.6, 583.2, 911.2, and 2614 keV.¹⁸ Our calibration procedure is discussed in detail elsewhere.¹⁷

III. EXPERIMENTAL RESULTS

The experimental muonic x-ray energies of the electric dipole transitions between "circular" or-

	This experin	ment ^a	Carnegie exp	eriment ^b	This calcu	ulation	Carnegie calc	ulation ^b	CERN calcul	lation ^c
Transition	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.	Energy (ke V)	Rel. int.	Energy (keV)	Rel. int.
2p-1s	*5965.94 ± 0.57	0.012			5965.12	0.011				
4	$*6021.86 \pm 0.52$	0.049	6021.5 ± 1.3	0.052	6021.12	0.052	6019.4	0.057	6020.2	0.051
	$*6053.30 \pm 0.50$	0.202	6050.2 ± 0.8	0.189	6053.53	0.171	6050.8	0.186	6052.4	0.182
	$*6070.72 \pm 0.50$	0.250	6067.4 ± 1.0	0.262	6070.87	0.224	6067.8	0.236	6070.0	0.223
	$*6077.91 \pm 0.51$	0.088	6077.2 ± 1.3	0.105	6077.77	0.085	6074.3	0.112	6077.1	0.095
	$*6103.16 \pm 0.53$	0.027	6098.5 ± 1.3	0.042	6103.28	0.035	6099.2	0.037	6102.2	0.037
	$*6270.48 \pm 0.63$	0.010	6272.2 ± 2.6	0.017	6270.77	0.015	6272.3	0.016		
	$*6304.72 \pm 0.50$	0.098	6302.2 ± 0.9	0.097	6304.28	0.091	6302.3	0.102	6305.1	0.090
	$*6316.67 \pm 0.56$	0.018	6313.4 ± 3.3	0.023	6316.89	0.022	6314.3	0.020	6317.5	0.019
	$*6353.76 \pm 0.50$	0.120	6350.5 ± 0.7	0.105	6354.03	0.113	6350.7	0.124	6354.9	0.108
	$*6383.14 \pm 0.51$	0.034	6380.4 ± 1.2	0.040	6383.42	0.042	6378.9	0.041	6384.3	0.040
	$*6406.07 \pm 0.50$	0.062	6403.2 ± 0.9	0.068	6406.07	0.073	6403.8	0.068	6407.3	0.066
	$*6455.40 \pm 0.50$	0.030			6455.82	0.032			6457.1	0.029
3d-2p	2740.06 ± 0.38	0.026			2740.34	0.020			2739.3	0.018
•	$*2795.80 \pm 0.39$	0.062	2798.2 ± 1.0		2795.88	0.057	2795.3		2794.8	0.056
	$*2818.92 \pm 0.40$	0.042	2820.2 ± 1.7		2818.53	0.034	2820.7		2817.9	0.033
	$*2829.60 \pm 0.42$	0.024	2834.6 ± 1.7		2829.51	0.022	2830.3		2829.2	0.021
	2865.33 ± 0.45	0.017	2862.0 ± 2.0		2865.60	0.012	·2865.3		2865.0	0.018
	2888.30 ≟ ∩ 50	0.012								
	$*2897.49 \pm 0.42$	0.046	2903.1 ± 3.0		2897.68	0.040	2897.3		2897.0	0.041
	2906.57 ± 0.52	0.017								
	$*2915.16 \pm 0.41$	0.168	2915.2 ± 0.8		2914.85	0.134	2914.5		2914.5	0.144
	3044.23 ± 0.91	0.002								
	3053.83 ± 0.47	0.009								
	$*3092.70 \pm 0.48$	0.035	3095.3 ± 2.0		3092.88	0.050	3093.8		3094.3	0.047
	3118.32 ± 0.69	0.028								
					3124.18	0.045			3125.1	0.043
	$*3125.07 \pm 0.46$	0.310	3124.8 ± 0.7		3125.29	0.296	3125.2		3126.4	0.274
	$*3141.68 \pm 0.49$	0.066	3140.1 ± 1.5		3141.36	0.052	3142.6		3142.5	0.057
	$*3148.83 \pm 0.47$	0.137	3148.6 ± 1.2		3148.43	0.159	3149.1		3149.8	0.158
					3151.84	0.011				
4 <i>f</i> -3d	1074.45 ± 0.25	0.038			1073.44	0.022				
	1113.63 ± 0.74	0.014								
	1126.27 ± 0.09	0.256	1125.8 ± 1.1	0.286	1125.98	0.201	1127.01	0.256		
					1126.32	0.020				
					1129.73	0.019				
	1143.85 ± 0.09	0.322	1143.3 ± 1.1	0.371	1143.15	0.331	1144.2	0.333		
	1185.74 ± 0.10	0.370	1185.7 ± 1.1	0.343	1185.27	0.393	1185.9	0.410		
5 <i>g</i> -4 <i>f</i>					516.75	0.015				
•	520.81 ± 0.06	0.568	520.5 ± 0.3	0.583	520.80	0.550	520.79	0.565		
	530.20 ± 0.07	0.432	530.3 ± 0.3	0.417	530.18	0.433	530.18	0.435		

NUCLEAR CHARGE DISTRIBUTIONS DEDUCED FROM THE...

1435

<u>17</u>

	This experir	nent ^a	This calcu	lation	CERN calcu	lation ^b
Transition	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.
2 p -1s	6112.45 ± 2.45	0.009				
			6117.76	0.010	6118.7	0.018
	$*6119.86 \pm 1.40$	0.020	6121.71	0.018	6121.1	0.017
	$*6150.11 \pm 0.87$	0.035	6150.63	0.025		
	$*6158.09 \pm 1.26$	0.078	6157.57	0.054	6156.9	0.057
	$*6165.23 \pm 1.22$	0.211	6163.96	0.131	6163.2	0.136
			6167.91	0.139	6167.1	0.142
	$*6169.77 \pm 1.15$	0.118	6170.83	0.049		
					6175.7	0.054
					6181.8	0.020
	$*6205.82 \pm 0.86$	0.029	6203.77	0.016		
			6207.43	0.011		
	$*6397.96 \pm 1.18$	0.023	6397.77	0.020	6395.8	0.020
			6414.37	0.015	6413.3	0.026
	$*6414.65 \pm 1.17$	0.048	6415.15	0.028		
	$*6453.06 \pm 1.31$	0.042	6454.57	0.023	6452.8	0.022
			6460.57	0.090	6458.6	0.087
	$*6460.36 \pm 1.24$	0.215	6461.34	0.015		
			6461.35	0.104	6459.3	0.098
			6484.63	0.013		
	$*6501.63 \pm 1.36$	0.033	6500.77	0.032	6498.8	0.030
					6523.1	0.019
	$*6544.28 \pm 1.39$	0.024	6546.23	0.014		
	$*6557.36 \pm 1.45$	0.098	6558.58	0.085	6556.4	0.082
	$*6587.44 \pm 2.82$	0.018	6587.63	0.013		
0101	*2010 00 0 10					
3a-2p	*2910.80±0.42	0.022	2910.96	0.016		
	*2946.48±0.40	0.036	2945.69	0.022	2946.7	0.025
	*2959.47±0.38	0.044	2960.28	0.030	2961.4	0.037
	*2984.86 ± 0.46	0.028	2984.28	0.015		
	*2997.44 ±0.37	0.062	2997.81	0.053	2998.7	0.055
	3016.54 ± 0.80	0.022				
			3021.24	0.036	3022.0	0.037
	$*3023.52 \pm 0.79$	0.171	3022.03	0.024	3022.7	0.025
			3025.13	0.067	3026.1	0.069
			3031.86	0.010		
	$*3032.21 \pm 0.46$	0.051	3032.65	0.021	3033.5	0.022
	*3043.73 ± 0.44	0.041	3043.71	0.027	3044.5	0.030
	$*3211.42 \pm 0.52$	0.018	3212.03	0.015	3212.7	0.026
	$*3224.93 \pm 0.51$	0.022	3225.29	0.026	3225.2	0.024
	$*3242.06 \pm 0.52$	0.096	3241.96	0.063	3241.7	0.056
			3244.96	0.033		
	$*3246.67 \pm 0.58$	0.124	3245.91	0.052	3245.6	0.046
			3247.63	0.028	3247.4	0.025
	$*3252.64 \pm 0.53$	0.070	3251.58	0.050	3251.3	0.045
			3259.18	0.014		
	$*3260.47 \pm 0.45$	0.090	3261.15	0.066	3261.0	0.063
			3265.03	0.014	3263.8	0.023
	3267.56 ± 0.50	0.035	3269.45	0.021		
			3275.44	0.016		
	$*3281.21 \pm 0.45$	0.050	3280.89	0.036	3280.7	0.037
	3317.87 ± 0.55	0.015				
4f-3d			1169 00	0.015		
-y 014			1172.00	0.010		
			1175 07	0.020		
			1170.00	0.023		
	1181 16 10 10	0.941	1178.00	0.013		
	1101.10 ± 0.18	0.241	1101.41	0.101		
			1183.23	0.021		
			1184.97	0.017		

TABLE III. Comparison of ²³⁵U muonic transition energies and relative intensities.

	This experi	ment ^a	This calcu	lation	CERN calcu	ulation ^b
Transition	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.
			1189.14	0.021		
			1190.10	0.074		
	1191.63 ± 0.16	0.270	1193.03	0.052		
			1193.84	0.027		
			1197.23	0.017		
			1198.97	0.013		
			1207.79	0.024		
			1212.68	0.014		
			1217.75	0.014		
	1219.42 ± 0.45	0.069	1220.28	0.024		
			1222.69	0.022		
			1232.20	0.026		
	1236.28 ± 0.20	0.155	1236.02	0.097		
			1245.38	0.036		
			1247.05	0.036		
			1249.59	0.016		
	1250.80 ± 0.17	0.265	1251.05	0.040		
			1251.39	0.071		
			1252.73	0.010		
5g-4f			540.69	0.025		
			542.29	0.042		
			542.43	0.127		
	544.68± 0.09	0.557	544.24	0.060		
			545.84	0.112		
			545.98	0.078		
			546.80	0.096		
			550.46	0.026		
			552.87	0.044		
			552.92	0.115		
	555.08 ± 0.09	0.443	555.40	0.063		
			556.74	0.101		
			557.07	0.082		

TABLE III. (Continued)

^a Those energies marked with an asterisk (*) were used to determine the nuclear charge parameters.

^b See Ref. 11.

bits, 2p-1s, 3d-2p, 4f-3d, and 5g-4f, are listed in Tables II-V for ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu, respectively. Also listed is the observed relative intensity of each line within a major transitional group. This intensity information was used only to verify the correspondence of a calculated transition with the observed experimental line. The calculated energies and relative intensities which result from the data analysis to be described later are also presented in Tables II-V.

