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A once-subtracted form of the Low equation for the pion-nucleon scattering amplitude is derived, with
partial conservation of axial-vector current used to define the amplitude when one pion is off the mass shell.
The static approximation is not made and both the seagull terms and the antinucleon contribution (z graphs)
are retained. The theory is applied to calculate the S-wave amplitudes in the elastic scattering region. Good
agreement is found with the phase shift fits to the data when we use |g,(4M %) = 11.69 and 25,5 MeV
for the # N o commutator. The implications of this work for the analysis of low-energy elastic scattering of
pions from nuclei are discussed. In particular, we point out how this work establishes the presence of a
Laplacian term in the pion-nucleus optical potential with a magnitude that is fixed from the value of the o

commutator.

NUCLEAR REACTIONS Pion nucleon scattering, off-shell amplitude, o commu—}
tator, Laplacian in pion-nucleus optical potential.

I. INTRODUCTION

In a recent paper’ we presented a brief descrip-
tion of a theory of the low-energy pion-nucleon in-
teraction and its main results. The present article
gives a detailed exposition of the rationale behind
the theory, the method of calculation and a fuller
description of our results for the S-wave 7N am-
plitudes.

The work was motivated by our study® of the
problem of low- and intermediate-energy pion-nu-
clear scattering which requires a knowledge of the
pion-nucleon scattering amplitudes where all par-
ticles are off their mass shell. Currently several
methods of constructing such amplitudes are pop-
ular. One of these, for example, is the Kisslin-
ger® model where one represents the isoscalar,
spin-independent part of the 7N amplitude in the
form b(w)+c(w)k+k’. In the simplest model w, K,
and K’ are the pion energy, final, and initial mo-
menta, respectively, in the c.m. frame. The quan-
tities b(w) and c(w) give the strengths of the S- and
the P-wave amplitudes. There has been consider-
able discussion* as to whether one should use the
Kisslinger form or the so-called Laplacian form,
b(w) - c’(w)(k—k’)>. Inevitably the question arises,
why not a combination of both, b (w) - c”(w)(k - k’)?
+d(w)k+k’. Clearly, questions of this nature can-
not be settled without a dynamical theory of the
pion-nucleon interaction. For the P wave there is
the well-known work of Chew and Low® based on
the static approximation and neglect of seagull
terms. Similar approximate treatments have also
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been tried for the S-wave amplitudes.® The theory
described in the present work is an extension and
improvement of these earlier efforts in which both
nucleon recoil and the seagull terms are included.
Another popular approach to describing the pion-
nucleon interaction makes use of separable poten-
tials. This method, originally proposed by Landau
and Tabakin,” gives for the isoscalar, spin-inde-
pendent amplitude the form b(w v (k2w (k"2)
+ c(w)k *k’v p(k?)v p(k2). The method has the advantage
that the quantities b(w) and ¢(w) and the form factors
vg and v, can be determined from experimental
data by an inversion procedure. Attempts have
been made to improve this approach.® But the re-
sults are only as valid as the rationale for des-
cribing the dynamics with a potential in the first
place, and then for a separable potential in every
channel. The Chew-Low theory and the resonance
dominance justifies a separable form for the P-
wave amplitude. But it is hard to justify a separ-
able S-wave amplitude and we do not know of any
attempt at providing the needed justification.
There are three basic mechanisms in pion-nu-
cleon elastic scattering which any model of the TN
amplitude must include. First, there are exchanges
of scalar-isoscalar bosons and vector-isovector
bosons between the pion and nucleon. Second, a
nucleon can absorb a pion and then emit it, or emit
and then absorb a pion. Third, a pion can virtually
dissociate into a nucleon-antinucleon pair, the nu-
cleon going into the final state and the antinucleon
being absorbed by the initial nucleon to form the
final state pion (z graph). In addition there are
many other processes involving more bosons and
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baryons, but these are less important for the low-
energy interaction. The most practical method of

describing these important mechanisms is to use
field theory, where the scalar quantity®

(o) -E -m?) [awets [ ayevrys [ atze i 0| TWY), b4x), Te),ia(0)) [0X S, M)l

is the general pion-nucleon scattering amplitude
associated with the process depicted in Fig. 1.
When any one of the four momenta p;, p,, &, or
k'=p,+k—p, is such that its square is equal to
the square of the mass of the associated particle,
the corresponding particle (or leg) is said to be on
the mass shell.

Apart from the familiar symmetries imposed by
Lorentz invariance and isospin independence the
pion-nucleon scattering amplitude must satisfy the
symmetry conditionresulting from the self-charge-
conjugate character of the pion. This is known as
the crossing symmetry which says that the scatter-
ing amplitude is invariant under the change 2 — -k’
and a — 3. The importance of crossing symmetry
in pion-nucleon scattering is well known. Its im-
portant role in pion-nuclear scattering has been
discussed by us'® earlier. Field theory provides
a convenient framework in which to construct a
crossing symmetric amplitude, though a potential
formalism can also incorporate this symmetry.'°
There are, however, a number of difficulties in a
potential theory approach to the 7N amplitude.

