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A comparison of two two-term separable A-N potentials which have been used in three-body calculations of
the hypertriton binding energy is reported. The potentials compared are approximately on-shell T matrix

equivalent, but yield quite diferent values for the hypertriton binding energy. It is shown that the radial
wave function for one of the potentials has an extra node due to a spurious state. The comparison is based on
a Fredholm determinant approach to the radial wave equation for a nonlocal potential.

NUCLEAR STRUCTURE Two-term separable A-N potentials, Fredholm deter-
minants, spurious states, extra nodes and separable potential three-body cal-

culations.

I. INTRODUCTION

Several years ago, Gibson and Lehman' studied
the effect of variations of the A-N low-energy
scattering parameters on the hypertriton binding
energy. In this work, they employed attractive one-
term separable nonlocal potentials as approxima-
tions to the A-X s-wave interactions. Their work
was later criticized by Schick for using approxi-
mate potentials which omitted the short-range re-
pulsion of the A-N interactions. Specifically, us-
ing a, two-term separable approximation to the po-
tential, Schick showed that the hypertriton binding
energy was significantly reduced in comparison
with the binding energy obtained from a one-term
approximation, and attributed the difference to
the short-range repulsion of the second term. In
reply, Gibson and Lehman' calculated the binding
energy using a different two-term approximation
and found a much smaller reduction of the binding
energy in going from a one-term to a two-term
approximation. The difference in the reduction
of the hypertriton binding energy between these
two calculations is not yet understood. '

'I'he parameters of the two-term separable po-
tentials used in each of the calculations were de-
termined from Jt -N two-body information. This
information, while not identical for the two calcu-
lations, is sufficiently similar to warrant de-
scribing the two potentials as approximately on-
shell T matrix equivalent. These circumstances
suggest that the difference between the calculated
hypertriton binding energies noted above reflects
a substantial difference in the A-N wave function.
Such a difference could be that one of the wave
functions has an extra node while the other does
not. Gibson and Lehman' suggest this possibility
indirectly in referring to a paper by Arnold and
MacKellar' which describes how a separable po-

tential with short-range repulsion of the type used
by Schick' can lead to a wave function with an extra
node. In the present paper, this possibility is
examined by treating it Rs an example of a syste-
matic approach' ' to the properties of the radial
equation for a nonlocal potential.

The ana1ysis' ' used in this paper is based on a
system of Fredholm determinants associated with
certain integral equations. This system of Fred-
holm determinants is a compendium of the prop-
erties of the radial equation for a nonlocal po-
tential in the same way tha. t a single Fredholm
determinant provides a complete description of
the properties of the radial equation for a short-
range local potential. The system reduces to the
single Fredholm determinant appropriate for a
local potential in the limit as the nonlocal poten-
tial becomes local. The Fredholm determinant
approach is summarized in Sec. II of this paper.
One of the determinants of the system, defined
as D(k) in Sec. II, is particularly important in
understanding the difference between the calcu-
lated hypertriton binding energies. A comparison
of the potentials used by Schick' and by Gibson
and Lehman' in terms of this Fredholm determi-
nant reveals a substantial difference between the
two potentials. The determinant D(k) for the po-
tential used by Schick has a zero on the real k
axis, while D(k) for the potential used by Gibson
and Lehman does not. Such a zero of D(k) on the
real k axis is called a spurious state. A spurious
state does not affect the modulus ~ relative phase
shift or the on-shell g matrix. However, it does
affect the absolute phase shift by introducing an
extra node in the radial wave function.

The A-N potentials used by Schick' and by Gib-
son and Lehman' in hypertriton binding energy
calculations are compared in Sec. III. The radial
wave function for the potential used by Schick is
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shown to have an extra node due to the zero of
D(k) for this potential. The suggestion that the
extra node is responsible for differences between
the off-shell T matrix elements for the two po-
tentials, which in turn affect the hypertriton bind-
ing energy calculations, is then discussed.

II. FREDHOLM DETERMINANT APPROACH

Two of the Fredholm determinants in the system
are considered here. ' They are D'(k), the Fred-
holm determinant associated with the integral
equation

rP(k, r) = sin kr+ G'(k, r, r')
0 0

x V(r', s)P'(k, s)dedr '

absolute phase of the wave function. '
Both D(k) and D'(k) may have zeros on the real

k axis for a nonlocal potential. A zero of only
D(k) on the real k axis is called a spurious state.
A zero of D'(k) for real ke 0 is always ac-
companied by a zero of D(k) in such a way that
Z'(k)=D'(k)/D(k)e0 for real kwO T.his simultan-
eous occurrence of zeros of D(k) and D'(k) on the
real 0 axis is called a continuum bound state.
Examples of spurious and continuum bound states
are given in Refs. 5-7; the figures in Ref. 7 show
the influence of these states on wave functions
and phase shifts. Similar calculations for the
A-N potentials used by Schick' and Gibson and
Lehman' are given in the next section.