The experimental and calculational results of Coté *et al.*¹³ for ²³²Th and ²³⁸U are also shown for comparison in Tables II and IV. It would be appropriate to compare our experimental energies with those of McKee¹² for ²³²Th and ²³⁸U and DeWit *et al.*¹¹ for ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu. However, these authors did not report their data in tabular form, thus preventing a detailed comparison. The tabulated calculational results of the CERN work¹¹

are available and are shown for comparison purposes in Tables II-V. Our results agree quite well with the earlier results for the 3d-2p, 4f-3d, and 5g-4f transitions. For the 2p-1s transitions, our energies appear to be 2 to 4 keV higher than Coté *et al.* However, we are in good agreement with the calculated results of DeWit *et al.*

Figures 3-5 display our experimental spectra for the 2p-1s, 3d-2p, and 4f-3d transitions, respectively. These figures can be compared with those in Refs. 11-13 to confirm that the present experiment is of improved counting statistics and energy resolution.

Figure 3 shows not only the elemental shift in the x-ray energies, but also the isotopic shift in the energies. Also seen is the change in the character of the spectrum between elements and isotopes. The 2p-1s spectra from the two even-even nuclei are almost identical in shape, which is ex-

1438					D.	A	•	CI	0	SI	Ξ,	J.	J	•	M	A I	A	N	I F	Y	, .	A N	i D	J	Ι.	Р.	Ι) A	V :	I D	s o) N							<u>17</u>
	lation ^c Rel. int.		0.057	0.019	0.195	0.098	0.035		0.121	0.020	0.120		0.031	0.055	0.029	0.018	0.034	0.028	0.021	0.024		0.223		0.057	0.249	0.043	0.061	0.110	0.019										e Ref. 11.
	CERN calcu Energy (keV)		6096.9	6106.4	6141 6	6149.9	6168.2		6410.6	6418.5	6455.3		6483.1	6519.5	6564.2	2827.0	2883.5	2919.9	2928.0	2958.0		3013.2		3223.0	3249.6	3253.1	3273.9	3279.5	3281.9										°Se
.s.	sulation ^b Rel. int.		0.065	221.0	0.216	0.109	0.040		0.131		0.133		0.036	0.061	0.032																0.328			0.266	0.407		0.565	0.435	e Ref. 13.
relative intensitie	Carnegie calc Energy (keV)		6092.6	1 0112	6137.3	6145.6	6163.8		6406.8		6451.5		6479.1	6515.7	6560.4							3011.7		3221.6	3248.1	3251.7	3272.8	3278.2	3281.0		1181.1			1202.3	1244.3		544.52	554.78	р <mark>8</mark>
nergies and	ation Rel. int.	0.015	0.059	0.0169	0.196	0.087	0.035	0.018	0.118	0.023	0.120		0.034	0.061	0.032	0.020	0.036	0.031	0.023	0.016		0.201	0.013	0.062	0.274	0.046	0.055	0.121	0.015	0.031	0.274	0.030	0.015	0.245	0.381	0.015	0.548	0.432	trameters.
uonic transition e	This calcul Energy (keV)	6045.58	6095.79	6105.50 2199 50	6140.79	6148.98	6167.59	6378.62	6409.38	6417.39	6454.38		6482.02	6518.19	6563.19	2826.42	2883.01	2919.18	2927.22	2957.30		3012.77	3192.30	3222.02	3248.81	3252.22	3273.17	3278.61	3281.29	1127.33	1180.67	1184.26	1186.94	1201.62	1243.53	540.19	544.62	554.88	nuclear charge pa
son of ²³⁸ U m	eriment ^b Rel. int.		0.066	0 187	0.198	0.138	0.035		0.124		0.118		0.021	0.068	0.045																0.325			0.253	0.422		0.545	0.455	termine the
3LE IV. Compari	Carnegie expe Energy (keV)		6093.5 ± 1.7	6119 9 40 8	6136.5 ± 1.2	6145.0 ± 1.7	6162.1 ± 1.7		6407.3 ± 0.7		6451.0 ± 0.7		6476.8±2.0	6514.3 ± 0.8	6561.7 ± 1.1							3012.8 ± 0.8		3220.8 ± 1.0	3249.7 ± 0.8		3272.6 ± 1.4	3279.7 ± 1.4			1181.1 ± 0.6			1202.3±0.6	1244.0 ± 0.6		544.6 ± 0.5	554.5 ± 0.5	*) were used to de
TAJ	ment ^a Rel. int.	0.024	0.056	0 163	0.220	0.089	0.031	0.015	0.112	0.029	0.113	0.021	0.033	0.064	0.032	0.021	0.044	0.046	0.030	0.018	0.023	0.286	0.021	0.039	0.306			0.166		0.053	0.319			0.245	0.382		0.549	0.451	an asterisk (
	This experi Energy (keV)	6047.36 ± 0.49	$*6096.58 \pm 0.32$	$*6122.10 \pm 0.30$	$*6140.46 \pm 0.30$	$*6149.03 \pm 0.32$	$*6167.41 \pm 0.35$	$*6379.26 \pm 0.47$	$*6409.44 \pm 0.34$	$*6416.50 \pm 0.50$	$*6454.14 \pm 0.35$	6462.62±0.63	0400.33±0.35 *6610 36 0 0 00	*CEC9 70 + 0.33	0G.U±U%.60G0*	2826.66 ± 0.24	$*2882.88 \pm 0.23$	$*2919.50 \pm 0.32$	$*2927.12 \pm 0.44$	$*2956.92 \pm 0.37$	2994.77 ± 0.89	$*3013.02 \pm 0.25$	$*3191.54 \pm 0.93$	$*3221.86 \pm 0.44$	$*3249.08 \pm 0.27$			$*3277.44 \pm 0.30$		1127.95 ± 0.09	1181.07 ± 0.08			1010 01 0 000	1243.34 ± 0.06		544.42 ± 0.06	554.75 ± 0.06	gies marked with
	Transition	2p - 1s														3 d- 2p														4 <i>f</i> -3 <i>d</i>						5g-4f			^a Those ener

	This experim	ment ^a	This calcu	lation	CERN calc	ulation ^b
Fransition	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.	Energy (keV)	Rel. int
26-10	*6200 72 + 0 02	0.036	6201 95	0.030	6199.0	0.031
2p-15	$*6220.12 \pm 0.92$	0.050	6231 07	0.028	6227 3	0.028
	0200.10 ± 0.00	0.103	6934 69	0.025	6231.0	0.105
			6220 50	0.000	0201.0	0.105
	*4949 07 10 66	0 191	6243 33	0.012	6239 8	0.063
	0243.97±0.00	0.121	6245.55	0.071	6244 0	0.005
	*6250 83 +0 70	0.079	6251 18	0.020	6247.8	0.020
	0230.03 ±0.19	0.075	6251.10	0.031	6248.0	0.021
	*6950 56 10 57	0 159	6250.22	0.028	6256.0	0.025
	0233.30 ± 0.31	0.150	6259.83	0.035	6256.7	0.033
	6268 11 + 0 81	0.070	6265.86	0.032	6262.9	0.037
	*COO2 CO 1 25	0.010	6203.00	0.032	6288.0	0.026
	"0293.00±1.23	0.042	6291.00	0.024	0200.0	0.020
			0290.93	0.010	6527 1	0.033
	******	0.070	0000.40	0.032	0001.4	0.000
	*6537.39±0.69	0.070	6549.89	0.014	6549 7	0 022
	*0500 01 0 50	0.004	6543.25	0.016	0545.7	0.022
	*0500.01 ± 0.70	0.064	6561.05	0.077	6560.6	0.005
	*0507.75±1.00	0.044	6568.90	0.046	6569.6	0.039
	$*6593.43 \pm 0.71$	0.056	6593.72	0.035	6594.4	0.055
			6604.75	0.012		
	0001 10 - 0 70	0.045	6616.81	0.017	0004 0	0.095
	6661.48 ± 0.72	0.047	6663.17	0.028	6664.8	0.025
			6682.49	0.010		0.004
	6686.68 ± 0.75	0.051	6687.92	0.025	6689.3	0.024
			6690.34	0.012		
30-20	*2973 63+0 74	0 037	2973.06	0.024	2972.2	0.023
ou sp	2010.00 2 0.11	0.001	3019.42	0.017		
	3043 88 + 0 56	0.014	0010.12	01021	3042.9	0.017
	*3100 09 + 0 98	0.014	3099 78	0.023	3099.5	0.021
	*3123 37 + 2 00	0.119	3121 81	0.018	000010	
	5125.57 ±2.00	0.115	3125.63	0.010	3125.8	0.018
	2122 11 ± 0 42	0 185	2121.00	0.106	3131 0	0.098
	5155.11 ± 0.42	0.105	0101.01	0.100	3134 0	0.020
	*9994 59 1 01	0.047	2226 43	0 024	3340.8	0.022
	-2224.20 II.0I	0.047	3360.63	0.012	0010.0	0.011
			2268 65	0.012	3372 5	0.045
	*0000 01 - 0.90	0.979	2260.00	0.002	3372.0	0.010
	*3309.81 ±0.38	0.370	2202.02	0.131	3374.0	0.100
			0070.07	0.023	2276 2	0.021
			3372,38	0.039	0010.0	0.029
			3377,14	0.011		
	*0400 44 0 44	0.150	3396.22	0.010	9406 0	0 000
	*3402.44±0.44	0.150	3401.01	0.090	3400.0	0.030
			3404.69	0.012		
			3408.75	0.013	0417 0	0.017
			3412.57	0.012	3417.0	0.017
	9451 14 0 41	0.026	3432.56	0.011	3452.8	0.019
	0401.14 ± 0.41	0.000	0110.01	0.041	0104.0	0.010
4f-3d			1213.53	0.018		
	1229.12 ± 0.28	0.086	1227.53	0.053		
			1231.35	0.044		
	1246.20 ± 0.20	0.196	1246.57	0.175		
	1254.04 ± 0.18	0.233	1253.38	0.186		
			1274.44	0.014		
	1278.19 ± 0.50	0.034	1278.90	0.022		
			1285.47	0.011		
	1303.01 ± 0.18	0.302	1302.51	0.215		
	1310.94 ± 0.20	0 150	1310.48	0.114		

TABLE V. Comparison of ²³⁹Pu muonic transition energies and relative intensities.

	This experi	ment ^a	This calcul	ation	CERN calcu	lation ^b
Transition	Energy (keV)	Rel int.	Energy (keV)	Rel. int.	Energy (keV)	Rel. int.
5g-4f			559.35	0.016		
	569.18 ± 0.21	0.574	569.13	0.299		
			569.20	0.214		
			570.82	0.015		
			574.68	0.010		
	580.53 ± 0.21	0.426	580.36	0.246		
			580.88	0.165		

TABLE V. (Continued)

 $^{\rm a}$ Those energies marked with an asterisk (*) were used to determine the nuclear charge parameters. $^{\rm b}$ See Ref. 11.

pected since the nuclear structure for ²³²Th and ²³⁸U is similar. The 2p-1s spectra from the two odd-A nuclei have a more complicated structure, with the 2p-1s spectrum from ²³⁹Pu being more fractured than that for ²³⁵U. The 3d-2p spectra, Fig. 4, show the same general features as do the 2p-1s spectra.