Since potential theory is generally used in the
analysis of m-nuclear scattering, it is perhaps
worthwhile to discuss the relation between the
potential and field-theoretic descriptions of the
elementary m-nucleon interaction, For the present
discussion we ignore spin, so the 7N amplitude
becomes a function of six scalar variables. It is
convenient to choose these to be the following six
c.m, frame quantities: the total energy W=p, +%,,
the squares of initial and final momenta, B2 =Kk?
and §;=k”, the angle of scattering 6, and the pion
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FIG. 1. Diagrammatic representation of the 7N scat-
tering amplitude for m,(&’) +N(p;) — 75 ) +N (p4), where
@, g denote isospin components (1,2, 3).

—
energies &, and k. We note that usually a potential

theory is used to describe an interaction which is
instantaneous inthe c.m. frame, so the resulting
scattering amplitude cannot depend on &, or &{.

It can be a function of the first four variables only.
Nevertheless, a subset of the relativistic am-
plitudes can be described by an effective potential.
The subset has k,=kg=(1/2W)(W? = M?+m,?),
which is the value when all particles are on mass
shell. With this condition%® —p* =k p > =m - M?,
but not necessarily &*=m?, p,>=M?, etc. These
amplitudes are usually categorized as being on or
off the energy shell. When W =(M? +p,2)/?
+(m,2+p,%)'/? and p,* =P, (c.m. frame) the ampli-
tude is on the energy shell. When W =(M?+p %)*/2
+(m12+§f2)1/2 or W=(M2+§‘2)1/2+(m,2+§‘2)1 2 and
B, #P,’ it is half off the energy shell, while if

W+ (M2+§f2)1/2 + (m'z +§ 2)1/2 and W# (M2+ﬁiz)1/2
+(m2+P,7)' /% and §#9,° it is fully off the energy
shell.

There are two steps in deriving the effective po-
tential. First one writes down the Bethe-Salpeter'!
equation for the scattering amplitude. Next one
uses the Blankenbecler-Sugar'? prescription for
converting the Bethe-Salpeter equation into the
Lippmann-Schwinger form. In the process one
replaces the product of the Feynman propagators
for a nucleon and a pion appearing in the Bethe-
Salpeter equation by the Lippmann-Schwinger
propagator with a 6 function which keeps the ener-
gy of the intermediate pion fixed at (1/2W)(W? - M>
+m,2). Now, if the external pion energies are al-
so fixed at this value all references to k, and &}
are removed,

In practice it is very difficult to carry out the
program described above.!® It has proved to be
quite difficult for nucleon-nucleon scattering. For
pion-nucleon scattering the problem is further
complicated by the existence of the absorption-
emission mechanism and crossing symmetry.

Even if the equivalent potential could be found
there would be still another difficulty in using the
resulting amplitudes in the problem of pion-nu-
clear scattering. This can be seen from the follow-
ing considerations. To construct the first order
optical potential one needs the amplitude where,
in the target nucleus rest frame, k,=k{ and
Ppo=Po=M — € with € the binding energy of an oc-
cupied single particle state. One also needs the
amplitude for a wide range of values of E, 'ﬁ,, and
P;. So the required conditions for a potential des-
cription, namely, 2k:(k+p,)=(k+p,)° = M*+m ?,
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etc., or equivalently p®—k*=p 2 -k =M*-m?,
cannot be fulfilled. (This problem is also present,
in principle, in nucleon-nuclear scattering.) This
problem is related to the noninstantaneous charac-
acter of the interaction. The noninstantaneity of
the pion-nucleon interaction manifests itself
through the dependence of the scattering amplitude
on the variable v=(1/2M) [W? - M2+ |5, | |B,|cosé
~kokl]. The isoscalar (isovector) part of the scat-
tering amplitude is an even (odd) function of v, which,
we emphasize, depends explicitly on &k, and %§.

Because of these difficulties with a potential the-
ory description of the 7N amplitude, we consider
instead a field-theoretic description. We develop
a theory for the amplitudes where only one pion is
off the mass shell. Once these are known it is
straightforward to construct amplitudes where
both pions are off the mass shell. Construction of
amplitudes where all particles are off the mass
shell requires some approximations which will be
discussed in a future paper. The present work is
thus a necessary first step in the construction of
the amplitudes required in the analysis of pion-
nuclear scattering.