HI. COMPARISON OF AA' POTENTIALS

for the physical solution g'(k, r), and D(k), the
Fredholm determinant associated with the inte-
gral equation

y(k, r) = k.'sinkr+ G(k, r, r')
0 0

xV(r', s)p(k, s)de&' (2)

for the regular solution q(k, r). The physical and
regular solutions are related by

The coordinate representation of the two-term
potential used by Schick is

V(r, r')= -X e~&""'+X e ~2'"+" '
1 2 (8)

while Gibson and Lehman use a two-term potential
of the form

V(r, r') = X,e ~~'-""'+X,(I —,'o.,r)
x (] —o r ) e am(T t" )

P'( kr) = ky(k, r)/2'(k),

where

Z'(k) =D'(k)/D(k)

is the Jost function.
A phase shift 5(k) is defined by

5(k) = -phase [I'(k)j .
%'ith this definition,

5(O) =nv,

(4)

(8)

In each case the parameters ~x ~2 ~x and e2
are determined by the following constraints: (I)
a set of A Neffecti-ve range and scattering length
parameters, and (2) estimates of the "repulsive"
term in the potential which results in a zero of the
s-wave scattering amplitude near 8, = 160 MeV.
The effective range r and scattering length a used
in determining the parameters of the Schick and
Gibson-Lehman potentials are given in Table I.
The Gibson-Lehman scattering length and effec-
tive range are average values, which they used

where n is the number of nodes of tg(O, r). Thus,
5(k) as given by Eq. (5) provides an absolute de-
finition of the phase shift. It differs from another
definition,

5c(k) = -phase [D'(k)j
by the factor D(k) in the denominator of Eq. (4).
The two definitions are equivalent only if D(k) and
D'(k) have no zeros on the real k axis. In any
event, the two definitions are equivalent to within
modulus m, and the scattering amplitude or on-
shell 2' matrix is not affected by D(k). The two
definitions are also equivalent for a short-range
local potential since D(k) = I and D'(k) e 0 for real
k+ 0 for this class of potentials. Thus, the dis-
tinction between Eqs. (5) and (7) can be important
only for nonlocal potentials, in which case Eq. (5)
is preferred because it is always related to the

Potential
a r Bg 6BA~ 6BA"

(fm) (fm) (MeV) {MeV) (MeV)

Gibson-Lehman -2.21 2.24 0.83 -0.135 -0.18
Schick singlet -2.415 2.035

O.S5 -0.32 -0.37
Schick triplet -1.19 2.43

Two-term potential in the singlet state only. The
value listed for the Gibson-Lehman potential is an esti-
mate as described in the text.

"Two-term potential in both the singlet and triplet
states.

TABLZ I. Scattering length a and effective range r
associated with the Gibson-Lehman and Schick potentials,
the binding energy Bz of the hypertriton in the one-term
separable potential approximation, and the change 6B&
in the binding energy due to the introduction of a two-
term separable potential.



COMPARISON OF T%0- TERM SEPARABLE A-N POTENTIALS 1207

D(0) =

-2&

IQ IQ lQ IQ lQ

E,. (Mev3
IQ

FIG. 1. Comparison of the Fredholm determinants
D(k) for the Gibson-Lehman (GL) and Schick (S) poten-
tials. D (k) for the Schick potential has a zero near
E, =70 GeV which is called a spurious state. Note
that D(k) for the Schick potential has been scaled by a
factor of 10, except in the insert.

to represent both singlet and triplet s states.
Thus, the Gibson-Lehman two-term potential is
assumed to be spin independent. Schick, on the
other hand, determined values of the parameters
of the potential given by Eq. (8) for the singlet
and triplet states separately.

The third column of Table I gives the hyper-
triton binding energy B~ for the one-teryn ap-
proximate patential. The last two columns give
the reduction while keeping a and r fixed. The
first of the two columns shows the change found

by Schick due to going froID a one-term potential
to a two-term potential for the singlet state only,
while retaining the one-term form for the triplet
potential. There is no corresponding calculation
for the Gibson-Lehman case since they used a
spin-independent potential. The value listed in
Table I for this case is an estimate based on the
relative singlet (-', ) and triplet (—,') contributions
to B~ for a spin-independent potential. The second
of the two columns gives the reduction in the hy-
pertriton binding in going from one-term to two-
term potentials for both singlet and triplet states.
As expected, the reduction of B~ for the two cal-
culations is dominated by the singlet potential. "
The reduction of B~ found by Schick is about twice"
the reduction of B~ found by Gibson and Lehman.
Since this reduction is dominated by the singlet
potential in both calculations the following discus-
sion of the two-term Schick potential in terms of
Fredholm determinants is limited to the Schick
singlet potential.