Figure 5 shows there is very little hyperfine structure splitting for the 4f-3d spectra in ²³²Th and ²³⁸U. There are basically three x rays, which is expected from simple fine structure splitting arguments. There appears to be significant hyperfine splitting for the 4f-3d transitions in ²³⁵U and ²³⁹Pu.

FIG. 3. Composite spectra showing the muonic 2p-1s transitions in ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu. Only the full energy peaks are shown. The elemental shift in energy is clearly displayed. The isotope energy shift is also seen in ²³⁵U and ²³⁸U.

FIG. 4. Spectra showing the 3d-2p muonic x-ray transitions in the four actinide nuclei. Only the full energy peaks are shown. Elemental and isotope energy shifts are clearly shown.

1440

FIG. 5. Muonic 4f-3d transitions in ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu. The difference in muonic transitions in an even-even nucleus compared to those in an odd-A nucleus are clearly seen.

It has already been pointed out¹⁹ that these properties of muonic x rays from high-Z targets hold promise for an isotopic as well as elemental materials analysis technique.

FIG. 6. The 5-3 muonic transitions in 232 Th and 238 U. Shown for comparison is the calculated 5g-3d spectrum for each nucleus.

FIG. 7. Muonic 4-2 transitions in 232 Th and 238 U. Shown for comparison is the calculated 4f-2p spectrum for each nucleus.

Figures 6-8 display our experimental spectra for the 5-3, 4-2, and 3d-1s transitions, respectively, for the even-even isotopes ²³²Th and ²³⁸U. The data from the odd-A isotopes were insufficient to clearly observe these transitions. Also shown in Figs. 6-8 are the calculated energies and relative intensities for the 5g-3d, 4f-2p, and 3d-1selectric quadrupole transitions which result from the fitted parameters to be described later. It is not surprising that in these two even-even actinide nuclei the 5-3, 4-2, and 3d-1s transitions are very similar in shape, differing mainly in a shift in the energy.

FIG. 8. Muonic 3d-1s electric quadrupole transitions in ²³²Th and ²³⁸U. The calculated 3d-1s spectrum for each nucleus is shown for comparison.

IV. THEORY

A. Monopole interaction

1. Dirac solutions

The Hamiltonian which describes the muonic atom is

$$\frac{d}{dr} \begin{bmatrix} G(r) \\ F(r) \end{bmatrix} = \begin{bmatrix} \frac{-\kappa}{r} & W + mc^2 - V_0(r) \\ -W + mc^2 + V_0(r) & \frac{\kappa}{r} \end{bmatrix} \begin{bmatrix} G(r) \\ F(r) \end{bmatrix}$$

where G(r) and F(r) are the large and small components, respectively, of the Dirac radial wave function. Their normalization is

$$\int_{0}^{\infty} (F^{2} + G^{2}) dr = 1 .$$
 (3)

The muon total energy is W, its reduced mass is m, while the quantum number κ is related to the muon total and orbital angular momenta j and l in the usual nonrelativistic approximation by

$$\kappa = \begin{cases} -l-1, \quad j = l + \frac{1}{2} \\ l, \quad j = l - \frac{1}{2} \end{cases}$$
(4)

The interaction between the muon and the nucleus is the Coulomb potential

$$V(\mathbf{\tilde{r}}_{\mu}) = -e_{\mu} \sum_{i=1}^{Z} \frac{e_{i}}{|\mathbf{\tilde{r}}_{\mu} - \mathbf{\tilde{r}}_{i}|} = -e^{2} \int \frac{\rho(\mathbf{\tilde{r}})}{|\mathbf{\tilde{r}}_{\mu} - \mathbf{\tilde{r}}|} d^{3}r .$$
 (5)

The last expression arises upon passing to the limit of a continuous charge distribution. Clearly $\rho(\vec{r})$ must satisfy

$$e \int \rho(\mathbf{\dot{r}}) d^{3}r = Ze .$$
 (6)

For the lower lying states of deformed nuclei it is sufficient to take $\rho(\vec{\mathbf{r}})$ axially symmetric so that expanding in spherical harmonics²¹

$$\rho(\mathbf{\tilde{r}}) = \rho_0(\mathbf{r}) + \rho_2(\mathbf{r}) Y_{20}(\theta, \phi) + \rho_4(\mathbf{r}) Y_{40}(\theta, \phi) + \cdots$$
(7)

At this point a model assumption is made about the nuclear charge distribution:

$$\rho(\mathbf{\dot{r}}) = N \left\{ 1 + \exp\left[\left[r - c \left(1 + \sum_{n=1}^{\infty} \beta_{2n} Y_{2n0}(\theta, \phi) \right) \right] / a \right] \right\}^{-1},$$
(8)

with $n \le 2$, a form that has been used before.² This is a generalization to higher order deformations of the charge distribution used by the Columbia group²² and is identical to first order to the modified Fermi-type charge distributions used else-

$$H = H_N + H_\mu + H_{\rm int} \quad , \tag{1}$$

where H_N is the nuclear Hamiltonian in the absence of the muon, H_{μ} is the muon Hamiltonian with a spherically symmetric potential $V_0(r)$, while $H_{\rm int}$ represents the muon-nucleus interaction minus $V_0(r)$. The eigenfunctions and eigenvalues of the muonic atom are obtained by solving the Dirac equation²⁰

(2)

where.^{11,23} The charge distribution parameters are the half density radius $c(1 + \sum_{n=1}\beta_{2n} \cdot Y_{2n0})$, which varies with polar angle, the skin thickness

 $t = 4a \ln 3$, and the deformation parameters β_{2n} . The monopole part of the charge distribution of Eq. (8) is simply the integral over the solid angle of $\rho(\mathbf{\dot{r}})$,

$$\rho_0(r) = \frac{1}{4\pi} \int \rho(\vec{\mathbf{r}}) d\Omega , \qquad (9a)$$

while the *l*th harmonic is

$$\rho_{I}(\mathbf{r}) = \int \rho(\mathbf{\vec{r}}) Y_{I_{0}}^{*}(\theta, \phi) d\Omega \quad . \tag{9b}$$

Making use of the usual spherical harmonic expansion of $|\vec{\mathbf{r}} - \vec{\mathbf{r}}'|^{-1}$, a generalized penetration function $f_l(r_u)$ can be defined by

$$\mathcal{E}_{l}f_{l}(r_{\mu}) = \left(\frac{16\pi}{2l+1}\right)^{l/2} \left(\frac{1}{r_{\mu}^{l+1}} \int_{0}^{r_{\mu}} \rho_{l}(r)r^{l+2}dr + r_{\mu}^{l} \int_{r_{\mu}}^{\infty} \rho_{l}(r)r^{-l+1}dr\right).$$
(10)

The quantity \mathcal{E}_i is the generalized intrinsic electric multipole moment. With these definitions, the potential of Eq. (5) becomes

$$V(\mathbf{\dot{r}}_{\mu}) = \sum_{I'=0} V_{I'}(\mathbf{\dot{r}}_{\mu}) , \qquad (11)$$

l' even. The spherically symmetric part of the potential is

$$V_{0}(r_{\mu}) = -4\pi e^{2} \left(\frac{1}{r_{\mu}} \int_{0}^{r_{\mu}} \rho_{0}(r') r'^{2} dr' + \int_{r_{\mu}}^{\infty} \rho_{0}(r') r' dr' \right) , \qquad (11a)$$

and the higher order terms are

$$V_{l}(\vec{\mathbf{r}}_{\mu}) = -\frac{1}{2}e^{2}\mathcal{E}_{I}f_{l}(\boldsymbol{r}_{\mu})P_{l}(\cos\theta)$$
$$= -\frac{1}{2}e^{2}\mathcal{E}_{I}f_{l}(\boldsymbol{r}_{\mu})\left(\frac{4\pi}{2l+1}Y_{l0}(\theta_{\mu},\phi_{\mu})Y_{l0}(\theta_{N},\phi_{N})\right) .$$
(11b)

<u>17</u>

TABLE VI. Muonic level energies and corrections (keV) using the parameters obtained from a best fit to the experimental data. Dirac is the calculated level location. $E_{VP}^{(i)}$ is the first order vacuum polarization correction. E_{LS} is the Lamb shift correction. $E_{VP}^{(i)}$ is the higher order vacuum polarization correction. E_{RR} is the relativistic recoil correction. E_{ES} is the electron screening correction. E_{NP} is the nuclear polarization correction. A positive correction implies more binding. These values do not include the quadrupole or hexadecapole interaction.

Level	Calculation	²³² Th	²³⁵ U	²³⁸ U	²³⁹ Pu
151/2	Dirac	11 755.831	12101.404	12072.085	12 436.279
1/ 2	$E_{\rm VD}^{(1)}$	72.988	74.985	74.710	76.831
		-2.768	-2.805	-2.780	-2.829
	$E^{(\tilde{h})}$	-0.647	-0.691	-0.691	-0.738
		0.406	0.420	0.412	0.431
	$E_{\rm FS}$	0.009	0.011	0.011	0.012
	E _{NP}	6.100	6.800	6.400	6.100
201/2	Dirac	5 668.704	5 903.009	5897.420	6138.402
- 1/ 4	$E_{\rm VP}^{(1)}$	37.559	39.211	39.119	40.841
	E_{LS}	-0.436	-0.463	-0.462	-0.491
	$E_{\rm VB}^{(h)}$	-0.479	-0.517	-0.517	-0.558
	E_{RR}	0.138	0.148	0.146	0.157
	E _{ES}	0.021	0.024	0.024	0.027
	ENP	1.800	2.000	1.900	1.800
203/2	Dirac	5452.095	5 676.108	5672.001	5 901.754
- 07 2	$E_{\rm VP}^{(1)}$	34.684	36.228	36.161	37.764
	E_{1S}	-0.842	-0.892	-0.889	-0.942
	$E_{VB}^{(\tilde{h})}$	-0.464	-0.500	-0.500	-0.539
		0.120	0.129	0.127	0.137
	Ere	0.022	0.026	0.026	0.029
	ES E _{NP}	1.800	2.000	1.900	1.800
$3d_{3/2}$	Dirac	2 617.668	2738.676	2738.508	2 862.487
0, 2	$E_{\rm VP}^{(1)}$	12.467	13.268	13.263	14.096
	E_{LS}	0.061	0.065	0.064	0.068
	$E_{\rm VP}^{(\bar{h})}$	-0.273	-0.299	-0.299	-0.327
		0.021	0.023	0.023	0.025
	EES	0.058	0.065	0.065	0.073
	E _{NP}	-0.030	-0.031	-0.029	-0.030
$3d_{5/2}$	Dirac	2 557.843	2 673.692	2 673.607	2 792.090
	$E_{\rm VP}^{(1)}$	11.515	12.230	12.228	12.96
	E_{LS}	-0.079	-0.088	-0.088	-0.09
	$E_{\rm VP}^{(h)}$	-0.263	-0.288	-0.288	-0.31
	$E_{\rm RR}$	0.019	0.021	0.020	0.023
	$E_{\rm ES}$	0.061	0.068	0.068	0.07
	$E_{\rm NP}$	0.0	0.0	0.0	0.0
4f 5/2	Dirac	1 446.456	1 512.568	1 512.576	1 580.236
	$E_{\rm VP}^{(1)}$	3.862	4.154	4.154	4.45
	E_{LS}	0.019	0.021	0.021	0.023
	$E_{\rm VP}^{\prime n p}$	-0.145	-0.160	-0.160	-0.176
	E_{RR}	0.005	0.006	0.005	0.000
	$E_{\rm ES}$	0.135	0.150	0.150	0.160
	$E_{\rm NP}$	0.0	0.0	0.0	0.0
$4f_{7/2}$	Dirac	1 433.228	1498.105	1498.114	1 564.452
	E VP	3.697	3.972	3.914	4.400
	ELS D(A)	-0.013	-0.015	-0.015	-0.010
	EVP	-0.141	-0.156	-0.150	-0.172
		A AAE		11 11 11	
		0.005	0.005	0.005	0.000