In the following we present a theory of 7N scat-
tering which is a logical extension of the work of
Chew and Low.®> We use the Low equation'* ob-
tained by LSZ reduction,® but in contrastto Chew-
and Low we do not use the static approximation,
and we retain the seagull terms and the antinucleon
intermediate state contribution. The definition of
the scattering amplitude off the mass shell of one
pion follows, in part, from the identification of
the interpolating pion field as the divergence of the
axial vector current. A soft-pion limit is used to
eliminate the isoscalar part of the seagull term
and obtain a once-subtracted form of the Low equa-
tion which suppresses contributions of high-mass

intermediate states. This equation allows the
evaluation of both the physical 7N amplitude as
well as the off-mass-shell’® amplitude once the
remaining dynamical inputs are specified. These
include the isovector part of the seagull term, the
pion nucleon form factor, and the ¢ commutator
term which appears in the soft-pion limit. We
discuss the validity of each dynamical input to the
theory.

The Low equation derived in Sec. II describes
all 7N partial waves and formally is valid for all
energies. In Sec. III wepresenta covariant partial
wave expansion of this equation and describe the
method of numerical solution for the S-wave am-
plitudes using Padé approximants. Several new
and useful techniques developed for solving the
S-wave equation are discussed in sufficient detail
so that they may be applied readily to other prob-
lems. In Sec. IV we comment on the various sets
of “experimental” phase shifts, the method of
searching for the best values of the parameters
of the theory and our final results for the S-wave
amplitudes. We find that our on-shell amplitudes
agree well with experiment. Section V contains a
brief discussion of the significance of the values of
some of the parameters determined by our anal-
ysis, and Sec. VI includes a summary and conclud-
ing remarks.

II. DEVELOPMENT OF THEORY
A. Off-mass-shell amplitude and the Low equation

An expression for the off-mass-shell pion-nu-
cleon amplitude is obtained by applying the LSZ
reduction procedure® to the S matrix element for
7N scattering,

S;4=(ms(k),N(p,);out |7,(k"),N(p,);in),

which gives

Spy =0, +i(2m) 0Nk +py = k' = P )P0 (P, 17, k) lko=(m,,23,i2)1/2, K= Cnly 2 K 201/

with

Pf0=(M2*5f2 )1 /2'9‘0 =(M2+5‘2 )1/2

FB a(pupf’k) = (n’B(k),N(bf); out ’]a(o) lN(p{» |k0=(m'2+12)1 /2 (1)

pfo=(Mz¢§f

2,1/2

2,2 2,1/2
pyo=H243, 21/

(O+m2)p x) =7 4(x)

and where ¢ (x) is the interpolating pion field. In
the S matrix element the four-momenta of all par-
ticles satisfy an appropriate mass shell constraint.
The amplitude F,,(p,,p;,%) has no explicit depen-
dence on the four-momentum k&’ of the initial state
pion. Defining the four-momentum of this pion by
the energy-momentum relation

k'=p,tk-p,, (2)

we do not necessarily have £ =m 2. Thus with (2)
giving the dependence of F on k’, we take Eq. (1)
as a definition of what can be called a “half-off-
mass-shell” amplitude. In this work we are pri-
marily concerned with the numerical evaluation of
this amplitude. This is accomplished by solving
the Low equation,'* which is a nonlinear inhomogene-
ous integral equation for this off-mass-shell am-
plitude.
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We develop the Low equation by reducing out the final state pion in (1) giving

Fa(k)=i f dixe' e (O +m,?) (P, | T(D4(x)j o (0))|p,) I%Ma Py SVPRP PNV ®3)

The symbol T denotes the usual time ordering of
operators, and for brevity we henceforth indicate
only % as the argument of F, and where no confu-
sion can arise, we omit the particle symbols N and
7. In (3) both initial and final nucleons are ontheir
mass shell, but since the four-momentum of the
final state pion occurs only in the exponential it
can be taken as a freely variable parameter no
longer restricted to satisfy the mass shell condi-
tions K =m?, k,>0. To guarantee a convergent
integral, however, the four-vector 2 must be real.
Thus with %2’ again given by (2), Eq. (3) defines
what may be called a “fully-off-mass-shell” am-
plitude.

Allowing the Klein-Gordon operator to act on the
matrix element in Eq. (3) gives

Foo(k) =(b, i€k +1)-Y0) |5)) +(b, | 5,52 (0) |))

+i [ awes(p, TG0 i ONlp), @

where we have made the definitions,
(By i€ (R +E") *YX0) +5,,5(0) p,)

= [ (b, 1800t [84),o(0) ]

+10(x,) [qsa(x):ja(o) ] Ip‘)e""’d“x (5)

with ¢ =(d/dx,)¢. This equation defines the so-
called seagull terms. Z is a scalar-isoscalar op-
erator, while Y is a vector-isovector operator.
Crossing symmetry requires that in an expansion
of the seagull terms in powers of k£ and &’ the iso-
scalar operator is associated with even powers
while the isovector operator multiplies the odd
powers. In phenomenological Lagrangian models?*®
¥ and Y describe the ¢-channel exchanges of scalar-
isoscalar and vector-isovector bosons, respec-
tively. The (2 +k’) factor in the vector term, for
example, is also present in the expression cor-
responding to the Feynman diagram for p-meson
exchange between a pion and a nucleon. From a
simple study of phenomenological Lagrangians
one can see that the quantum numbers of pions
and nucleons exclude from Eq. (5) operators with
transformation properties different from those of
ZandY.

