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Kinetic energy in the mass quadrupole osci&»tion collective model
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A simple microscopic derivation of the kinetic energy in the collective model is presented with no
restriction to small vibrations. The result gives a small correction to the Bohr-Mottelson expression.

NUCLEAR STRUCTURE Kinetic energy found in generalization of Bohr model.

I. INTRODUCTION

Instead of depending upon the identification of
the nucleus with the liquid drop, a satisfactory
modern formulation of the collective model must
be microscopic (see remarks of Wigner at the
l 970 Solvay Conference' ). Recently, this micro-
scopic reformulation has been achieved by identi-
fying the liquid drop surface coordinates 0.» with
the spherical components of the quadrupole mo-
ment. " In this note, the kinetic energy for this
reformulated collective model is determined; the
result is not restricted to small vibrations.

We would like to first study the general problem
of constructing the kinetic energy in a microscopi-
cally-formulated collective model and apply these
considerations to the simple case of the center-of-
mass coordinates. In Sec. II the collective model
itself is investigated.

Let N be the configuration space for some micro-
scopic collective coordinates. By "microscopic, "
we mean there is a differentiable map ~' from R~,
the configuration space of a system of A particles,
onto the collective space M, @':&~ M. For ex-
ample, M may be the center-of-mass space R' and
@' is the map

4 ~ R 8

(3)

An adequate description of a set of collective
states can be reduced to the determination of col-
lective wave functions on I provided the nuclear
Hamiltonian splits

H =~„(collective variables)

+H~&(intrinsic variables}+H „~ (4)

for which, when, acting on the collective states,
H t is a multiple of the identity and the coupling
H „~ is small compared to H~L For the kinetic
part of II, we see that if 4, is well defined, then,
indePendent of the choice of the intrinsic coordi
n«e, the quadratic in the collective momenta is
a part of H~ii and definitely not a part of H,~:

tions. However, all that is necessary for 4 to be
well defined is that &(fo4P) take on the same value
for all elements in the inverse image 4' '(m} for
all m&M. In other words, when the chain rule is
applied to &(fo@}, the coefficients of the resulting
differential operator in the collective coordinates
of I depend only on these collective coordinates.
For the simple center-of-mass case, these coef-
ficients are actually constant equal to +:

Now a differential operator, say the Laplacian &,
on R'" transforms under 4' into a differential op-
erator & on ~ according to

t '(f) =~(foe)oe-',

for any differentiable complex-valued function f on
M.

The apparent restriction here is that @' be one-
to-one so that C'" is defined; this would then elim-
inate the center-of-mass case from our considera. -

For the center-of-mass case, one can choose in-
trinsic coordinates for which the kinetic coupling
is zero.

The importance of the splitting (5) lies in the
fact that the physically appropriate choice of the
intrinsic coordinates now depends entirely on
whether or not the potential energy separates. The
kinetic energy does not figure in the selection of
the intrinsic coordinates for a microscopic col-
lective model in which & is well defined.

As will be seen in Sec. II, the Bohr-Mottelson
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collective model may be formulated as a model in

which 4 is mell defined. Hence, the problem of
realizing this phenomenological model as a fully
microscopic theory reduces to the problem of an
appropriate selection of intrinsic coordinates
whereby the potential energy splits.

II. KINETIC ENERGY IN THE COLLECTiVE MODEL

Egl 0 Q~ «Q 0

(X~~ X~s. . . ~ XA) (fjj) s

~g j +si+nj ~

If the six coordinates q, j, i-j, are taken as a
chart for Q, then& is given by

(8)

We wish to reformulate the Bohr-Mottelson col-
lective model4 as a microscopic model in the sense
of Sec. I and then compute the kinetic energy & .

The Bohr-Mottelson (BM) model supposes that
the nucleus can be characterized, for the explana-
tion of certain collective effects, by its surface.
The model nucleus, considered to have constant
density throughout, is defined by the surface quad-
rupole deformation parameters ns&". With these
assumptions, the BM model has taken the configu-
ration space of the nucleus to be parametrized by
the a™.

However, this configuration space may equally
well be coordinatized by the traceless quadrupole
moment g„. The rather involved coordinate trans-
formation from the as„" to the g„ is explicitly given
in the Appendix.

We are now in a position to naturally reformulate
the BM model by taking the new configuration
space to be the set of all traceless quadrupole mo-
ments for a finite system of A nucleons. The two
configuration spaces are evidently identical in the
continuum limit. Therefore, we may regard the
reformulated model to be a generalization of the
BM model applicable to a finite system.