Level	Calculation	²³² Th	²³⁵ U	²³⁸ U	²³⁹ Pu
$5g_{7/2}$	Dirac	919.022	960.707	960.713	1 003.345
, -	$E_{\rm VP}^{(1)}$	1.107	1.219	1.219	1.337
	$E_{\rm LS}$	0.005	0.006	0.006	0.006
	$E_{\rm VP}^{(h)}$	-0.081	-0.090	-0.090	-0.100
	E_{RR}^{VP}	0.002	0.002	0.002	0.002
	EES	0.255	0.281	0.281	0.311
	ENP	0.0	0.0	0.0	0.0
$5g_{9/2}$	Dirac	915.013	956.326	956.332	998.566
- 0, 2	$E_{\rm VP}^{(1)}$	1.072	1.180	1.180	1.293
	E_{LS}	-0.004	-0.005	-0.005	-0.005
	$E_{VP}^{(h)}$	-0.080	-0.088	-0.088	-0.097
	E_{RR}	0.002	0.002	0.002	0.002
	EFS	0.257	0.284	0.284	0.314
	$E_{\rm NP}$	0.0	0.0	0.0	0.0

TABLE VI. (Continued)

Expression (11b) is a generalization of that given by Wilets⁵ for l=2 and Acker²⁴ for l=2 and 4.

The uncorrected eigenvalues W obtained by numerically solving Eq. (2) are tabulated in Table VI for the 1s, 2p, 3d, 4f, and 5g muonic levels in ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu.

2. Corrections to the Dirac solutions

The Dirac solutions of Eq. (2) are not sufficiently accurate to describe the experimental measurements, even for a heavy spherical nucleus such as ²⁰⁸Pb. Several corrections to the monopole Dirac solutions must be calculated in the process of calculating the eigenvalues of the muon-nucleus system (first order vacuum polarization, reduced mass correction, and Lamb shift) or added by using extrapolations of calculations of others (nuclear polarization, higher order vacuum polarization, relativistic recoil, and electron screening).

The largest correction, of the order of 75 keV in the $1s_{1/2}$ muon states of these actinide nuclei, is the first order vacuum polarization due to virtual emission and reabsorption of electron pairs. This leads to an energy shift of the form²⁵

$$\Delta E_{\rm VP}^{(1)} = \int V_{\rm pol}(r)(F^2 + G^2)dr \quad , \tag{12}$$

with F and G defined by Eq. (2), while V_{pol} is the effective vacuum polarization potential

$$V_{\rm pol}(r) = (2\alpha/3\pi) \left[V_L(r) - \frac{5}{6} V_0(r) \right] . \tag{13}$$

Here $V_0(r)$ is given by Eq. (11a) and

$$V_{L}(r) = -(2\pi e^{2}/r) \int \rho(r')r' \left[|r-r'| \left(\ln \frac{1.781}{\lambda_{e}} |r-r'| - 1 \right) - (r+r') \left(\ln \frac{1.781}{\lambda_{e}} (r+r') - 1 \right) \right] dr' \quad .$$
(14)

Higher order vacuum polarization terms are significant, especially in the $1s_{1/2}$ muon states. The values used in our analysis were interpolated from values calculated by Rinker and Wilets²⁶ at Z = 82, 92, 98, and 114.

The Lamb shift in heavy muonic atoms is larger than experimental error, being of the order of 2-3 keV for the $1s_{1/2}$ states in these actinide nuclei. In our analysis this correction is calculated using an expression of Barrett *et al.*²⁷:

$$\Delta E_{\rm LS} = (\alpha/\pi m^2) \left[\frac{1}{3} \langle \nabla^2 V \rangle \left(\ln \frac{m}{2\Delta\epsilon} + \frac{11}{24} + \frac{3}{8} - \frac{1}{5} \right) + \frac{1}{8} \left\langle \frac{2}{r} \frac{dV}{dr} \vec{\sigma} \cdot \vec{L} \right\rangle \right] \quad . \tag{15}$$

The average excitation energy $\Delta \epsilon$ is defined by the Bethe sum and is of the order of 8–10 MeV and is discussed in detail by Barrett.²⁸ The term $-\frac{1}{5}$ is associated with the first order vacuum polarization term of the virtual muon pairs while

$$\langle \nabla^2 V \rangle = 4\pi Z \alpha \langle \rho \rangle \tag{16}$$

and is proportional to the overlap of the muon wave function with the nuclear charge distribution. The other terms are discussed in detail in Ref. 27.

Another large correction to the Dirac eigenvalues is nuclear polarization. A detailed discussion of this effect applied to deformed muonic atoms is given by Chen.²⁹ The values used in this work for the $1s_{1/2}$, $2p_{1/2}$, and $2p_{3/2}$ levels are taken, with suitable modifications, from Chen,³⁰ while the nuclear polarization values for the higher muonic levels are from Skardhamar,³¹ again with suitable but minor modifications to apply to the Z and A values of interest here.

Electron screening and relativistic recoil corrections while small (less than 500 eV for the muonic atoms and levels considered here) can be calculated accurately³² and have been included. The values for the first and higher order vacuum polarization, Lamb shift, nuclear polarization, electron screening, and relativistic recoil corrections used in the present analysis are listed in Table VI.

B. Quadrupole interaction and nuclear models

1. Quadrupole matrix elements

The nuclei of the muonic atoms of concern here have a stable, highly deformed shape with a large quadrupole moment, ~10 b. Thus, the second term of the potential expansion of Eq. (11) will make important contributions to the energy eigenvalues and will mix levels with different I, the nuclear spin, and j_{μ} , the muon spin, so that only their sum

$$\vec{\mathbf{F}} = \vec{\mathbf{I}} + \vec{\mathbf{j}}_{\mu} \tag{17}$$

will be a good quantum number.

The quadrupole part of the potential is obtained from expression (11b) with l=2 and

$$\mathcal{S}_{2} = Q_{0} = \left(\frac{16\pi}{5}\right)^{1/2} \int \rho(r) r^{2} Y_{20}(\theta, \phi) d^{3}r , \qquad (18)$$

so that

$$V_{2}(\mathbf{\tilde{r}}_{\mu}) = H_{Q}$$

= $-\frac{1}{2}e^{2}Q_{0}f_{2}(\boldsymbol{r}_{\mu})\left(\frac{4\pi}{5}Y_{20}(\theta_{\mu},\phi_{\mu})Y_{20}(\theta_{N},\phi_{N})\right).$ (19)

The operator H_Q is diagonalized in a basis whose state functions are

$$|IKnlj_{\mu}FM\rangle = \sum_{m_{j}} C(j_{\mu}IF; m_{j}M - m_{j}M) \\ \times |nlj_{\mu}m_{j}\rangle |IM - m_{j}K\rangle , \qquad (20)$$

where the $|nlj_{\mu}m_{j}\rangle$ are the Dirac solutions for the muon and the $|IM_{I}K\rangle$ are the nuclear state functions whose form depends upon the nuclear model. In this state function I is the total nuclear spin, K is its projection on the body-fixed 3 axis, and M is the projection on the laboratory Z axis. The matrix elements of $V_{2}(\hat{\mathbf{r}}_{\mu})$ are

$$\langle I_{1}K_{1}n_{1}l_{1}j_{1}FM|H_{Q}|I_{2}K_{2}n_{2}l_{2}j_{2}FM\rangle = \langle 1FM|H_{Q}|2FM\rangle$$

$$= -\frac{2\pi e^{2}}{5}Q_{0}(-1)^{j_{2}+I_{2}-F}[(2I_{1}+1)(2j_{1}+1)]^{1/2}W(j_{1}I_{1}j_{2}I_{2};F2)$$

$$\times \langle I_{1}K_{1}||Y_{20}(\theta_{N},\phi_{N})||I_{2}K_{2}\rangle\langle j_{1}||f_{2}(r_{\mu})Y_{20}(\theta_{\mu},\phi_{\mu})||j_{2}\rangle , \qquad (21)$$

where W(abcd; ef) is a Racah coefficient²¹ and the double barred quantities are reduced matrix elements for the nuclear and muon operators. The muon reduced matrix element can be written as

$$e^{2}Q_{0}\langle j_{1}||f_{2}(r_{\mu})Y_{20}(\theta_{\mu},\phi_{\mu})||j_{2}\rangle = (-1)^{1/2-l_{2}-j_{2}}[5(2l_{1}+1)(2j_{2}+1)/4\pi]^{1/2} \\ \times Q_{0}e^{2}C(l_{1}2l_{2};000)W(l_{2}j_{2}l_{1}j_{1};\frac{1}{2}2)\langle l_{1}||f_{2}(r_{\mu})||l_{2}\rangle , \qquad (22)$$

where

$$Q_{0}e^{2}\langle l_{1}||f_{2}(r_{\mu})||l_{2}\rangle$$

= $Q_{0}e^{2}\int_{0}^{\infty}f_{2}(r)[F_{1}(r)F_{2}(r)+G_{1}(r)G_{2}(r)]dr$
= $-10\alpha_{j_{1}j_{2}}$. (23)

These reduced quadrupole radial matrix elements $\alpha_{j_1j_2}$ are tabulated in Table VII. Since H_Q is diagonalized only within the same muon shell $(n_1 = n_2)$, this table contains only α 's belonging to the same l value $(j_{1,2} = l \pm \frac{1}{2})$.