It is straightforward to obtain from (4) a non-
linear inhomogeneous equation for the half-off-
mass-shell amplitude. One inserts a complete set
of physical states between the current operators
in both terms of the time ordered product. The

-
[1rN) state contribution gives terms quadratic in
the half-off-mass-shell amplitude. The other in-
termediate state contributions plus the seagull
terms constitute the inhomogeneous terms. Also
setting &, = (m,? +Kk?)!/2 yields a half-off-mass-
shell amplitude on the left-hand side of the equa-
tion.

B. Dynamical input

Before presenting the details of the evaluation of
Eq. (4), we list and discuss five dynamical fea-
tures which determine both the off- and on-shell
behavior of the 7N amplitude.

1. The interpolating pion field is defined to be
proportional to the divergence of the weak axial-
vector current.

05)= 0,450, ®

where f,=0.939m,° is the charged pion decay con-
stant. There are two consequences of this defini-
tion:

a. It fixes the form of the coupling of pions to nu-
cleons in the soft-pion amplitude discussed below,
and

b. it sets the stvength of the coupling of pions to
nucleons at zero momentum transfer by the Gold-
berger-Treiman relation!” between the 7N form
factor g,(0) and the weak axial form factor g ,(0);
namely,

£,(0)=vZ Mm 2g ,(0)/f ,=12.7, (7)

where M is the nucleon mass, and g ,(0)=1.25. The
dynamics implicit in (6) has been tested before,
for example, inthe Adler-Weisberger sum rule,'®!®
which agrees with experiment to within 5%. Fol-
lowing conventional usage we refer to Eq. (6) as
the hypothesis of the partial conservation of the
axial-vector current (PCAC). It should be noted
that in using (6) we will not need to assume
“smoothness” in the behavior of matrix elements
as pion variables are changed.

‘2. We assume that the isovector seagull term
Y*=0. This is basically equivalent to the assump-
tion that there is no canonical p-meson field in the
Lagrangian for 7N scattering. We stress that this
does not imply that our theory excludes the effects
of vector meson exchanges. Basdevant and Lee,?
for example, using the ¢ model of Gell-Mann and
Lévy,?! have shown that p and f, resonances can be
dynamically generated from higher order itera-
tions of a unitary theory even though the vector
mesons are not included in the Lagrangian.



3. We must define the strengths and invariant
momentum transfer dependences of two invariant
form factors which enter our model independent
analysis. One is the 7N ¢ commutator form fac-
tor I' (f) (for ¢ <0) and the other is the 7N form
factor g,(¢) (for ¢ <0 and ¢ > 4M?). We find that the
most important features of these form factors are
constrained by the on-shell data.

4. A necessary consequence of crossing sym-
metry and nucleon recoil in any theory of the 7N
amplitude is that the integral equation for each
partial wave amplitude is coupled to all partial
wave amplitudes. Thus to solve for the S-wave
amplitudes from the Low equation it is necessary
to specify the off-shell behavior of the > 1 partial
wave amplitudes. We have therefore introduced
simple, separable forms for the P-, D-, and F-
wave off-shell amplitudes. We find that the effects
of the D- and F~-wave amplitudes are negligibly
small over the entire elastic scattering region,
and that the P-wave amplitudes have a small, but
non-negligible, effect on the S-wave amplitudes.

5. Finally, we recall that to express Eq. (4) as
an inhomogeneous equation for the off-shell am-
plitude a complete set of physical states is in-
serted between each term of the time ordered pro-
duct. Naturally, this infinite sum must be trun-
cated. The truncation is carried out in the c.m.
frame. Because of truncation, the integral terms
are no longer covariant. We include only those
low mass states which are felt to be most import-
ant. These include the states |N), |7N), and the
disconnected parts (z graphs) arising from the
|NNN) terms, where N =antinucleon. The ration-
ale for retaining only these states will be pres-
ented when we discuss the evaluation of the inte-
gral term of Eq. (4). But let us point out here
that because our treatment of the isoscalar sea-
gull term leads to an equation with a once-sub-
tracted form, the effects of higher mass states
will tend to be suppressed.

C. Evaluation of the Low equation

We now consider the evaluation of the two re-
maining terms in Eq. (4), the isoscalar seagull
and the time-ordered product of currents terms,
using only Lorentz covariance and the above-men-
tioned dynamics.

