
PH YSICAL RK VIE% C VOLUME 17, N UMBER 8 MARCH 1978

Nuclear ulled relations anti equations

J. E. Monahan and F. J. D. Serduke~
Argonne Rational Laboratory, Argonne, Illinois 60439

(Received 12 September 1977)

Relations among the masses of neighboring nuclei provide an accurate and convenient method for the
estimation of unknown masses. A set of such r|;lations is "derived" and their structure as partial difference

equations is discussed. These considerations lead to a set of mass equations {solutions of the difference

equations) that can be ordered such that each successive member gives a potentially more nearly accurate
representation of nuclear ground-state energies as functions of S and Z. The first two members of this
ordered set are the mass equations considered originally by Garvey et ul. The results obtained by fitting the
third member of this set to the known masses are discussed in this paper. This third mass equation is shown

to satisfy the principle of charge symmetry to a good approximation. As a consequence, it gives predictions
for the masses of proton-rich nuclei.

NUCLEAR STRUCTURE Relations among ground-state energies of neighboring
nuclei.

I. INTRODUCTION

Considerable effort has been devoted to the con-
struction of formulas that give the ground-state
energies of all nuclei. Originally these formulas
were based on a simple physical model of the nu-
cleus. These results involve a small number of
parameters and reproduce only the main features
and trends of nuclear energies. Today there are
many investigations that require considerably
more accurate predictions than can be obtained
from these few parameter equations.

One approach, "'which has been found to give
reasonably reliable ground-state masses, is based
on relations of the form

g a&&M(N+i, Z+ j)=0, (1.1}
ij

where M(N+i, Z+ j) is the mass, or mass excess,
of the nucleus with /+i neutrons and Z+ j protons.
The sum in Eq. (1.1) is to be made approximately
equal to zero by a judicious choice of the coeffi-
cients a, ~. Specifically, these coefficients are to
be chosen such that there is first-order cancella-
tion in Eq. (1.1) of all single-particle energies and
of a)1. two-body interactions between nucleons. Re-
cently it was shown' that these conditions define a
set of mass relations, each member of which is
satisfied over the known masses with essentially
equal accuracy. A "derivation" of these relations
and a discussion of their structure is given in
Sec. II.

The essential physical observation' that leads to
these relations is that the empirical neutron-pro-
ton interaction is generally weak and that the
strength of this interaction is strongly correlated
separately for neighboring even-A and odd-A nu-

clei. An attempt to take into account possible
higher-order correlations in the n-P interaction
energy is also described in Sec. II. This leads to
another set of mass relations. The solutions of
these relations (partial difference equations) give
rise to a corresponding set of mass equations.
This set is characterized by the property that the
members of the set can be ordered to give an in-
creasingly accurate description of the n, -p interac-
tion as a function of A = N + Z and T, = —,(N —Z }.

This set of mass equations is described in See.
III and the results of fitting the first three mem-
bers of the (ordered) set are compared in Sec. IV.
The first two members of the set are the equations
considered originally by Garvey et al. ' Numerical
resu1ts for the third members of this set are dis-
cussed in Sec. IV. As shown in Secs. III and IV,
this "third equation" is (to a good approximation)
consistent with the principle of charge symmetry
of nuclear forces and, as a consequence, initial
conditions can be chosen such that this equation
should give reliable predictions for the excesses
of proton-rich nuclei.

The results of Sec. IV suggest that the mass
equations in the ordered set fit the known masses
with about the same accuracy. This would seem to
indicate that this set is of litt1e or no interest.
However, a principal measure of the value of a
mass equation is its usefulness as an extrapolation
formula. As discussed in Sec. V, the present re-
sults suggest that successive members of this or-
dered set may be systematically more accurate
extrapolation formulas.

A few properties of singular matrix equations,
which proved to be particularly useful in the pres-
ent investigations, are given in an Appendix.
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II. STRUCTURE OF MASS RELATIONS

It is convenient to introduce the displacement
operators E"„and E~, where

E"„M(N,Z) =M(N+n, Z),
E",M(N, Z) =M(N, Z+ n)

(2.1a)

(2.1b)

P(EN Ez }= g a,.g Es Ez ~

Equations (2.2) are to be made approximately
equal to zero by a "proper" choice of the polyno-
mial (2.3). Clearly, a minimum condition is that
this polynomial be chosen such that the numbers
of neutron-neutron, proton-proton, and neutron-
proton interactions cancel in Eq. (2.2). This con-
dition is satisfied if, and only if, the polynomial
(2.3) contains a factor of the form (E„'Ez 1}"(Ez—
-1) (E„-1) with o.'+P+y~ 3. Here u, P, and y
are non-negative integers; l and m are arbitrary
integers.