2. Nuclear models

In order to evaluate the reduced nuclear matrix element of Eq. (21), some comments must be made concerning the nuclear model. Heavy deformed nuclei are relatively well described by a collective model and the choice here is for the simplest.³³ Any other model which adequately describes the level structure and the electric multipole moments will give similar results.

The ground state rotational band structures³⁴ for ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu are shown in Fig. 9. The quadrupole interaction H_Q couples these levels with the muonic levels giving rise through the dy-

charge parameters.
²³⁹ Pu
8.216
8.509
13.674
14.072
14.332
26.245
27.050

TABLE VII. Matrix elements calculated from the fitted charge parameters.

Matrix element	²³² Th	²³⁵ U	²³⁸ U	²³⁹ Pu	
	Dipole radia	l matrix elem	ents (fm)		
$\langle 2p_{1/2} \ \boldsymbol{r} \ 1s_{1/2} \rangle$	8.330	8.268	8.289	8.216	
$\langle 2p_{3/2} \ r \ 1s_{1/2} \rangle$	8.608	8.554	8.575	8,509	
$\langle 3d_{3/2} \ r \ 2p_{1/2} \rangle$	14.073	13.864	13.886	13.674	
$\langle 3d_{3/2} \ r \ 2p_{3/2} \rangle$	14.518	14.287	14.304	14.072	
$\langle 3d_{5/2} \ r \ 2p_{3/2} \rangle$	14.759	14.537	14.555	14.332	
$\langle 4f_{5/2} \ r \ 3d_{3/2} \rangle$	27.507	26.861	26.865	26.245	
$\langle 4f_{5/2} \ r \ 3d_{5/2} \rangle$	28,302	27.662	27.664	27.050	
$\langle 4f_{7/2} \ r \ 3d_{5/2} \rangle$	28.597	27.964	27.966	27.359	
$\langle 5g_{7/2} \ r \ 4f_{5/2} \rangle$	48.991	47.863	47.863	46.781	
$\langle 5g_{7/2} \ r \ 4f_{7/2} \rangle$	49.443	48.325	48.324	47.253	
$\langle 5g_{9/2} \ r \ 4f_{7/2} \rangle$	49.801	48.691	48.691	47.628	
	Quadrupole ra	dial matrix el	ements (fm ²)		
$\langle 3d_{3/2} \ r^2 \ 1s_{1/2} \rangle$	79.823	79.196	79.655	78.771	
$\langle 3d_{5/2} \ r^2 \ 1s_{1/2} \rangle$	81.413	80.849	81.316	80.493	
$\langle 4f_{5/2} \ r^2 \ 2p_{1/2} \rangle$	206.247	199.954	200.574	194.321	
$\langle 4f_{5/2} \ r^2 \ 2p_{3/2} angle$	225.764	218.711	219.237	212.309	
$\langle 4f_{7/2} \ r^2 \ 2p_{3/2} \rangle$	228.724	221.698	222.230	215.327	
$\langle 5g_{7/2} \ r^2 \ 3d_{3/2} angle$	812.740	774.937	775.137	739.699	
$\langle 5g_{7/2} \ r^2 \ 3d_{5/2} angle$	869.603	831.148	831.270	795.218	
$\langle 5g_{9/2} \ r^2 \ 3d_{5/2} angle$	876.699	838.243	838.365	802.311	
	Reduced quadru	upole matrix e	lements (keV)		
$2p: \alpha_{1/2}, \alpha_{1/2}$	80.644	90.627	94.662	101.655	
$\alpha_{3/2}, _{3/2}$	81.352	91.555	95.657	102.868	
$3d: \alpha_{3/2}, _{3/2}$	17.011	19.844	20.967	23.359	
$\alpha_{5/2}, _{3/2}$	14.896	17.325	18.325	20.356	
$\alpha_{5/2}, _{5/2}$	14.663	17.057	18,045	20.049	
$4f: \alpha_{5/2}, _{5/2}$	2.523	2.962	3.142	3.524	
$\alpha_{7/2}, _{5/2}$	2.352	2.752	2.920	3.264	
$\alpha_{7/2},_{7/2}$	2.340	2,737	2.904	3.246	
5g: $\alpha_{7/2}, \gamma_{7/2}$	0.569	0.666	0.707	0.791	
$\alpha_{9/2},_{7/2}$	0.550	0.643	0.682	0.762	
$\alpha_{9/2}, _{9/2}$	0.550	0.643	0.682	0.762	
I	Reduced hexade	capole matrix	elements (keV	r)	
3d: $\eta_{3/2}, \beta_{3/2}$	0.333	0.111	0.463	0.426	
$\eta_{5/2}, 3/2$	0.281	0.104	0.391	0.363	
$\eta_{5/2}, 5/2$	0.272	0.102	0.380	0.354	
$4f: \eta_{5/2}, \frac{5}{2}$	0.018	0.009	0.026	0.026	
$\eta_{7/2}, _{5/2}$	0.015	0.008	0.022	0.022	
$\eta_{7/2}, _{7/2}$	0.015	0.008	0.022	0.022	

Matrix element	²³² Th	²³⁵ U	²³⁸ U	²³⁹ Pu	
Ree	duced hexadec	apole matrix e	elements (keV)		
5g: $\eta_{7/2}, \eta_{2}$	0.001	0.001	0.002	0.002	
$\eta_{9/2},_{7/2}$	0.001	0.001	0.002	0.002	
$\eta_{9/2},_{9/2}$	0.001	0.001	0.002	0.002	

TABLE VII. (Continued)

namic hyperfine interaction to a complicated coupled muon-nucleus system.

The reduced nuclear matrix elements of Eq. (21) are identical for both even-even and odd-A nuclei.^{21,33}

$$\langle I_{1}K_{1} || Y_{20}(\theta_{N}, \phi_{N}) || I_{2}K_{2} \rangle = \left(\frac{5}{4\pi}\right)^{1/2} C \langle I_{1}2I_{2}; -K_{1}0 - K_{2} \rangle \delta_{K_{1}K_{2}} .$$
(24)

The ground state rotational band of even-even nuclei has K = 0. For odd-A nuclei, not only is K not zero, but it is half an odd integer, a fact which introduces a great deal of complexity into the x-ray spectra as can be seen by a comparison of the even-even and odd-A spectra (Figs. 3-5).

Diagonalizing an interaction matrix for a given $|FMnl\rangle$ leads to mixed states of the form

$$|FMnl\rangle = \sum_{Ij} V_{Fnllj} |IKnlj_{\mu}FM\rangle .$$
 (25)

The diagonalization process gives the amplitudes

 V_{Fnllj} of the components of the state functions as well as the energy eigenvalues E_{Finl} . Here *i* denotes the ordinal of the eigenvalue belonging to the state with total angular momentum F.

C. Other nuclear interactions

Several other muon-nucleus interactions may occur and these are discussed in order of their magnitude.

1. Hexadecapole, Y_A , interaction

A nonzero value for β_4 implies that the Y_4 interaction and the intrinsic moment will not be zero. (In general even if β_4 is identically zero the intrinsic hexadecapole moment will be nonzero and will indeed be positive for all values of β_2 . Only if β_4 is negative can its associated intrinsic moment be zero or negative.) The matrix elements for this interaction can be written as a generalization of Eq. (21),

$$\langle 1FM | H_{H} | 2FM \rangle = -9\eta_{j_{1}j_{2}}(-1)^{F-I_{2}-1/2+I_{2}} [(2I_{1}+1)(2j_{1}+1)(2I_{1}+1)(2j_{2}+1)]^{1/2} W(j_{1}I_{1}j_{2}I_{2};F4) W(l_{1}j_{1}l_{2}j_{2};\frac{1}{2}4) \\ \times C(I_{1}4I_{2};-K_{1}0-K_{1})C(l_{1}4l_{2};000)\delta_{K_{1}K_{2}}, \qquad (26)$$

where the η_{j_1,j_2} are the integrals over the appropriate generalized penetration function of Eq. (10):

$$\mathcal{E}_{4}e^{2}\langle l_{1}||f_{4}(r_{\mu})||l_{2}\rangle = \mathcal{E}_{4}e^{2}\int_{0}^{\infty}f_{4}(r)[F_{1}(r)F_{2}(r) +G_{1}(r)G_{2}(r)]dr$$
$$= -18\eta_{j_{1}j_{2}}.$$
 (27)

The angular momentum factors of Eq. (26) dictate that the Y_4 interaction matrix elements vanish for muon states with l < 2. The values of $\eta_{j_1 j_2}$ for the hexadecapole interaction are tabulated in Table VII. While these are two orders of magnitude smaller than the α_{j_1,j_2} of the quadrupole interaction, they have been included in the fitting procedure since their contribution to the interaction is of the same magnitude as the experimental uncertainty in the data.

NUCLEAR ENERGY LEVELS

FIG. 9. The ground state rotational band with spins, parities, and energies in keV for those states used in the model to fit the ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu muonic data.

3)

2. Magnetic hyperfine interaction

The magnetic hyperfine interaction occurs only for odd-A muonic atoms and has the form¹

$$\Delta E_F(M1) = \frac{1}{2Ij} \left[F(F+1) - I(I+1) - j(j+1) \right] A_1 .$$
(28)

The values of A_1 for ²³⁵U and ²³⁹Pu have been evaluated using the expression of LeBellac,³⁵ which are accurate enough for deformed nuclei with large quadrupole moments. The magnetic hyperfine interaction is smaller than the hexadecapole interaction and has not been included in the fitting of the odd-A data.

3. K-band mixing

The existence of other nuclear rotational bands of the same parity suggests the possibility that H_{Q} will connect nuclear states with different values of $K^{33,36}$ or with the same value of K but associated with a deformation vibration.^{33,37} The relative importance of band mixing is proportional to the ratio of the bandhead energy to the energy of the first excited rotational state in the ground state band. In the even-even nuclei this ratio for the γ band (K = 2) is 16 (²³²Th) and 24 (²³⁸U), while for the β band it is 15 and 22, respectively. For the odd-A nuclei, the nearest bands are not associated with the intrinsic particle ground state. In ²³⁵U the nearest appropriate band is built on the $\frac{5}{2}$ [752] intrinsic state at 633.1 keV yielding a ratio of 14, while in ²³⁹Pu the nearest band is built on a $\frac{5}{2}$ [622] state at 285.4 keV with a ratio of 36. For these actinide nuclei the contribution of K-band mixing to the muon-nucleus interaction is very small and has been ignored in the data analysis.