Figure l shows the Fredholm determinants D(k)
for the Gibson-Lehman and Schick potentials. The
dashed line i this figure at D(k) = l represents the
values of D(k for a short-range local potential.
D(k) for the Gibson-Lehman potential is positive
for all energies with a maximum value of 2.31 at
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FIG. 2. Comparison of the phase shifts ~(&) defined
by Eq. (5) for the Gibson-Lehman (GL) and Schick (S)
potentials. 4(k) for the Schick potential has a 7t discon-
tinuity near E, = 70 GeV due to the spurious state at
this energy. The 7t difference between the Gibson-Leh-
man and Schick phase shifts over the energy range from
1 to 200 MeV is due to the spurious state near E, = 70
GeV.

zero energy, a minimum of 0.65 near 500 MeV,
and an asymptotic value of 1 in the high-energy
limit. D(k) for the Schick potential also attains
the asymptotic value of 1 in the high-energy limit,
but approaches it more slowly. However, the
important feature of D(k) for the Schick potential
is that it is negative at low energies with a zero
of D(k) near E, =70 GeV. Thus, an essential
difference between the Gibson-Lehman and
Schickpotentials is the spurious state for the
Schick potential near E, = 70 GeV, with D(k) & 0
in the energy range of practical interest.

An immediate consequence of the spurious state
for the Schick potential near E, = 70 GeV is that
the phase shift 5(k) for this potential differs by
w from the phase shift 5(k) for energies below the
spurious state. The phase shift 5(k} has a v dis-
continuity at the spurious state.

Figure 2 shows the phase shifts 5(k} for the
Gibson-Lehman and Schick potentials. Over the
energy range from 0 to 200 MeV, which is the
energy range of practical interest, the phase shifts
5(k) for the Gibson-Lehman and Schick potentials
differ by about w. The phase shifts 5~(k) are
almost identical; the differences between the ef-
fective range and scattering length parameters
for the Gibson-Lehman and Schick potentials given
in Table I result in very slight differences between
the phase shifts 5D(k) for these potentials. While
the phase shift 6(k) for the Schick potential at low
energies looks like the phase shift for a local po-
tential with one bound state, calculations show
that the nonlocal Schick potential does not have a
bound state.

Figure 3 shows the zero energy regular solutions
for the Gibson-Lehman and Schick potentials. The
solutions at E = 500 MeV are shown in Fig. 4.
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FIG. 3. Comparison of the zero-energy regular sobx-
tions y(k, ~) defined by Eq. (2) for the Gibson-Lehman
(GL) and Schick (S) potentials. The extra node in q (k, r)
for the Schick potential is due to the spurious state near
E, =70 GeV.

FIG. 4. Comparison of the regular solutions y{k,r)
for the Gibson-Lehman (GL) and Schick (S) potentials
at E,~.= 500 MeV. The extra node in y(k, r) for the
Schick potential is due to the spurious state near E,
=70 GeV

IV. SUMMARY

These figures illustrate the extra node in the solu-
tion for the Schick potential due to the spurious
state near 8 = VO GeV. The phase shift 5(k) de-
fined by Eg. (5} takes the extra node into account,
while the phase shift 5n(k) defined by Eq. (7) does
not.

The comparison of the Gibson-Lehman @nd

Schick potentials given above reveals that these
potentials are quite different even though both of
them were introduced to take the short-range re-
pulsion of the A-N interaction into account. In
particular, this comparison emphasizes the im-
portance of the Fredhoim determinant D(k} in dis-
cussing this difference. The spurious state near
E, =70 GeV for the Schick potential is respon-
sible for the difference between the wave func-
tions for the Gibson-Lehman and Schick potentials
in the energy range of interest. Wave function
differences involving an extra node are known to
result in significant off-shell T matrix differences
for 8-8 potentials that are important in descrip-
tions of the structure of many-nucleon systems.
The same should be true for A-N potentials and
the structure qf hypernuclei. Thus, it is reason-
able to attribute the hypertriton binding energy
differences of the last column in Table I to the
extra node in the wave function for the Shick po-
tential and therefore to the spurious state.

In this paper, a Fredholm determinant ap-
proach~8 to the properties of the radial equation
for a nonlocal potential has been used to compare
two A-N potentials that are approximately on-
shell T matrix equivalent but which yield quite
different results in three-body calculations of the
hypertriton binding energy. It has been shown that
one of the potentials has a spurious state. This
spurious state results in an extra node in the
radial wave function that is responsible for the
differences in the calculated values of the hyper-
triton binding energy.

The Fredholm determinant approach used in this
paper is a convenient way of classifying effects
due to the nonlocality of a two-body potential
which influence calculations of three-body observ-
ables. Such a classification of nonlocal effects
does not by itself determine which of two two-body
potentials is the best to use in a three-body cal-
culation. Rather, the utility of the Fredholm de-
terminant approach stems from the fact that it
includes all relevant information about the two-
body potential.

%'e are grateful to B. F. Gibsoa~ D. R. Leh-
man for useful discussions about their calculations
and for providing us with their potential param-
eters, and to L. H. Schick for helpful correspon-
dence.
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