Since it is desirable to have mass relations that
involve only a small number of nuclei, consider
the relations with the smallest value of n+ P+y,

(2.3)

l.e
(E'„Ez —1)"(Ez—1)z(E» —1) M(N, Z) —0,

( )
n+P+y= 3.

For fixed values of l and m there are 10 distinct
relations defined by Eqs. (2.4). These were eval-
uated over the known masses for a range of values
of l and m and the relations defined by Eqs. (2.4)
with o, = P = y = 1 and l+ m an even integer were
found to have values considerably closer to zero
than any of the others.

The resulting set of mass relations, namely

O' M(N, Z) = (E'„E, 1)-(E, —1)(—E„-1)M(N, Z)

=0, l+m=even (2.5)

have been discussed in Ref. 3. Over a consider-
able range of values of l and m, each member of
this set gives a prediction of nearly equal statis-
tical accuracy for a single unknown mass in Eq.
(2.5). The average of this set is statistically more
reliable than is the prediction obtained from any
single relation. Also, the dispersion in the set
gives a measure of the uncertainty of this average.
With i=am =1, Eqs. (2.5) are the Garvey-Kelson"'
relations.

Here n is a positive or negative integer. Equations
(1.1) can be written as a polynomial in these oper-
ators acting on the function M(N, Z), i.e. ,

g a, ,M(N+i, Z+j )=P(E„,Ez)M(N, Z), (2.2)

where

I„q(N-+ 1,Z+ 1). (2 7)

The energies I„~ are generally small, but more
importantly, they are strongly correlated sepa-
rately for neighboring even-A and odd-A nuclei.
Thus, with l+ m an even integer, O' M(N, Z), as
given in Eq. (2.7), is the difference between two
small quantities that are of comparable magnitude.

The derivation of mass relations based on cor-
relations in the values of I~ can be carried a step
further. There is evidence' for a smooth long-
range dependence of I„~ on A =N+Z and/or T,
=z(N -Z). Assume that any such behavior can be
represented by a polynomial of the form

I„~(N, Z) = g f„(A)T",+ g g,(T,)A', (2 8)

where the f„are arbitrary functions of A and the

g, are arbitrary functions of T,. For any function

f„(A), (EzEz ' —1)f„(A)=0 and for any function

g,(T,), (E„Ez—1}g,(T,) =0; furthermore,
(E„Ez ' —1)T," is a polynomial of order tc —1 in T,
and (E„Ez—1)A'is a polynomial of order o —1 in
A. It follows that, if I„~ is described by Eq. (2.8},
(E„Ez ' —1)"(E„Ez—1)'I„~(N,Z) =0. Thus the dif-
ference equations

(E,E - 1)"(E„E,—1)'(Ez - 1)(E„-1)M(N, Z) =0

(2 9)

take into account any behavior of the residual n-p
interaction energy that can be represented by func-
tions of the form of Eq. (2.8).

Let the set of relations (2.9) be ordered accord-
ing to the value of (k, s). The first two relations
(k, s) = (0, 1}and (1,0) are the relations considered
by Garvey et al.' To the extent that the behavior
of the n-P interaction energy is represented by
higher-order terms in Eq. (2.8), the successive
members of this set are more nearly accurate re-
lations among the masses of neighboring nuclei.
However, for different values of s and k, the
masses of differing numbers of nuclei are related
by Eqs. (2.9) and it is difficult to judge the relative
accuracy of these relations. This difficulty is
easily circumvented if, instead of the difference
equations (2.9), the associated solutions (mass

A "physical" explanation of the accuracy of Eqs.
(2.5) can be found in a discussion of mass equa-
tions given by Janecke and Behrens. ' The quantity

1„~(N+ 1,Z+ 1)=(Ez —1}(Ez—1)M(N, Z) (2.6)

is defined to be the effective residual n-p interac-
tion energy in the nucleus with N+ 1 neutrons and
Z+ 1 protons. In terms of this energy Eqs. (2.5)
become

O' M(N, Z)=I„&(N+ l+ 1,Z+ m+ 1)
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equations) are compared. This is discussed in
Secs. JQ and Pf.

M(N, Z) =Mo+h, (N)+h (Z)+ Qf (A)E"

+ g g,(E)A', (3.1)

where h„ f„, and. g, are arbitrary functions of
their arguments, M, is a constant independent of
N and Z, and E =N —Z.

To make use of q, mass equation af this kind, the
point functions h„ f„, and g, are evaluated by fit-
ting the equation to the known masses (or mass
excesses). The resulting equation is then used to
evaluate the excesses of nuclei that are not in-
cluded in the fit. The existing body of accurately
known nuclear masses covers a range in g, N,
A, and E of about 100, j.50, 250, and 60 values,
respectively. Thus, for exnnple, Eq. (3.1) with

(k, s) =(1,1) contains -560 free parameters and
yields predictions for the excesses of -j.5000 nu-
clei.