The question that arises is whether the finite
BM model is as tractable a theory as the continu-
um BM model. In particular, is the kinetic energy
naturally given in the new model~ Since the finite
BM model is a microscopic collective model in
the sense of Sec. I, & is the kinetic energy, pro-
vided it is well defined. Unfortunately, it is not
well defined. However, if the trace of the quad-
rupole moment is included in the configuration
space of the finite BM model, then ~ is well de-
fined [Eqs. (7) and (8) and the moment of inertia
Eq. (11)]. Hence, our finite BM model includes
monopole vibrations.

Of course, this 4 in the simultaneous limit of
small irrotational vibrations, large particle num-

ber, and decoupled monopole motion must give the
usual BM result for the kinetic energy. However,

will also be applicable to a finite system with
no restriction to smaQ vibrations and no assump-
tion of monopole decoupling.

Let Q be the space of positive-definite symmetric
3~'3 real matrices and @' the map

e
(6jj ~jfjjl +6jjt fjjlj

t t~'t
8 9

+ 6jjllgjj ~ + 6 ~ tqj. ~ )
9Q t jt Op~ j

+2AQ,
' . (7)

(8)

where m is the nucleon mass and 8 =8/8jjmAR '.
In order to compare & with the BM kinetic en-

ergy we must (1) decouple the monopole coordinate,
(2) take the continuum limit, (8) make a change of
coordinates from n„ to the surface parameters
a&~", and (4) take the small vibration limit. If the
monopole coordinate p is decoupled, then the ki-
netic energy simplifies to

p2 1 35 xl

+n = [jjx jj] —[jjx n*x jj]'
2B 2B 8m

where p is now a constant. This expression is in-
dependent of the particle number so that it is di-
rectly applicable to the continuum model. If the
change of coordinates is made to the surface pa-
rameters and the small vibration limit is taken

Since the coefficients of the derivatives in g&j are
functions on Q, the Laplacian & is well defined.
Hence, the remarks of the Introduction apply here
and the kinetic energy on many-particle space
naturally defines the kinetic energy in the collec-
tive model.

Comparison with the Bohr-Mottelson kinetic en-
ergy is readily obtained by a change of coordinates
on Q. Let g„be the spherical components of the
traceless quadrupole moment (normalization given
by &0 =2&» -&« —q») and & = Q,p«) ' the monopole
coordinate. The dimensionless collective coordi-
nates n„are defined by q„=8/~5jj AR, 'a„*, where
the constant Bo is the radius of the spherical drop;
we also define a dimensionless monopole param-
eter p by &'=/PRO'p. Then, if jj„= ice/tj-n„,

35 j~
p~[jj x jj]o [tx a*x s]o

2m 2B 8m

[a*xv]0
5zka

2w p Bp
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cx - n~~-0 thenP

p2
[wBM y. wBM ]2B (10)

Since the BM model has p-1 for small vibrations
(see Appendix), the kinetic energy & B yields the
BM kinetic energy O'Q =1/2B[wB" && wBM]B in the
small vibration limit. In particular, observe that
B is the mass parameter for irrotational motion
in the BM model.

We would like to make several observations con-
cerning the collective kinetic energy T jj. Firstly,
in order to have exact correspondence with the BM
model, the monopole coordinate must be complete-
ly decoupled, i.e., p is constant in Eg. (9). How-

ever, if so desired, the coupling can be partially
taken into account by letting p be a function of n„"
(see Appendix). This has been done below for the
moment of inertia [Eq. (11)].

Secondly, it should be emphasized that &„~ is in-
dependent of the particle number. Hence, the ex-
pression for T„II applies to both the finite and con-
tinuum BM models.

Thirdly, this expression for T~u is limited
neither to small vibrations nor to irrotational mo-
tion.

Finally, if the kinetic energy is needed by the
reader in the surface coordinates, then a further
change of variables must be made from o.

&
to

o~". As the formulas of the Appendix make clear,
the kinetic energy Qg expressed in the surface
coordinates is a complicated second order differ-
ential operator, which we have not determined.
Hence, if possible, it would be advantageous to
work with the quadrupole coordinates. This does
seem possible and desirable for various reasons:
(i) In addition to the simpler expression that the
kinetic energy takes, all other physical quantities
of the collective model find a natural expression
in terms of the quadrupole moment, e.g. , the
shape of the nucleus and the K quantum number. '
Moreover, the collective physical quantities are
now given in microscopic coordinates, an obvious
theoretical improvement. (ii) The calculations
performed in the collective model have custom-
arily been made with the small deformation re-
striction. Therefore, such computational results
apply directly to the collective model on Q space
with the same restriction to small vibrations.
(iii) The model on Q space gives a natural bridge'
between the collective model and the algebraic
models of collective motion. '

If we make yet a further coordinate change to
the Euler angles and P, y deformation parameters,
then the moment of inertia may be calculated to
be

4BPB sin'[y —k(2w/3)]
p' + (5/4w)~' P cos[y —k(2w/3)]

When expressed in the surface deformation pa-
rameters P ", y ", thi.s moment reduces to the
Bohr-Mottelson inertia tensor in the limit of
small vibrations, I»-I»" =4B(PBM)' sin'[yB" —k(2w/
3)]. However, the change in the moment from the
Bohr-Mottelson irrotational estimate is relatively
small —about a 30% increase for prolate (yB"=0)
states.