1. Isoscalar seagull term

The isoscalar seagull term can be eliminated
from the Low equation by using a soft-pion limit
of the fully-off-mass-shell amplitude. Rewriting
Eq. (4) without the isovector seagull term

Fao(k)=(p,| 8452 (0)| D))

+i [ dte™xp, | TG )i a0 b)) » (8)
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we recall that 2 is a freely variable, real para-
meter. Taking the limit in which all four compo-
nents of k£ vanish yields a soft-pion amplitude

lim [lim B (k) ]=F 4, (0)
ko0 k-0
=(P;|645Z(0) |py)

+i [ @%(p, | TG0y (©)

Subtracting Eq. (9) from Eq. (8) formally elimin-
ates the isoscalar seagull term

Fpull)=F g, (0)+i [d'xe™=(p, | TG, (0))]2)

—i [, ITG @ OBy . (10)

For Eq. (10) to be an improvement over Eq. (8),
which contains the unknown seagull term, we must
of course know F,(0).

An exact expression for the soft-pion amplitude
can be obtained by using PCAC, applying the gen-
eralized Ward-Takahashi identity?? to the original
equation for the fully-off-mass-shell amplitude,
and taking the limit 2 -0. Using Eq. (6) and inte-
grating by parts with the D’Alembertian in Eq. (3)
gives

Fg,(R)=1i fd“xe“”‘(m,"’ - F?)

X (p! |T((ﬁ/f,)auAs(x),]m(O))lp(> .

With P denoting the energy-momentum four-vector
operator, translational invariance implies the
equations

A;(x) =elP¥xAg(0)e-i P-x’
ja(x) =e“"'"j¢(0)e"P"‘ .
Thus we have
Fg, (k) =i f d'xe” ¥ *(m 2 - k%)
X (b, | T(VZ /£ )0, AL(0),5,() D))
where &’= (p,+k - p,) has been used. From the

definition of the pion source current

Jal0)= (D+m,2)¢u(x>=(a+m,2>“f

9,AY (x)

we get
Fgo(R)=i(m 2~ ) m?2-k?) (V2 /f,)?

x f dxe™ ¥ %(p | T(2,AL(0),8,45x))|p,)
=i(m,? - ) m 2 -™*)V2 /f )

x [ atvew=p,|T(o,4%(x),5,4%0)|p)
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where a second translation was used to get the
last line.

Upon integrating by parts the 8, A%(x) term we
find

Fao(R)=i(m? = B*)(m 2 - k®)(VZ /f,)? (i(p, |0(0)8,4]p5) — % f d'xe™ *(p, | T Agx), auA:(O))Ipo)- (11)

The 7N o commutator®®»?* is defined by

(/08,4 p =1 [ ae8(eo)p, | 143(3),5,4%0) 1|5

“rg(t)ﬁ(Pf)“(P;)aaa- (12)

The last line follows from Lorentz covariance as
the most general form for this matrix element,
with I' (/) an invariant function of the invariant
momentum transfer ¢ =(p, - p,)*. That the o com-
mutator is symmetric in isospin indices follows
from the assumption that

fc
ay“

Though this relation is implied by the SU(2) x SU(2)
algebra of currents,?® the converse is not true.
Thus the isoscalar nature of the 0 commutator

—30) [A2(),A%() Ja*x =0

—i [ de = (p, | TG4 ), 5,450)|p)

T

follows from a weaker condition than the current

algebra.
We parametrize the form factor l“c(t) as
r,()- olal) (13)

A-t/p2PA=-t/p)"

The quantity o(7N) is an important parameter of
low-energy 7N scattering. Its numerical value is
especially significant since it provides a direct
measure of the strength of the chiral-symmetry
breaking part of the strong interaction Hamilton-
ian.** As we discuss below, o(nN) is accurately
determined from Eq. (10) by requiring that the on-
shell amplitudes agree with experiment.

In the final term in Eq. (11) we insert a complete
set of physical (in or out) states in both parts of
the time ordered product, translate A (x) to A,0),
and carry out the integration giving

5 218,420 e [£-4,0)p) )

=(2”’32<53(R+P _ ) PleAg0) [m)n[2,A50) [p)) _ PG +R- 3

kot Dro=no+in

n

where, in an obvious notation, n denotes the total
four-momentum of the state |n).

To form the soft-pion amplitude, we must let
all four components of £ approach zero. If wefirst
let k -0 then ko, — 0 on the right-hand side of (14)
we have a well-defined limit

2(—<p,|A () [5,5)p,s |5,4%,(0) |

- 51% (b 18,45(0) [pysXp,s |A3(0) Ip.>> ,  (15)

i.e., only the nucleon intermediate state contri-
butes. The sum over s denotes a sum over the nu-
cleon spin states and the factors M/p, arise from
our invariant normalizatiog of states. The limit
whereby %,- 0 first, then k -0 differs from (15)
and does not appear to be useful in the present
work.