In Sec. IV the results of fitting Eqs. (S.l) with

(k, s) = (0, 1), (1,0), and (1, 1) to the known masses
are compared. Of particular interest in this paper
is the equation with (k, s) =(1,1). This is the sim-
plest member of the set (3.1) that has not been
considered previously. Let us rewxite this equa-
tion as

M(N, Z) =M, + h, (N)+ h, (Z) + h, (A}+h, (E}, (3.2)

where, for convenience, the notation has been
slightly changed.

Since the variables N, Z, A, and E are not in-

HI, MA5S KQUATM)NS

A mass relation is a partial diffetence equation,
the solution of which is a mass equation.

The mass equations that arise as solutions of
several of the relations (2.5) were discussed
briefly in Ref. 3. As mentioned previously, the
members of Eq. (2.5) are very nearly equivalent
statistically and there is no a prim'i reason to be-
lieve that the more complex solutions of the higher-
order difference equations are significantly more
accurate than the lowest-order ones {l=em =1)
considered originally by Garvey et ~l.'

On the other hand, as the values of k and s ax'e

increased, the difference equations (2.9) take into
account more accurately some of the long-range
behavior of the excesses as functions of A and T,.
The corresponding mass equations possess the
same property. Cgasequently, it is of some in-
terest to investigate these equations. From their
"derivation" it is easily seen that the general so-
lutions of the difference equations (2.9) are

dependent the fitting of Eq. (3.2) to the known
masses is not unique. The values of M(N, Z) are
unchanged if the h, in Eq. (3.2) are replaced by
H„where

H, (N) =h, (N)+ a, + aalu+ a, iV, (3.3a)

H, (Z) =h, (Z)+a, +a, Z+a, Z', (3.3b)

H, (A) = h, (A) + a, ——,'(a, + a, )A ——,'a, A'+ a,(-1)",
(3.3c}

H, (E) =h, (E) —(a, +a,+a,)+ —,'(a, —a,)E
——,'a, E' —a,(-I)x . (S.Sd)

h, (E) =h,(-E) . (3.5)

To exhibit this symmetry, to the extent that it
exists, the constants a, in Eqs. (S.3) must be
chosen appropriately. From Eq. (3.3d) we have

h, (0) = 0 =H, (0}+(a, + a, + a, + a,},
h4(E} —h~( E}=0-

= H, (E) —H,(-E) —(a, —a,)E,

Thus conditions (3.5) are satisfied if, for all non-
zero values of E, [H4(E) —H, ( E)]/E is indepen-dent
of E. The H, are the solutions for arbitrary bound-
ary conditions.

Obviously a symmetry, such as Eq. (3.5), is an
intrinsic property of a. given mass equation fitted
to the known masses. The choice of boundary con-
ditions can only make an existing property mani-
fest. As will be shown in Sec. IV, boundary con-
ditions can be chosen such that the mass equation

The coefficients a„i=1,. . . , '(I, are arbitrary. In
the fitting this arbitrariness must be removed by
imposing on the solution a sufficient number of in-
dependent conditions in terms of initial values or
shapes of the point functions. A convenient meth-
od for the introduction of appropriate conditions
is described in the Appendix.

Since Eq. (3.2) is invariant under the transfor-
mation (3.3), the choice of the coefficients a, is a
matter of convenience. However, it is reasonable
to inquire whether these constants can be chosen
in some meaningful way. For example, except for
small Coulomb contributions, the charge symme-
try of nuclear forces implies that the n-p interac-
tion energy is unchanged if N and Z are inter-
changed, i.e.,
(Eg —l)(E„—1)M(&,Z) = (Eg —1)(Eg —1)M(Z, &) .

(3 4)

The mass equation (3.2) satisfies this equation
provided that
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(3.2) satisfies conditions (3.5) to a very good ap-
proximation. A practical consequence is that the
domain of definition of Eq. (3.2} is extended to
large negative values of E and this allows a pre-
diction of the excesses of proton-rich nuclei.

It is not clear that the higher-order equations in
the set (3.1) will exhibit further symmetries or
other desirable features. However, it is not un-
reasonable to expect that the individual point func-
tions in these higher-order equations may have a
more nearly independent physical meaning. As
discussed in Sec. V, these are just the properties
that improve the reliability of a mass equation
when it is used as an extrapolation formula.

Q = Q X(N&Z)[m(N, Z)-M(N, Z)], (4.6)

where m(N, Z) is a measured excess, M(N, Z) is
the function defined by one of the equations (4.1)-

TABLE I. A comparison of the fits of Eqs. (4.1)-{4.5)
to the known excesses. The quantities o~, a» and o3 are
defined by Eqs. (4.7); n is the number of measured ex-
cesses included in the fit and f is the number of parame-
ters in the given mass equation.