FIG. 10. Muonic 1s level scheme for ²³²Th and ²³⁸U. Each level is labeled by $J = \frac{1}{2}$, *I*, and *F*, the muon total angular momentum, the nuclear spin, and the total angular momentum, respectively. Each level is doubly degenerate in the latter quantum number since the magnetic dipole hyperfine splitting is not shown. All levels with a population greater than 1% are included.

IS LEVEL SCHEME

FIG. 11. Muonic 1s level scheme for 235 U and 239 Pu. Each level is labeled by $J = \frac{1}{2}$, *I*, and *F*, the muon total angular momentum, the nuclear spin, and the total angular momentum, respectively. Each level is doubly degenerate in the latter quantum number since the magnetic dipole hyperfine splitting is not shown. All levels with a population greater than 0.2% are included. The close doublet structure of 239 Pu is readily evident.

2p LEVEL SCHEME

270

232

	202 Th			2380		
/EL	450	NO HFS J I	HFS F POP (%) 	NO HFS HFS J I F POP(%) 		
I=O LEV	400	3/2 4	<u> </u>	<u></u>		
BED J=1/2 B	350 300		<u>3/2</u> 90 <u>5/2</u> 52 7/2 0.4	$\frac{-3/2}{7/2} 78$ $\frac{-5/2}{7/2} 47$ $\frac{-7/2}{7/2} 0.2$		
INPERTUR	250	3/2 0	<u></u>	$\frac{1/2}{3/2} = \frac{1/2}{3/2} \frac{26}{217}$		
PECT TO L	150	<u> /2 4</u>		1/2 4		
WITH RESI	100	1/2 2	1.5	1/2 2 7/2		
GY (keV) \	0	1/2 0	<u>5/2</u> 10.4 <u>3/2</u> 22.1	<u>1/2 0</u> <u>5/2</u> 1.1		
ENER	-50		29.6	$\frac{3/2}{1/2}$ 20.2		

FIG. 12. Muonic 2p level scheme for ²³²Th and ²³⁸U. Levels with and without hyperfine splitting are shown. All levels with a population greater than 0.1% are included. The energy is relative to the unperturbed $J = \frac{1}{2}$ and $\dot{r} = 0$ muonic 2p level.

FIG. 13. Muonic 2p level scheme for ²³⁵U and ²³⁹Pu. Levels with and without hyperfine splitting are shown. All levels with a population of at least 0.1% are included. The energy is relative to the unperturbed muonic $2p_{1/2}$ level.

FIG. 14. Muonic 3*d* level scheme for ²³²Th and ²³⁸U. Levels with and without hyperfine splitting are shown. All levels with a population greater than 0.1% are included. The energy is relative to the unperturbed $J = \frac{3}{2}$ and I = 0 muonic 3*d* level.

D. X-ray intensities

Once the eigenvalues E_{Finl} and the wave function amplitudes V_{FnlIj} of Eq. (25) are known, the transition probabilities between any two levels can be calculated. The transition probability is proportional to

$$T(E\lambda) = \frac{|E_i - E_f|^{2\lambda + 1}}{2F_i + 1} \sum_{\mathbf{M}_i \mathbf{M}_f} |\langle F_f M_f n_f l_f| r^{\lambda} Y_{\lambda o}(\theta, \phi) \times |F_i M_i n_i l_i \rangle|^2 .$$
(29)

Making use of angular momentum theorems, this expression can be reduced to

$$T(E\lambda) = |E_{i} - E_{f}|^{2\lambda+1} (2l_{f} + 1) (2F_{f} + 1)C^{2} (l_{f}\lambda l_{i}; 000)$$

$$\times \left| \sum_{j \ f \ j \ i \ I} (-1)^{j_{f} + j_{i} - I + 1/2} \delta_{A, \text{odd}} [(2j_{1} + 1)(2j_{f} + 1)]^{1/2} X_{F_{f} n_{f} l_{f} I j_{f}} V_{F_{i} n_{i} l_{i} I j_{i}} \langle l_{f} || \ \gamma_{\mu}^{\lambda} || \ l_{i} \rangle$$

$$\times W(l_{f} j_{f} l_{i} j_{i}; \frac{1}{2}\lambda) W(j_{f} j_{i} F_{f} F_{i}; \lambda I) \right|^{2}$$
(30)

The reduced matrix element is

$$\langle l_f | | r_{\mu}^{\lambda} | | l_i \rangle = \int_0^{\infty} r^{\lambda} [F_f(r)F_i(r) + G_f(r)G_i(r)] dr .$$
(31)

3d LEVEL SCHEME

FIG. 15. Muonic 3d level scheme for 235 U and 239 Pu. Levels with and without hyperfine splitting are shown. All levels with a population of at least 0.1% are included. The energy is relative to the unperturbed muonic $3d_{3/2}$ level.

FIG. 16. Muonic 4f level scheme for ²³²Th and ²³⁸U. Levels with and without hyperfine splitting are shown. All levels with a population greater than 0.1% are included. The energy is relative to the unperturbed $J = \frac{5}{2}$ and I = 0 muonic 4f level.

FIG. 17. Muonic 4f level scheme for 235 U and 239 Pu. Levels with and without hyperfine splitting are shown. All levels with a population of at least 0.1% are included. The energy is relative to the unperturbed muonic $4f_{5/2}$ level.

Some of these matrix elements for $\lambda = 1, 2$ calculated for the fitted parameters are listed in Table VII.

The relative muonic x-ray intensities of the principal lines are then calculated by multiplying the transition probability by the relative population of the initial state. The relative populations are determined by a cascade calculation linking only the "circular" orbits and starting in the 5g levels, assuming the nucleus is in its ground state and the quadrupole interaction can be neglected. The initial 5g level populations are assumed to be statistical while the others are calculated in the process of the cascade calculation. These populations are shown in Figs. 10–17.

V. ANALYSIS TECHNIQUE

The experimental transition energies of the 2p-1s and 3d-2p muonic x rays (specifically those marked with an asterisk in Tables II-V) were used to determine the charge distribution parameters of Eq. (8). Due to the strong quadrupole interaction present in these highly deformed nuclei, calculations yield a large multiplicity of transition energies, and some approach was necessary to provide a comparison between calculated and measured energies. The theoretical and experimental relative intensities were used to match the calculated and measured transition energies. We did not fit to the relative intensities because they were not measured with an accuracy comparable to that of the transition energies, and the calculated relative intensities and energies are not completely independent. In addition, an earlier analysis²² in the rare-earth region showed an abnormally high contribution to χ^2 due to the intensities. We also did not fit to a measured guadrupole moment. Due to its low statistical weight, its inclusion would not significantly alter the results. No attempt was made to correct for the isotopic impurity of ²³⁵U and ²³⁹Pu, see Table I, when analyzing the data.

The actual fitting was done using a generalized least squares fitting routine LSMFT,³⁸ available through the Central Computing Facility of the Los Alamos Scientific Laboratory. The muonic x-ray transition energies were calculated and compared with the experimental energies, and the charge distribution parameters were varied until χ^2 was minimized. The least squares program considers correlations between parameters and evaluates the error matrix in order to calculate the uncertainties associated with the fitted parameters. Because of strong correlations and anticorrelations between the parameters,¹⁷ it is not possible, as is often done, to determine the standard deviations of the parameters by altering each parameter independently until χ^2 changes by a fixed amount.

The higher dipole transitions between circular orbits, 4f-3d and 5g-4f, the dipole transitions between noncircular orbits, 3p-1s, 4d-2p, and 5f-3d, and the electric quadrupole transitions, 3d-1s, 4f-2p, and 5g-3d, were not used to determine the charge distribution parameters. However, after the parameters were deduced from fitting the 2p-1s and 3d-2p transitions, these additional transition energies and relative intensities for the above transitions between circular orbits were calculated and compared with the experimental results to assure agreement. The calculated results for the dipole transitions (4f-3d and 5g-4f) are given in Tables II-V for each of the nuclei studied. The quadrupole transitions were calculated for ²³²Th and ²³⁸U, and these results are compared to the experiment in Figs. 6-8.

VI. ANALYSIS RESULTS

Table VIII presents the nuclear parameters which result from the fit to the muonic 2p-1s and 3d-2p transition energies for the four actinide nuclei ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu.

A preliminary analysis² of ²³²Th and ²³⁸U reported nonzero values for β_4 . It also indicated² that nonzero values of β_6 were required by the data. The earlier analysis included only the 2p-1s transitions and represented a local minimum in χ^2 space. The present analysis using a more sophisticated search routine³⁸ is an improved analysis using the 2p-1s and 3d-2p transitions and results in a deeper minimum in χ^2 space. The present analysis shows no evidence for a nonzero β_6 . In fact, the χ^2 obtained for β_4 identically zero is not significantly larger than the χ^2 obtained when β_4 is permitted to take on nonzero values.

The parameter a is very nearly constant for

these nuclei, indicating that the skin thickness $(4a \ln 3)$ is also constant to within $\pm 1\%$. While the half density radius c increases with A over this very narrow region, it too is essentially constant.

Figures 10-17 show the muonic level schemes and the relative populations for the 1s, 2p, 3d, and 4f muonic levels in ²³²Th, ²³⁵U, ²³⁸U, and ²³⁹Pu. These populations were determined by the cascade calculation described in Sec. IVD. The 1s muonic level scheme (Figs. 10 and 11) shows the populations of the nuclear levels for the four actinides. The populations for ²³²Th and ²³⁸U (Fig. 10) are very similar to each other, but both are quite different from ²³⁵U and ²³⁹Pu (Fig. 11). The ground state and first excited state of the eveneven nuclei are about equally populated by the time the muon reaches the 1s state and together they are populated about 95% of the time. The higher excited states are very weakly populated. On the other hand, the ²³⁹ Pu ground state and first two excited states are each populated about 30% of the time, with the nucleus being left in the first excited state slightly more often than in either the ground state or the second excited state. The doublet structure of ²³⁹Pu is readily evident and arises from a relatively large rotational decoupling parameter. The populations for ²³⁵U are quite different from those for ²³⁹Pu. The ground state is populated more than 60% of the time and the first excited state about 25% of the time.

Figures 12 and 13 show the 2p level schemes for 232 Th and 238 U and for 235 U and 239 Pu, respectively. The 2p level schemes show the fine structure splitting between the $2p_{1/2}$ and $2p_{3/2}$ levels in all four nuclei. The 2p hyperfine splittings in the eveneven nuclei are very similar (Fig. 12), and the spectra for the 2p-1s transitions are also very similar (Fig. 3). The populations of the $2p_{1/2}$ and $2p_{3/2}$ fine structure components are about the same for 232 Th and 238 U.

The hyperfine splitting in the 2p level in ²³⁹Pu is

TABLE VIII. Nuclear parameters resulting from the fit to the experimental muonic 2p-1s and 3d-2p transition energies.