The form of the matrix element of the axial cur-
rent between nucleon states follows from Lorentz
covariance as

(p’|A%0) [py=a(p") [gA)r* + gp ) (D"~ p)* ]
Xys2Tgu(p) (16)

kotny,—pY—in

(14)

r
with g ,(t) and g, () the weak axial and induced
pseudoscalar form factors, respectively. An ex-
pression for the matrix element of the divergence
of the axial current is obtained using PCAC, the
definition of the pion source current j,(0) and
Lorentz covariance:

(b;18,4%00) |p,) =, | (£,/VE) 000 |1

B ARCAIROITN
VT mr—t

2‘/_f2'_‘_ ig,(t)ﬂ(l’f)')’s‘fau(ﬁ;) . (17)

2
m,?=1

Equation (15) then becomes

G (£ b

(MP M-4) YT, Ts>u(p;)

10
This represents a nucleon pole term in the soft-
pion limit.

Taking the limit £ -0 in the order noted above,
and using &’ =(p, - p,)* =t in that limit, we obtain
from Eq. (11) the soft-pion amplitude in the form



17 THEORY OF THE LOW-ENERGY PION-NUCLEON INTERACTION 1131

Fgo(0)=(VZ /f,)’m 2t = m P)T o Ya(p,yu(p,) 0,

- g,(t)g,(0)(p,)

(18)

where in getting the last line, we have used the
Goldberger-Treiman relation. The factor (t—m'z)
in the o term is precisely what is required by the
Adler consistency condition.?® In Sec. VI we will
comment on the role this factor plays inthe pion-
nucleus optical potential. We note that this ex-
pression for the soft-pion amplitude is exact, as
there are no other terms in the sum over states
which survive in the k-0 limit.

The remaining part of the isoscalar seagull term,
the integral expression in Eq. (9), is evaluated in )

i [ dtxe™(p,|TG,0)i.O)p)

the same manner as the first integral term in (10),
which we consider in the next section.

2. Time-ordered product of currents terms

To solve for the half-off-mass-shell amplitude
from Eq. (10) we must evaluate two integral terms
containing time-ordered products of pion source
currents. In one term, the four-momentum of the
final state pion must satisfy k,=(m, 24 k2)1/2 (hard-
pion integral), while in the other k=0 (soft-pion
integral). Since the latter can be obtained from
the former by a trivial change of variables we con-
centrate on the evaluation of only the hard-pion
integral.

Inserting a complete set of physical states in
both terms of the time-ordered product and car-
rying out the coordinate integration after trans-
lating the Heisenberg picture operators to the
space-time coordinate origin gives

=— @Y <53(k+p ) <le]B(0)l"><”IJ O]p) _ g

- BotPpo— Mo +in

The first term on the right will be referred to as
the direct (s channel) part, while the second will
be called the crossed (# channel) part. The ad-
missible states ln) consist of one or more parti-
cles with total baryon number +1. When |} con-
sists of one pion and one nucleon we get a contri-
bution to the right-hand side of (19) which involves
an integral quadratic in the off-shell amplitudes of
interest. Other contributions, along with the iso-
scalar seagull term, form the inhomogeneous part
of the integral equation for the off-shell amplitude.

We include in the inhomogeneous term the con-
tributions from the nucleon and antinucleon inter-
mediate states. The nucleon intermediate state
contribution is straightforwardly evaluated. As in
Eq. (17), Lorentz covariance implies that the ma-
trix element of the pion source current between nu-
cleon states has the form

(970 |p) =i g ((p" = PYWE(D")YsTou(p), (20)

which leads to the following pole terms

g'((pf —P)Z)g,((f); -p
jg(ko +pf0 - M)

gf((p_f l)z)g,((pg"l)z)
2 (k +l ‘p{o)

D a(p) 1 = v mr e p)

X T (Ppy) (Lo = pro—Dso)Vo+ M ITqTaulp,)  (21)

as the direct and crossed nucleon state contribu-

(b, |J «(0) [n)n IJB(O) ‘P¢>>
+11) I e . (19)
tions to the right hand side of Eq. (19). Equation

(21) is expressed in the 7N center-of-mass frame,
k+pf 0, and l and p are four—momenta of physical
nucleons with1=- (k +k') and p=0. Figure 2(a)
shows a diagrammatic representation of the nu-
cleon pole terms.

Obtaining the antinucleon term is a bit more
complicated. It is given by the fully disconnected
piece of the product of matrix elements of cur-

rents appearing on the right of Eq. (19). The term
S k' "
\\ K k,” ~ -~
\ 7/ />\
—_— . ., —_— D
P; P P P¢

(a)

e
.
Pt

(b)

Pj
N
—- : _-7—k
k —r
Ps

FIG. 2. (a) Nucleon pole diagrams corresponding to
Eq. (21). The intermediate state nucleon is in a positive
energy state only, and thus these are not Feynman dia-
grams. (b) z graphs corresponding to Eq. (24). The
intermediate state particle is an antinucleon, described
by a negative energy propagator.
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“disconnected” can be defined rigorously using the
reduction technique.?” Roughly what it amounts to
is as follows. In a matrix element like (N, |G |N ),
where x is any particle(s) and N denotes nucleons,
one has a term in which N, propagates freely, and
the rest where it does not. Thus we may write

N, |G [Ny =N, [N )O[G |x) + (N, |G [N x), .