IV. COMPARISON OF MASS EQUATIONS

This section contains a comparison of the re-
sults obtained from a least-squares fit to the
known mass excesses of the following equation@:

M(N, Z) =M, +g, (N)+ g,(Z)+ g, (E), (4.1)

M(N, Z) M, +f, (N)+ f,(Z)+f,(A), (4.2)

M(N, Z) =M, +h, (N)+ h, (Z)+ h, (A}+h,(E), (4.3}

M(N, Z}= M, + q, (N}+q, (Z)+ q, (E)/A, (4.4}

M(N, Z) =MD+pi(N)+p2(Z)+p~(A)+p~(E)/A.

(4.5)

The first three of the above equations are the first
three members of the set of equations (3.1) or-
dered according to the value of (h, s). Equations
(4.4) and (4.5) are variations suggested by the
form of the symmetry-energy term in the %'eiz-
sacker mass formula. '

Values of the parameters that occur in these
equations were determined by the condition that
they minimize the quantity

P[m(N, Z)-M(N, Z)]'/n (4.7a)

,=P~ (N, Z) M(N, Z)~/, (4.n)
"X/2

g [m(N, Z) M(N, Z—) ]'/(n —f), (4.7c)

where n is the number of terms in the sum and t
is the number of free parameters in the mass
equation M(N, Z). Values of these quantities are
listed in Table 1 for the mass equations (4.1)
through (4.5). Equation (4.4) fits the known ex-
cesses considerably better than does Eq. (4.1);
however, the more accurate equations (4.2), (4.3),
and (4.5}yield the same quality of fit according to
these measures.

Except for Eq. (4.2) boundary conditions were
chosen such that the functions of E are as symme-
tric as possible about 8=0. As discussed in Sec.
ID, this symmetry is an intrinsic property of the
fitted equation and the choice of boundary condi-

TABLE II. The fitted values in MeV of the functidn of
E=N-Z that occur in each of Eqs. (4.1), (4.3), (4.4),
apd (4.5). The symmetry condition (3.5}, -4 & E & 4, was
imposed on each solution. Note that the functions q3(E)
and p4(E) appear in the mass equations (4.4) and (4.5),
respectively, divided by the mass number A.

Eq. (4.1) Eq. (4.3) Eq. {4.4) Eq. (4.5)
g (E) a (E) q (E) p4(E)

(4.5}, X(N, Z) is the weight associated with the
measured excess m(N, Z), and the sum is over the
known masses. Each point function at each value
of its argument is considered as a separate param-
eter in the fitting procedure.

Values of the excesses m(N, Z) were taken from
the 1975 Vfapstra-Bos' compilation. All excesses
for nuclei with 8 ~ Z ~ 100 and 8 ~ Q ~ 154 that are
listed with an error less than $00 keV were in-
cluded in the sum in Eq. (4.6). However, for rea-
sons that are ~e].l understood, Odd-odd X= Z nu-
clei were not included, and, in the case of Eq.
(4.2}, nuclei with N(Z were also excluded. For
the results given below, X(N, Z} was set equal to
unity for all excesses considered.

Three quantities were computed t;o measure tPe
accuracy of the least, -squares fit. These are

Eq. (4.1):
Eq. (4.2):
Eq. {4.3);
Eq (4 4).
Eq. (4.5):

0'g 0'2

(MeV) {MeV)

0.312
0.102
0.099
0.221
0.100

1251 300 0.573
1199 476 0.139
1251 535 0.141
1251 300 0.323
1251 535 0.140

P3
(Mev)

0.658
0.180
0.187
0.371
0.186

0
1

-1
2

-2
3

-3

0
2.800
2.379
5.652
5.697
9.920
9.963

14.537
14.790

0
40.899
40.800
3.044
3.008

44.416
44.410
7.082
7.128

0
66.0
62.3

148.1
140.0
277.2
263.6
421.5
405.9

0
2737.8
2737.7
-73.1
-73.4

2507.7
2507.7
-459.4
-458.5
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TABLE III. Values of the point functions obtained by fitting Eq. (4.5) to the known excesses.
a nucleus vrith g& 8, Z & 8, A & 16, and -44E =N -Z & 58 is obtained from the equation

M(¹Z}=-4.7370+Pg(N)+P2(Z')+PS(A)+ «QOP4(E)/A .
Excesses for nuclei with E &-4 can be obtained by replacing Pt(E) by P4((E ]) in this equation.