	²³² Th	²³⁵ U	²³⁸ U	^{23 9} Pu
<i>a</i> (fm)	0.449 ± 0.004	0.454 ± 0.006	0.448 ± 0.004	0.447 ± 0.014
<i>c</i> (fm)	7.024 ± 0.006	7.043 ± 0.008	7.076 ± 0.006	$\textbf{7.091} \pm \textbf{0.016}$
$\boldsymbol{\beta}_2$	$\boldsymbol{0.252 \pm 0.002}$	0.272 ± 0.002	0.279 ± 0.002	0.286 ± 0.002
Þ4	0.001 ± 0.012	-0.026 ± 0.008	0.001 ± 0.012	-0.008 ± 0.018
Q ₀ (b)	9.61 ± 0.07	10.51 ± 0.06	11.15 ±0.05	11.66 ±0.11
π_0 (b ²)	0.73 ± 0.06	0.34 ± 0.02	0.95 ±0.09	0.85 ± 0.16
X ²	10.9	23,9	23.8	16.1

more complicated than that for 235 U (Fig. 13). This predicts that the 2p-1s transition in 239 Pu is more complicated than the same transition in 235 U. A look at Fig. 3 clearly shows this is the case. While the 239 Pu 2p level is more fractured than the 235 U 2plevel, the populations of the states in the 2p fine structure groups are roughly the same for both odd-A nuclei. Again, the doublet structure of 239 Pu is evident.

The 3*d* level schemes for the even-even nuclei are shown in Fig. 14. There is no definite fine structure splitting between the $3d_{3/2}$ states and the $3d_{5/2}$ states. As is to be expected, the 3*d* level schemes in ²³²Th and ²³⁸U are very similar.

In contrast to the 2p level scheme in ²³⁵U and ²³⁹Pu, the 3d level in ²³⁵U is more highly fractured than the 3d level in ²³⁹Pu (Fig. 15). In these two odd-A nuclei, as in the even-even nuclei, there is no clear fine structure splitting of the $3d_{3/2}$ states from the $3d_{5/2}$ states.

The 4f muonic state is far removed from the nucleus so there should not be much hyperfine splitting. Figure 16, which displays the 4f level scheme in ²³²Th and ²³⁸U, shows there is basically no hyperfine splitting in these even-even nuclei. The 4f fine structure splitting is almost identical in ²³²Th and ²³⁸U. Figure 17 shows the 4f level scheme in ²³⁵U and ²³⁹Pu. The ²³⁵U 4f level is more highly fractured than the ²³⁹Pu 4f level.

The 5-3 muonic x-ray transitions in ²³²Th and ²³⁸U, Fig. 6, are characterized by three doublets not fully resolved. Also shown are the calculated energies and relative intensities for the 5g-3d quadrupole transitions. The theoretical calculations seem to explain the higher energy, lower intensity component of each doublet. The unperturbed 5g-5f separations for ²³²Th and ²³⁸U were calculated, and they appear to explain the observed splitting in each of the doublets. The lower energy component of each doublet is thus identified as the 5f-3d dipole transition.

The 4-2 muonic x-ray transitions for 232 Th and 238 U, Fig. 7, are also characterized by three sets of doublets, with the separation of the highest en-

ergy doublet being about twice that of the other two doublets. Also shown are the calculated energies and relative intensities for the 4f-2p quadrupole transitions. These quadrupole transitions nicely explain the higher energy component of each doublet. The unperturbed 4f-4d separations in ²³²Th and ²³⁸U have been calculated, and they **a**ccount for the observed splitting in the doublets.

Figure 8 shows the 3d-1s experimental spectra and the calculated 3d-1s quadrupole transition energies and relative intensities for 232 Th and 238 U. The agreement is quite reasonable. The calculated 3p-1s dipole transition energies indicate that these transitions are significantly higher in energy than the 3d-1s transitions and cannot account for the observed structure. In 208 Pb we also saw¹⁷ that the 3d-1s quadrupole transitions were lower in energy and stronger in intensity than the 3p-1s dipole transitions.

VII. DISCUSSION

From inspecting Tables II-V, it is seen that the calculated 4f-3d x-ray energies are not in good agreement with the experimentally measured 4f-3dx-ray energies; the calculated energies are 0.3-1.0 keV too low. This discrepancy is most obvious in ²³²Th and ²³⁸U and to a lesser extent in ²³⁹Pu. Any possible discrepancy between the calculated and experimental 4f-3d x-ray energies in ²³⁵U is hidden by the multitude of calculated $4f-3d \times rays$. Some data fits were performed which included the 4f-3dtransition energies. Even when these 4f-3d transition energies were included, these data could not be fitted. This was true whether β_4 was identically zero or was allowed to vary. Two additional calculations were performed in an effort to improve the comparison to the 4f-3d x rays in ²³²Th and ²³⁸U.

First, the energy of the first excited state in 232 Th and 238 U was varied by 0.5 keV. An inspection of Fig. 14 shows the 2⁺ state in 232 Th and 238 U to be important in the hyperfine structure in the muonic 3*d* states. These calculations used the charge distribution parameters previously determined (Table VIII) and the higher order corrections

TABLE IX. The effect on χ^2 for the 5g-4f, 4f-3d, 3d-2p, and 2p-1s x rays when the energy of the first excited nuclear state in ²³²Th and ²³⁸U is lowered by 0.5 keV.

	232	Th	238 ₁₁		
	$E(2^+) = 49.75 \text{ keV}$	$E(2^+) = 49.25 \text{ keV}$	$E(2^+)=45.0 \text{ keV}$	$E(2^+) = 44.5 \text{ keV}$	
χ^2_{5g-4f}	3.2	3.1	6.9	7.3	
χ^2_{4f-3d}	105.5	51.0	198.1	70.6	
χ^2_{3d-2P}	3.9	6.1	6.7	6.3	
χ^2_{2p-1s}	7.0	7.3	17.1	17.6	

TABLE X. The χ^2 for the 5g-4f, 4f-3d, 3d-2p, and 2p-1s x rays in ²³²Th and ²³⁸U using the adjusted nuclear polarizations.

	²³² Th	²³⁸ U
χ ² _{58-4f}	0.0	0.0
χ^2_{4f-3d}	11.3	10.5
χ^2_{3d-2P}	5.0	13.7
χ^2_{2p-1s}	7.4	20.0
	²³² Th	²³⁸ U
Muonic level	Adjusted nuclear polarization (keV)	Adjusted nuclear polarization (keV)
$1s_{1/2}$	6.6	6.5
2p _{1/2}	2.4	1.9
$2p_{3/2}$	2.3	2.3
$3d_{3/2}$	0.3	0.3
$3d_{5/2}$	0.8	0.3
4 <i>f</i> 5/2	0.02	-0.1
$4f_{7/2}$	0.01	-0.2

and nuclear polarization corrections to the muonic levels listed in Table VI. A decrease in the energy of the 2⁺ nuclear state by 0.5 keV raises the calculated 4f-3d x-ray energies 0.2-0.5 keV. This increase in the calculated 4f-3d x-ray energies reduces the 4f-3d x-ray χ^2 by more than a factor of 2. Table IX summarizes these calculations for ²³²Th and ²³⁸U. There are no significant changes in χ^2 for the 2p-1s, 3d-2p, and $5g-4f \times rays$. The 3d-2p x-ray χ^2 for ²³²Th increases by about 60%, but the total χ^2 is still quite reasonable.

This result led us to see if the ground state rotational band energies in ²³²Th and ²³⁸U had been remeasured since those reported in Ref. 34. Recent experiments ^{39,-41} have measured the energy of these 2^+ states and have found them to be 0.1-0.4 keV lower than the values used in the present analysis. These newer values are still within the energy uncertainties (a few keV) quoted in the Nuclear Data Tables.³⁴

The second set of calculations varied the nuclear polarizations of the muonic levels, keeping the charge distribution parameters fixed at the previously determined values (Table VIII) and using the accepted energy level schemes (Fig. 9). It is reasonable to assume that the higher order vacuum polarization, relativistic recoil, and electron screening calculations are more accurate than the nuclear polarization calculations. The nuclear polarizations used for the $1s_{1/2}$, $2p_{1/2}$, and $2p_{3/2}$ muonic levels were extrapolated from Ref. 30. The nuclear polarizations for the $3d_{3/2}$ and $3d_{5/2}$ muonic levels were those calculated by Skardhamar³¹ for the spherical, even-even nucleus ²⁰⁸Pb. There is no a priori reason to assume that these are correct for the highly deformed actinide nuclei. Additionally, Skardhamar did not calculate nuclear polarizations above the $3d_{5/2}$ level.

For these calculations, the nuclear polarizations for the $5g_{7/2}$ and $5g_{9/2}$ levels were assumed to be zero. The 4f nuclear polarizations were adjusted until the calculated and experimental 5g-4fx-rayenergies agreed. Next, the 3d nuclear polarizations were varied until the χ^2 for the 4f-3d x rays was minimized. Then the 3d-2p x-ray χ^2 was minimized varying the 2p nuclear polarizations. Finally, the 1s nuclear polarization was varied until the 2p-1s x-ray χ^2 was minimized. The results of this procedure for 232 Th and 238 U are presented in Table X. For these two even-even nuclei, there is a significant decrease in the χ^2 for the 4*f*-3*d* x raysan order of magnitude. The χ^2 for the 3d-2p and 2p-1s x rays generally showed only minor changes when the new nuclear polarizations were used. In contrast to the earlier work¹⁷ on the spherical nucleus ²⁰⁸Pb, no indication is seen that the calculated nuclear polarization for the $1s_{1/2}$ muonic level in these two highly deformed even-even actinide nuclei is small by about a factor of 2.

An identical analysis was performed on ²³⁹Pu. Only a small improvement in the fit to the 4f-3d x rays was achieved when the nuclear polarizations were adjusted.

Due to the differences in the form of the models

TABLE XI. Comparison of quadrupole moments (in barns) deduced from muonic x ray measurements.

Nucleus	CERN ^a	Chicago ^b	Carnegie ^c	Present work	
²³² Th	9.80 ± 0.30	9.83 ± 0.16	9.70 ± 0.13	9.61 ± 0.07	
235 U	10.60 ± 0.20	•••	•••	10.51 ± 0.06	
238 U	11.25 ± 0.15	11.47 ± 0.13	11.30 ± 0.11	11.15 ± 0.05	
²³⁹ Pu	12.00 ± 0.30	•••	•••	11.66 ± 0.11	
^a See Ref. 11.		^b See Ref. 1	2.	^c See Ref. 13.	

TABLE XII.	Comparison of deformation pa	arameters for ²³²	Th and ²³⁸ U as	s deduced from electron,	proton, α in-
elastic scatter	ing and muonic x rays.				