I/I " =1+1.036P™—0.339(P ")'+0([P "P).
(12)

III. CQNCLUSIQN

We have succeeded in deriving the kinetic ener-
gy in the collective model without any restrictive
assumption to small vibrations. The result, [Eg.
(9)] predicts a moment of inertia [Eq. (11)]which
differs only slightly from the liquid drop model.
Nevertheless, if the details of the collective mod-
el spectrum are required, then the correction
given here to the Bohr-Mottelson kinetic energy
must be included.

Such a small modification to the kinetic energy
would seem to support the claim that the potential
is largely responsible for the large increase in
the moment from the irrotational estimate. How-
ever, it has been shown by Gulshani and Rowe'-
that a reasonable choice of intrinsic coordinates
[a smooth transversal of G+3)] naturally intro-
duces terms from the intrinsic and coupled kinetic
energy which very well might be responsible for
the increased inertia tensor.

A collective model for the order ~ multipole mo-
ment: can be obtained by taking the collective space
M to be the polynomials of degree ~ in x„;. How-
ever, since the coefficients of 4 are polynomials
of degree 2~ —2, & is not well defined unless
~ =1,2.

APPENDIX

In this Appendix, explicit formulas are given for
the change of coordinates from the nuclear surface
coordinates to the quadrupole coordinates.

The nuclear surface R(8, Q) as a function of the
directional angles (8, &f&) is given in terms of the
constant equilibrium radius Ro and the surface
deformation coordinates e~:

Assuming constant density and noting that conser-
vation of particle number defines the density in
terms of the surface parameters, we may com-
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pute the traceless quadrupole moment q„= S/
~5wAR Bag:

4w ~'Jdg5)" (g)+[I+(5/4w) 'Ln "& ' (g)]'

fd@1 (5/4w)1/B~BM~&a) (g}]s

(A2)

Hence, &w„ is a rational function of the oBM. If the
change of coordinates- from a, to o.BM is made in
the expression for A [Eq. (8)] then the resulting
kinetic energy in the surface coordinates is a sec-
ond order differential operator with rational coef-
ficients in nB„M,

We also wish to give the transformation from the
surface rotational-vibrational coordinates (Q ",
PBM yB"} Q = Euler angles, to the quadrupole
rotational-vibrational coordinates (Q, P, y):

&BBM +4p&B) (QBM )QZ BM u pBM COSyBM

Hence, the kinetic energy in the surface rota-
tional-vibrational coordinates is a second order
differential operator whose coefficients are "solv-
able by radicals, " i.e., rational functions with
square roots.

The exact formulas for (J3, y) in terms of (PBM,
yB") are clearly very complicated. However, Tay-
lor' series formulas can be given:

P 2 5~2,„
pBM 7

=1+—— PBM cossyBM

cos2SyBM (PBM)B +O (ISBM)B)
1 103 20

14m 14 7

cos(y —yB")=1 — (PBM)' sin'yB"BM

49m

x (1 +2 cos2yBM) +O()P "('), (A5)

M 2 5 BM BM
u'2

sin(y —yB ) =-—— P siny (1 +2 cos2y )BM

7 7r

a~ =0,
1 BMp' SinyBM,

(AS)
+ (P )' tanyB" (1 +2 cos2yBM)BM

49m

x(cos 2yB" —sin'yBM)+O((P "P).
and similarly for 0,„. From the invariance of the
integral in (A2), one obtains

(a) Q =Q, i.e., the Euler angles are identical;

« "fdga&» ( )*[I+ (5/4w)&gsBMQ&B (g)]
J'dg[I + (5/4w}'Ks'~". ' (g)]'

II

(A4)

The vibrational coordinates (P, y) are defined in
terms of the surface vibrational parameters (P ",
yBM) by P =(s,B+2cc,'}~' and tany=v2s, /so.

(PBM)B+(5/4wP/B(PBM)3cosSyBM
4N' 14@'

+O (ISBN $} (A6)

The nuclear surface defines all shape observ-
ables in terms of the deformation parameters. In
particular, the trace of the quadrupole moment is
given by

f&fg[I +(5/4w} 'Es'"&"' (g)]'
P U

jdg[I +(5/4w}~B+sBMe&*,& (g)]
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