The excess, in MeV, of

8
9

10
11
12
13
14
15
16
17
18
19
2Q

21
22
23
24
25
26
27
28
29
30
31
82
33
34
35
36
37

8
9

«0
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

16
17
18

P,QV)

0.000
-157.042
-308.191
-445.114
-576.695
-695.726
-810.543
-913.701

-1012.002
-1100.756
-«185.899
-1262.291
-1336.120
-1400.332
-1462.558
-1516.932
-1569.778
-1615.123
-1658.680
-1695.484
-1730.801
-1758.613
-1784.248
-1803.832
-1822.057
-1834.094
-1845.175
-1849.983
-1854.519
-1852.517

-0.000
-154.431
-302.183
-435.403
-562.912
-677.556
-787.698
-885.747
-978.797

-1062 ~ 016
-1141.446
-1211.800
-1279.038
-1336.586
-1392.068
-1439.321
-1484.622
-1522.390
-1558.042

P~(A)

0.000
-0.000

316.263

38
39

41

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

64
65
66

-1850.501-«842. 183
-1833.783
-1819.306
-1804.969
-1784.802
-1764.929
-1739.410
-1714~ 149
-1683.600
-1653.168
-1617.606
-1582.062
-1540.052
-1497.240
-1450.480
-1403.177
-1351.855
-1300.040
-1243.940
-1187.763
-1127.337
-1067.271
-1002.720
-938.695
-870.173
-802.131
-729.759
-657.755
-581.523

Zp(Z)

-1586.320
-1612.966
-1631.612
-1648.073
-1658.122

1666.491
-1668.216
-1668.984
-1663.308
-1656.836
-1644.143
-1630.634
-1611.022
-1590.453

1564.009
-1537.243
-1504.945
-1472.400

1434.270

P~ {A)

3439.137
3406.659
3455.931

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
gl
92
g3
94
95
96
97

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

112
113
114

P, {X)

-505.904
-426.039
-346.804
-263.364
-180.616
-93.685
-7.528
82.629

172.085
265.358
358.031
454.380
550.151
649.443
748.505
852.801
956.787

1063.954
1171.017
1281.263
1391.209
1504.462
1616.731
«'732.450
1847.553
1965.966
2084.131
2205.397
2326.330
2450.323

P,g')

-1395.850
-1351.952
-1307.927
-1258.544
-1209.192
-1153.292
-1096.918
-1036.073
-974.847
-909.053
-843.081
-772.508
-7D1.908
-626.675
-551.495
-471.799
-392.055
-307.929
=223.755

P&(A )

2110.902
2026.899
1989.601

98
99

100
101
102
103
104
105
106
107
108
109
110
ill
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
S3

160
161
162

P, QV)

2574.059
2700.717
2827.289
2956.504
3085.707
32«7.509
3349.218
3483.546
3617.778
3754.367
3890.887
4030.089
4169.094
4310.662
4451.838
4595.764
4739.180
4885.334
5030.839
5178.991
5326.568
5476.676
5626.159
5778.111
5929.477
6083.187
6236.346
6391.478
6546.594
6705.176

-135.263
46.619
46.201

139.250
236.179
333.467
434.540
535.967
640.744
745.721
&54.332
963.204

1076.024
1188.621
1304.662
1420.630
«840.245
1659.923
1784.199

P~(A)

-1905.339
-2028.181
-2118.302

128
129
130
131
132
133
134
135
136
137
13S
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

208
209
210

P, (V)

6 863.165
7 023.199
7 182.494
7 344.047
7 504,698
7 667.603
7 829.784
7 994.057
8 157.745
8 323.497
8 488.527
8 655.759
8 822.222
S 990.705
9 158.706
9 328.648
9498.098
9 669.4«3
9 840.287

10 012.958
10 1S5.106
10358.967
10 532.519
10 707.829
10882.726
11059.606
11236.123

P,g)
1 908.367
2 035.462
2 162.198
2 292.010
2421.331
2 553.837
2 685.971
2 821.129
2 955.894
3 093.659
3 23«.206
3 37«.457
3 511.498
3 654.289
3 796.900
3 942.264
4 087.463

P)(A )

-7 841.«S2
-7 993.585
-8 12D.841
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TASX K rn. (Cmtnueu}

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

-3
-2
-1

0
1
2
3
4
5
6
7
8

321 ~ 395
608.043
615.995
878.928
888.198

1130.492
1140.666
1364.741
1374.093
1581.311
15S9.910
1782.747
17S9.682
1968.957
1974.562
2141.785
2145.510
2301.788
2303.610
2449.532
2448.856
2585.090
2582.200
2709.391
2703.993
2822.207
2814.184
2924.328
2913.624
3016.280
3003.458
3099.359
3084.102
3173.417
3155.672
3238.471
3218.100
3294.807
3272.133
3342.S15
3317.724
3382.920
3355.303
3414.856
3384.859