The first term is referred to as disconnected, and
J

e ¥ (96~

- (0 ']B(O) ]P“n)(bf, l]a(o)l()) + 53(k+n+ ) (0 ]]m(O) |pg:n><t7p I]g(o) |0>>

n ko=Dyo=No+1iM

where now the states » must have baryon number
—1. Thus the antinucleon is the lowest mass par-
ticle in the sum.

From covariance we have

07O [N(p ), N®) =i g (D, +DVYT(B)YsTu( D)) -

(23)

That the same form factor appears in both the
coupling of the pion current to a nucleon-antinu-
cleon pair and the coupling of the current to two
nucleons [Eq. (20) ] follows from the reduction
formalism. It should be noted that in Eq. (20), the
argument of g, is <0, while in Eq. (23) it is >4M?

From Eq. (22) the antinucleon contribution from
the hard-pion integral to the inhomogeneous term
is

(P ) B+B,)TaTu(p,)

-Re lg,((P,*P)z)g,((PﬁP )] 2po(ko+pfo+po)

“Re [g7((p,+1 Pg ((p, + D] "2AT A TTanlp)
zlo(pio +lo - kg)
(24)

where the four-vector p is the same as defined
previously and [ is the four-momentum of a phys-
ical nucleon with 1=K +k. Again, Eg. (24) is ex-
pressed in the c.m. frame. Figure 2(b) shows a
diagrammatic representation of the antinucleon
pole terms, and from the shape of the nucleon

the second as connected (subscript ¢). Note that if
G cannot connect the vacuum and the state |x),
there is no disconnected term. When a product of
two such matrix elements appears as in Eq. (19),
we will then have a fully connected piece, two
semiconnected (or semidisconnected) pieces, and
a fully disconnected piece. In the Appendix this
decomposition is worked out explicitly for the
terms of Eq. (19). We find for the fully discon-
nected part of Eq. (19) the expression

(22)

ko tPpotno—11

‘lines it is clear why these are referred to as z
graphs. The factors Re [g’:((p, +17)2)g,((pi+17)2)]
arise because in summing over intermediate states
in (22) we have used 300, ;e + Dooutstares)e SiNCE
there is considerable uncertainty®® in the knowledge
of g,(t) for t> 4M?, in Eq. (24) we will make the
simplifying assumption of replacing the real part
of the product of two complex form factors by the
product of two real functions, called Z,(t), and de-
fined, for ¢= 4M?, by
2\=-1
£, )=g, <1+ 41:1\24 > ’

0

(25)

where g, = lg,(4M2) |. This quantity will be deter-
mined from on-shell data as will the parameter
my. For g (t), t<0, we use

_ Lt — 4MP)\ !
£,(t)=g,0) <1 + m;r) ) (26)
with the same mass parameter m,. The expres-

sions (25) and (26) were obtained from a crude
dispersion relation analysis of the 7N form fac-
tor.?®

Estimates of the magnitudes of terms arising
from other intermediate states suggest they are
small in comparison to those discussed so far for
either of two reasons: The coupling constant for
the process is relatively small or the phase space
factors tend to suppress the contribution. Hence,
combining these results, our approximation to the
hard-pion integral becomes

g f d*xe'™*(p, | T(jg (%) 4(0)) D)) -£:llp, = PP)e D, - p)) a(pg)(1 = %) TaTqu(py)

2(ko +pf0 - M)

&= 1)g (P~

2o+ lo— P 10)

_E (b, +PY)E (£, +P)%)

D) b ) [ty D10 = byo)¥o+ M ITaTul )

2i’o(ko +P;o+p )
(b, 4 DEL(D+TN)

E(Pf)(# +i‘f)757gu(P‘)

u(i’,)(l/*'t‘;)"'a%u(i’ )

2l,(pyo+1o = ko)
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+ Z Z, f M M <pf|ja(0)|qNS,q,Y><qNS,qx'yl]‘a(o) Ipo

(21’2, q 3o

Ao tdeo=Ppo—ko—1iN

x 0@, +y+B,+k)
f qg gy M (b,17.00)|ays,a,74axs ,q,7]i50)|p)

(2m) 2‘1,0 q No

q ot deo—Pio ko

X 63§, + Gy +K = By)- (27)

The corresponding expression for the soft-pion in-
tegral is obtained from Eq. (27) by dropping the
nucleon pole terms, setting (ko,k) 0, and replac-
ing the four-vectors p by (D0, —pf) and 1 by
(Pios=By)-

In summary, we have developed from Eq. (10)
an inhomogeneous, nonlinear integral equation for
the half-off-mass shell pion-nucleon amplitude
which can be written in the schematic form

F~V+ f [(F'F)p+ (F'F) ] - f [(F'F),+(F'F) s,

(28)

where V consists of the 0 commutator and soft-
pion N-pole terms of Eq. (18), the hard-pion N-
pole terms of Eq. (21) and the z graphs of Eq. (24).
The subscripts D and C denote direct and crossed
terms, while H and S stand for the hard- and soft-
pion integral, respectively, with appropriate ener-
gy denominators understood. By omitting the S-
wave inelastic states from the complete sum in
these integrals we have limited the range of appli-
cability of the theory to the elastic region. Be-
cause the scattering amplitude is given by an equa-
tion with a once-subtracted form, the neglect of
these high mass states will have a weaker effect
on the low-energy elastic amplitude than what oc-
curs in an unsubtracted equation (e.g., the Chew-
Low equation).