Nucleus	Parameter	NBS ^a 35-110 MeV electrons	Saclay ^b 23 MeV protons	Berkeley ^c 50 MeV α particles	ORNL ^d 16–18 MeV α particles	Pittsburgh ^e 16.5 and 17 MeV α particles	Los Alamos muonic x rays
²³² Th	β,	0.238	0.230		0.238	0.232	0.252
	β	0.101	0.050	•••	0.130	0.123	0.001
	\$ ₆	0.0	0.0	•••	0.0	0.0	0.0
²³⁸ U	β ₂	0.261	0.270	0.220	0.283	• • •	0.279
	β	0.087	0.017	0.060	0.059	• • •	0.001
	β_6	0.0	-0.015	-0.012	0.0	•••	0.0
³ See Ref. 42	2.	· • • • • • • • • • • • • • • • • • • •		^c See	Ref. 44.		^e See Ref. 46.

^a See Ref. 42.

^b See Ref. 43.

^c See Ref. 44.

used for the nuclear charge distributions, it is not possible to directly compare these nuclear shapes with those from earlier muonic x-ray experiments. However, Table XI shows the good agreement that exists for the quadrupole moments which are deduced from the various muonic x-ray studies.

The deformation parameters of ²³²Th and ²³⁸U have been studied using electron,⁴² proton,⁴³ and α^{44-46} inelastic scattering. These results are shown in Table XII together with our muonic x-ray results. The β_2 values derived from the scattering experiments on ²³²Th are in good agreement while there is a considerable spread of values for ²³⁸U. Each of the scattering experiments requires a nonzero value for β_4 for both ²³²Th and ²³⁸U. However, there is little overall agreement on the value of β_4 from the various scattering experiments. Our β_2 values are larger than most values from inelastic scattering. (This, however, is presumably due to the fact that our analysis required $\beta_4 = 0$. In the fits to the muonic data the correlation of parameters is such that positive values of β_4 would result in a reduced value for β_2 .) We have attempted to fit our muonic x-ray data with each set of deformation parameters determined by inelastic scattering, allowing the half density radius and diffuseness parameters, c and a, to vary. A significantly poorer fit was obtained in each case.

Although the fit was poor, the inelastic electron scattering deformation parameters produced better agreement with our data than the parameters from proton and α scattering. This may be due to the electron and muon being electromagnetic probes while the heavy charged particles may be influenced by the nuclear potential. This analysis adds further experimental support to the arguments of Madsen, Brown, and Anderson⁴⁷ that the guadrupole deformation parameter may be dependent upon the probing particle.

ACKNOWLEDGMENTS

The authors wish to recognize the advice and assistance given by R. E. Welsh and R. J. Powers during the planning of this experiment. R. T. Siegel and the SREL staff provided efficient operation of the facility which made the experiment possible. The help and assistance of C. J. Umbarger, L. V. East, and R. H. Augustson during the planning and data taking phase of this work is gratefully appreciated. We wish to thank D. V. Susco, R. J. Beckman, and C. McInteer for helping us to implement the fitting routine LSMFT. One of us (JPD) wishes to acknowledge the partial support by the Los Alamos Scientific Laboratory and the Associated Western Universities, Inc., during his sabbatical leave year (1974-1975).

*On sabbatical leave from the University of Kansas, Lawrence, Kansas 66045, 1974-1975 academic year.

^d See Ref. 45.

[†]Work performed under the auspices of the U.S. Energy Research and Development Administration.

¹C. S. Wu and L. Wilets, Annu. Rev. Nucl. Sci. <u>19</u>, 577 (1969), and references therein.

²J. P. Davidson, D. A. Close, and J. J. Malanify, Phys. Rev. Lett. 32, 337 (1974).

³D. A. Close, J. J. Malanify, and J. P. Davidson, presented at the Sixth International Conference on High

Energy Physics and Nuclear Structure, Santa Fe and Los Alamos, New Mexico, June 9-14, 1975 (unpublished).

⁴R. J. Powers, F. Boehm, P.Vogel, A. Zehnder,

T. King, A. R. Kunselman, P. Roberson, P. Martin. G. H. Miller, R. E. Welsh, and D. A. Jenkins, Phys. Rev. Lett. 34, 492 (1975); R. J. Powers, F. Boehm, P. Vogel, A. Zehnder, T. King, A. R. Kunselman, P. Roberson, P. Martin, G. H. Miller, R. E. Welsh, and D. A. Jenkins, Nucl. Phys. A262, 493 (1976).

- ⁵L. Wilets, Kgl. Dan. Viden. Selsk. Mat.-Fys. Medd. <u>29</u>, No. 3 (1954).
- ⁶B. A. Jacobsohn, Phys. Rev. 96, 1637 (1954).
- ⁷R. D. Ehrlich, R. J. Powers, V. L. Telegdi, J. A. Bjorkland, S. Raboy, and C. C. Trail, Phys. Rev. Lett. 13, 550 (1964).
- ⁸H. L. Acker, H. Marschall, G. Backenstoss, and D. Quitmann, Nucl. Phys. 62, 477 (1965).
- ⁹S. Raboy, C. C. Trail, J. A. Bjorkland, R. D. Ehrlich, R. J. Powers, and V. L. Telegdi, Nucl. Phys. <u>73</u>, 353 (1965).
- ¹⁰H. L. Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A. DeWit, Phys. Lett. 14, 317 (1965).
- ¹¹S. A. DeWit, G. Backenstoss, C. Daum, J. C. Sens, and H. L. Acker, Nucl. Phys. 87, 657 (1967).
- ¹²R. J. McKee, Phys. Rev. 180, 1139 (1969).
- ¹³R. E. Coté, W. V. Prestwich, A. K. Gaigalas, S. Raboy, C. C. Trail, R. A. Carrigan, Jr., P. D. Gupta, R. B. Sutton, M. N. Suzuki, and A. C. Thompson, Phys. Rev. <u>179</u>, 1134 (1969).
- ¹⁴Preliminary reports of this work are to be found in Refs. 2 and 3.
- ¹⁵H. O.Funsten, Nucl. Instrum. Methods <u>94</u>, 443 (1971).
- ¹⁶J. T. Routti and S. G. Prussin, Nucl. Instrum. Methods 72, 125 (1969).
- ¹⁷D. A. Close, J. J. Malanify, and J. P. Davidson, Nuovo Cimento 34A, 301 (1976).
- ¹⁸R. L. Heath, Aerojet Nuclear Report No. ANCR-1000-2, March 1974 (unpublished).
- ¹⁹J. J. Malanify, R. H. Augustson, D. A. Close, L. V. East, and C. J. Umbarger, Trans. Am. Nucl. Soc. 16, 66 (1973).
- ²⁰M. E. Rose, *Relativistic Electron Theory* (Wiley, New York, 1961).
- ²¹The definitions of spherical harmonics and angular momentum quantities follow M. E. Rose, *Elementary Theory of Angular Momentum* (Wiley, New York, 1957).
- ²²D. Hitlin, S. Bernow, S. Devons, I. Duerdoth, J. W. Kast, E. R. Macagno, J. Rainwater, C. S. Wu, and R. C. Barrett, Phys. Rev. C 1, 1184 (1970).
- ²³Y. N. Kim, Mesic Atoms and Nuclear Structure
- (North-Holland, Amsterdam, 1971), Chap. 3, Sec. 2.2. ²⁴H. L. Acker, Nucl. Phys. <u>87</u>, 153 (1966).
- ²⁵K. W. Ford and J. G. Wills, Nucl. Phys. <u>35</u>, 295 (1962).
 ²⁶G. A. Rinker and L. Wilets, Phys. Rev. <u>A12</u>, 748
- (1975).
- ²⁷R. C. Barrett, S. J. Brodsky, G. W. Erickson, and

- M. H. Goldhaber, Phys.Rev. 166, 1589 (1968).
- ²⁸R. C. Barrett, Phys. Lett. 28B, 93 (1968).
- ²⁹M. Y. Chen, Phys. Rev. C 1, 1176 (1970).
- ³⁰M. Y. Chen, Ph.D. thesis, Princeton University, 1968 (unpublished).
- ³¹H. F. Skardhamar, Nucl. Phys. <u>A151</u>, 154 (1970).
- ³²We wish to thank G. A. Rinker for the use of his computer code to calculate the relativistic recoil and electron screening corrections.
- ³³J. P. Davidson, Collective Models of the Nucleus (Academic Press, New York, 1968).
- ³⁴M. R. Schmorak, Nucl. Data <u>B4</u>, 561 (1970); A. Artna-Cohen, *ibid.* <u>B6</u>, 287 (1971); Y. A. Ellis, *ibid.* <u>B4</u>, 635 (1970); A. Artna-Cohen, *ibid.* <u>B6</u>, 577 (1971).
- ³⁵L. LeBellac, Nucl. Phys. <u>40</u>, <u>645</u> (1963).
- ³⁶M. Ikeda, A. Ikeda, and R. K. Sheline, Phys. Lett. B45, 187 (1973).
- ³⁷G. Kanatas and J. P. Davidson, Nucl. Phys. <u>A180</u>, 638 (1972).
- ³⁸R. H. Moore and R. K. Zeigler, Los Alamos Scientific Laboratory Report No. LA-2367, March 1960 (unpublished).
- ³⁹W.R. McMurray and I. J. van Heerden, Z. Phys. <u>253</u>, 289 (1972).
- ⁴⁰M. Schmorak, C. E. Bemis, Jr., M. J. Zender, N. B. Gove, and P. F. Dittner, Nucl. Phys. <u>A178</u>, 410 (1972).
- ⁴¹B. B. Back, E. R. Flynn, O. Hansen, R. F. Casten, and J. D. Garrett, Nucl. Phys. <u>A217</u>, 116 (1973).
- ⁴²T. Cooper, W. Bertozzi, J. Heisenberg, S. Kowalski, W. Turchinetz, C. Williamson, L. Cardman, S. Fivozinsky, J. Lightbody, Jr., and S. Penner, Phys. Rev. C <u>13</u>, 1083 (1976).
- ⁴³J. M. Moss, Y. D. Terrien, R. M. Lombard, C. Brassard, J. M. Loiseaux, and F. Resmini, Phys. Rev. Lett. <u>26</u>, 1488 (1971).
- ⁴⁴D. L. Hendrie, B. G. Harvey, J. R. Meriwether, J. Mahoney, J. C. Faivre, and D. G. Kovar, Phys. Rev. Lett. <u>30</u>, 571 (1973).
- ⁴⁵C. E. Bemis, Jr., F. K. McGowan, J. L. C. Ford, Jr., W. T. Milner, P. H. Stelson, and R. L. Robinson, Phys. Rev. C 8, 1466 (1973).
- ⁴⁶C. Baktash and J. X. Saladin, Phys. Rev. C <u>10</u>, 1136 (1974).
- ⁴⁷V. A. Madsen, V. R. Brown, and J.D. Anderson, Phys. Rev. C <u>12</u>, 1205 (1975); Phys. Rev. Lett. <u>34</u>, 1398 (1975).