P4(E)

-4.585
25.077
-0.734
27.377
0.000

27.378
-0.731
25.077
-4.594
19.614

-11.573
11.Q21

-21.840

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111

E

9
10
11
12
13
14
15
16
17
18
19
20
21

3421.067
3465.414
3428.041
3467.655
3427.934
3462.861
3420.695
3450.943
3406.237
3432.269
3385.195
3407.294
3358.070
3376.030
3324.550
3338.516
3284.947
3295.125
3239.112
3245.297
3186.910
3189.491
3128.833
3127.897
3065.321
3061.089
2996.425
2988.829
2922.054
2911.396
2842.396
2828.583
2757.976
2740.631
2668.027
2647.675
2572.922
2549.694
2473.067
2446.980
2368.520
2339.518
2259.277
2227.543
2145.473

z, (z)

-0.960
-35.597
-16.461
-52.707
-35.236
-73.149
-57.453
-97.141
-83 ~ 147

-124.543
-112.366
-155.493
-145.076

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

E

22
23
24
25
26
27
28
29
30
31
32
33
34

1903.755
1863.847
1776.292
1733.727
1644.305
1599.236
1508.023
1460.372
1367.253
1317.237
1222.492
1169.949
1Q73.582
1018.798
920.841
863.836
764.342
705.108
603.940
542.665
439.970
376.435
272.301
206.524
100.826
32.959

-74.568
-144.584
-253.647
-325.842
-436.451
-510.769
-622.959
-699.340
-813.005
-891.407

-1006.707
-1087.272

1204.216
-1286.725
-1405.186
-1489.624
-1609.548
-1695.884
—1817.138

Z4(E}

-189.962
-1S1.416
-228 ~ 077
-221.375
-269.845
-264.961
-315.286
-312.220
-364.409
-363.156
-417.044
-417.391
-472.781

163
164
165
166
167
168
1/9
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

35
36
37
3S

40
41
42
43
44
45
46
47

-2242 594
-2334.452
-2460.139
-2553.899
-26S1.067
-2776 642
-2905.055
-3002.368
-3132.220
—3231.261
-3362.473
-3463.272
-3595.706
-3698.027
-3831.770
-3935.S37
-4070.906
-4176.671
-4313.021
-4420.353
-4558.050
—4666.944
-4805 ~ 754
-4916.377
-5056.499
-5168 771
-5310.102
-5424.032
-5566.872
-5682.377
-5826.421
-5943.536
-6088.768
-6207.318
-6353.815
-6473.684
-6621.291
-6742.558
-6891-QS6
-7013.611
-7163.316
-72S7.285
-7438.061
-7563.259
-7714.961

~4(E)

-474.720
-531;529
-535.206
-593.414
-598.522
-65S.165
-664.496
-725.363
-732.966
-794.793
-803.193
—865.827

875.313

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

48
49
50
51
52
53
54
55
56
57
58

-8 274.003
-8 402.323
-8 556.389
-8 685.964
-8 840.933
-8 971.743
-9 127.693
-9 259.709
-9416.58Q
-9 549.804
-9 707.705
-9 842.037

-10000.872
-10 136.328
-10296.113
-10432.729
-10593.436
-10731.169
-10892.792
-11031.652
-11194.169
-11334.040
-11497.478
—11638.361
-11802.542
-11944.359
-12 1Q9.487
-12 252.291
-12418.191
-12 561.937
-12 728.535
-12 873 ~ 174
-13040.496
-13186.140
-13354.235
-13500.862
-13669.757
-13S17.353
-13987.039
-14 135.514
-14 306.030
-14455.548
-14 626.749
-14 777.111

P, (E)

-939.012
-949.395

-1014.222
-1025.515
-1091.371
-1 103.637
-1170.531
-1183.797
-1251.688
-1266.388
-1335.919
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tions will exhibit this symmetry orQy to the extent
that it actually exists. Values of the functions of
E that mere obtained for the above equations are
listed in Table Q for -4 ~ E ~ 4.

It is obvious from these results that Eqs. (4.3)
and (4.5) satisfy the symmetry condftions (8.5) to
a very good approximation whereas Eqs. (4.1}and
(4.4) do not. It seems reasonable to assume,
particularly in the case of Eq. (4.5), that this sym-
metry extends to more riegative values of E. Kith
the terms p, (E)/A replaced by p, (~ E I)/A, Eq.
(4.5) gives predictions for the excesses of proton-
rich nuclei. Values of the point functions p, that
occur in Eq. (4.5}are given in Table III.

Equations (4.4) and (4.5) are in a class different
than the other mass equations considered here in
that they are not solutions of homogeneous differ-
ence equations. Hosrever, the sax' irk5ejperident-
particle model with fourfold degenerate single-
particle levels that has been used to justify the
Garvey-Kelson equations can be invoked to show
that the symmetry effect yields a contribtCion of
the form p(~ E

~
}/A to the ground-state energy of a

nucleus. This is, in fact, one reason for the in-
troduction of Eqs. (4.4) snd (4.5) into the present
dlscu @sion.

A mass table based on a fit of Eq. (4.2) to the
1975 tabulation has been published. ' Although tab-
ulations of the point functions obtained by fitting
Eqs. (4.3) and (4.4) to the known excesses have not
been published, only the results for Eq. (4.5) are
given here. The reason is that me believe Eq.
(4.5) to be the most useful of the mass equations
considered. Values of the point fuhctions in the
rem~izing equations can be made available on re-
quest.

V. OSCUSSION

The reliability of mass equations of the type con-
sidered here has been questioned by several au-
thors, mast recently by Co)hay and Kelson. ' The
use of Eq. (4.3}, for example, to predict excesses
far from the region of knu~ nuclei is based on the
assumption that this mass equation gives an ac-
curate representation of the functional dependence
of the eXcesses not only for the known nuclei but
also for nuclei in the region of extrapolation. As
mentioned above, all of the mass equations in the
set (3.1}probably fit the known excesses with
about the same accux'acjr so that additional criteria
are necessary to judge their relative reliability as
extrapolation forznulas. The possibility of intro-
ducing additional physical conditions, such as
charge symmetry in Eq. (4.3), provides one such
criterion.

As shown in Table II, Eq. (4.3) satisfies the

symmetry condition (3.5} significantly better than
does Eq. (4.1). As a consequence it is reasonable
to expect that spurious correlations between the
fitted values of the point functions are reduced in
Eq. (4.3) compared with Eq. (4.1). All else being
equal, it then follows that Eq. (4.3) is a more
nearly accurate extrapolation formula than is Eq.
(4.1). It remains to be determined whether the
higher-order equations of the set (3.1}exhibit
similar behavior. The fitting of these equations
to the known masses is limited to rather small
values of k and s since the number of adjustable
parameters increases rapidly for successive val-
ues of (k, s). However, an investigation of the
(2, 1) and (2, 2) equations seems reasonable.

Mass equations of the form

M'(N, Z) =M'(N, Z)+M(N, Z), (5.1)

APPENDIX

A convenient method for the specification of
boundary conditions in the minimization problems
(4.6) is described below.

Consider Eq. (4.6) rewritten as
tt t

Q = Q Xg mg —Q aq~hj
j+

(Al)

where rn, is a measured excess and h, represents
a point function at a given value of its argument.
The h& that minimize Q' are the solutions of the

where M* represents some theoretical expression
for the excess and M is the general solution of a
homogeneous difference equation, have been con-
sidered by JNnecke and co-workers. " The in-
homogeneous term M~, which accounts to first
order for Coulomb, pairing, etc. , energies, is
introduced in an attempt to reduce spurious corre-
lations between the point functions that define M.
there is, however, a question whether' this goal
can be achieved with a fem-parameter expression
for M~.

Equations (4.4) and (4.5}are of the form of Eq.
(5.1). For Eq. (4.5), e.g. , M~(N, Z) =p, (N Z)/-
(N+Z} and M(N, Z) is the solution of the (1,0) mem-
ber of the set (3.1). The results given in Table II
show that Eq. (4.5) satisfies the symmetry condi-
tion (8.5) significantly better than does Eq. (4.3).
By the argument given above in the comparison of
Eqs. (4.1) and (4.8), it is reasonable to expect that
false coirelations between the point functions are
further reduced in going from Eq. (4.3) to (4.5).
Although the inhomogeneous term M~ in Eq. (4.5)
depends on many parameters, this equation re-
tains the simplicity of application that character-
ize mass equations which are obtained as solutions
of homogeneous dif'ference equations.
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set of equations

t n

Q Qa(qk; a;,h, = Qa(~A( m(,
l ~1 i=1

which we rewrite as

k 1) o ~ ~ )t

be& = g ~ oui sar i

and y is a t-dimensional column vector with com-
ponents

(A4)

(AS)2
Pg ~ aEPXE mE

k=1

The X,.2 are the weights associated with the mea-
sured excesses m;. The solution of Eq. (A3} is

h=b 1y (As)

provided that the inverse of the matrix b exists.
As discussed in Sec. III, the variables N, g, A,

and E are not independent and, as a consequence,
the matrix b is singular. In order to solve Eq.
(A3) it is necessary to specify a number of inde-
pendent boundary conditions sufficient to account
for the rank deficiency of this matrix.

In an actual computation it is convenient to gen-
erate the symmetric t & t matrix b directly without
first specifying the nx t matrix a since only about
a quarter of the computer storage that would be
required for the matrix a is taken up by the sym-
metric matrix b. In order to proceed in this fash-
ion, however, it is necessary to impose boundary
conditions directly on Eqs. (A3).

Typical boundary conditions are the specification
of the values of particular h, or as conditions on
the shapes or symmetries of these point functions.
Boundary conditions of these kinds can be written
as

E

an,1 ~h,. =e„,1)

bh=y,

where b is a symmetric t x t matrix with elements

E n+q n+Q

bac+ s&as&r h~ = Xa+ Q spec ~ i
1A =n+1 fr+1

It is shown below that the solution of Eq. (A9) is
the solution of Eq. (A3) with boundary conditions
given by Eqs. (AV}.

In the case of boundary conditions of the form
h, =0 the parameters in Eq. (A7) are a„„~=5, ,
and c„„=0and Eqs. (A9) become

Q (bc~+ sai,srrP &

= &a. (A10}

Thus it is necessary only to add unity to the ele-
ment b ..., of the matrix b in Eq. (As) to take this
boundary condition into account. Similarly condi-
tions of the form

gh, (Z) =0, (A11)

Bo B'
Bf

Hh- ' y- (A12)

where B is a symmetric rxr matrix of rank r,
B' is a q && r matrix, B' is the transpose of B Bp
is a q x q matrix, H, and Yo are column vectors of
dimension q, and H and F are column vectors of
dimension r The pa. rtition (A12) is always possi-
ble since b is symmetric and of rank r. Equations
(A3) can now be written as

where the sum is over some subset of values of E,
are taken into account by adding unity to all ele-
ments b„of the m.atrix b in Eq. (A3) where both
h, and h, are included in the sum (All).

That these simple modifications of the matrix b

actually yield the solution of Eqs. (A3} with the
desired boundary conditions is easily demonstrated.
In Eqs. (A3) b is a symmetric f x t matrix of rank
r =t —q; h and y are t-dimensional column vectors.
Let b, h, and y be partitioned as

t

nay J 2 n+q
&=1

(A'I)

ol

BoHo+ B H = Yo )

B'Ho+BH= Y

q"= gX,' m, ga„.h, (AS)

where, for i &n, m; = c,. and X,2 is conveniently set
equal to unity. The h~ that minimize Q are the
solutions of the set of equations

If these boundary conditions are considered simply
as additional mass equations, then, instead of Q2,
the quantity to be minimized is

t 2

H=B '(Y-B'Ho) (A13a)

(Alsb)

l.e. )

B -B'B-'B'=0.
0 t

otherwise, Eqs. (A13b) would determine at least
one component of H, in terms of the remaining

(Bo —B'B B')Ho= Yo —B'B Y.

Here (B,—B'B 'B') is a q x q matrix of rank zero,
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components in contradiction to the original as-
sumption that the matrix b is of rank x. The so-
lution of Eqs. (AS) is thus

ao (A14)

where the q components of Ho are to be specified
as boundary conditions.

I.et these boundary conditions be given as

AHo= E,
where A is a q xq matrix with elements

(A15)

n+q

A„= Q a„a„, k, 1=1,. . . , q (A16)

E)- Jag)cg~ k-l, . ~ . , tg.
4m+1

(A1V)

Since these conditions are independent, A is non-
singular. Conside-r now the matrix equation

b'h = y',

where

(A 18)

Bo+ A B'
B' 8

Yo+ E

Y
(A19)

Equation (A18) is just Eq. (A9) rewritten in matrix
notation. The solution of Eq. (A18), obtained by a

and E is a column vector of dimension q with com-
ponents

calculation identical with that given above for Eq.
(AS}, is

(A20}
8 (Y- B'A 'E}

Le

which is obviously the solution (A14) with the
boundary conditions specified by Eqs. (A15).

For boundary conditions (AV) of the form h,,
=k, = ~ ~ =h, =0, it follows from Eqs. (A16) that
A=I, where I is the unit qxq matrix, and from
Eqs. (A1V) that E= 0. According to Eq. (A19), to
take these boundary conditions into account, the
matrix b is modified by adding unity to the ele-
ments b, s, b, r, , . . . , bs s and the vector y re-
mains unchanged.

The boundary conditions (A15) involve linear
combinations of at most q point functions h, where-
as conditions (All) may involve more than q func-
tions. However, for any independent set of bound-
ary conditions there exists an orthogonal transfor-
mation 0 such that in the partition of the vector Ok,
which appears in the transformed equation (AS},
the components of the vector H, are the appropri-
ate linear combinations of the point functions. To
show that the above simple modifications in the
matrix b also account for boundary conditions
(A11) is straightforward but somewhat more tedi-
ous and the details will not be given here.
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