III. METHOD OF SOLUTION

In this section we present a method for the nu-
merical solution of Eq. (28) for the partial wave
components of the scattering amplitude. The meth-
od is illustrated by a detailed discussion of the

solution for the S-wave amplitude.
-

1+7,
e 70

@4/, ByS ) = 1 (p,s,) (@1 +p o) M1 +py0) T2
@1/2B,54,By8 ) = g #(BsS) [(p,‘,-M)‘(lp

fo

3(1 +7,)b; D,

r
A. Covariant partial wave expansion

Our equation for the scattering amplitude is
crossing symmetric and fully includes nucleon re-
coil. As discussed below a consequence of this is
that the integral equation for each partial wave am-
plitude is coupled to all partial wave amplitudes.
To handle the terms which couple the amplitudes,
it is particularly convenient to make the partial
wave expansion in terms of projection operators
which can readily be expressed in any Lorentz
frame, as will become clear subsequently.

Expressions for angular momentum projection
operators for 7N scattering in the c.m. frame are
well known. Denoting the projector for a state with
orbital momentum quantum number ! and total an-
gular momentum j by ®4, the S- and P-wave pro-
jectors in the center—of—mass frame are given by

®y/ 2 (D54, 048,) = 4n X Xy,

OL/2(By5,,B180) = g Xy Byo By Xis (29)

01125, 550" o x*fﬁ,-ﬁ, Xi= @12, Bis )y

where p,(p,) denotes a unit vector in the direction
of the initial (final) c.m. momentum and x,(X,) rep-
resents a Pauli spinor for the initial (final) nucle-
on’s spin. These projectors satisfy the idempoten-
cy relation

¥ fany LG, B DOl B )
s
f

=0,,,6,,03(®js{,B;5,) .  (30)

To express these projectors in a manifestly co-
variant form, we first write them in terms of Di-
rac spinors

u(psy),

- M)]l/z u(p{s() ’

@Y/ 2(By54,Bi8) = 5 M(P,Sf)

G505, (b — M) (Bg =M 72 “P150) =

6’1/2(5,-5}:5;34)- (31)

It is now easy to express these projectors in an arbitrary frame. If, in a given frame, P denotes
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the total four-momentum of the pion and nucleon
and s = P?, the angular momentum projectors in
that frame are obtained from Eq. (31) by the re-
placements

yo"-y/‘/?,
Do P
- Fisf ~
DiosPyo N
55~ ~ (0 -2CEP) (5, -2 E p)

(_L(f’f_P) ~byb,e (32)

These results can be generalized to higher par-
tial waves by first defining

1721
R (cosé)= ) (21+1-4n)P, ,,(cos6), (33)
n=0
where [x ]=largest integer in x and P,(cosb) is a
Legendre polynomial in cosf, with 6 the c.m. scat-
tering angle. We find, for any !,

— |

®F/2=R,_(cos)®i/2~ R, ,(cosb)®L/2
eI/2+@L1/2 = (21 +1)R (cosf)@®L/2 (34)
@in/2 4 ®F/2= (21 +1)R (cosf)®L/2,

The projectors defined by Eqs. (31)-(34), of

course, also satisfy the idempotency relation (30).

Since each of the terms in Eq. (28) can be writ-
ten in the form

M-

1. 4(p;) [A(cos6) +v,B(cosé) Ju(p,) ,
with A and B appropriate functions of cosé, we
will need the partial wave expansion of this expres-

sion., Writing

A(cosb) = 2 (21+1)A,P,(cos#),
7

with a similar expansion for B, and using Egs.
(31) and (34) we find

gﬂ(pf) [A(cosb) +v,B(cosb) lu(p,)= D {3(A4,+B,) [(p, +M)(pyo+ M) ]2
1

1
- E(Ag.l -

Bld) [(pgo— M)(pfo— M]llz}@ 5'”2

+ 3 A, +B) (Do + M) (b + M) P12
1

-3 =B ) [(po= MUD 40— M) [/Z}012 /2, (35)

Using this result, the expansion of the terms de-

noted by V in Eq. (28) in partial waves is trivially
carried out. For the other terms, we expand the

scattering amplitude as

F (k) =47 Zlfz,,z,(q,, g B, &)@ (Bys;, Bys )
Is 4y

(36)
where q;= |B,| (¢,=|B;|) is the magnitude of the
initial (final) momentum in the c.m. frame and I
is a projector for a state of total isotopic spin
quantum number I, and is given by

/2B, a) =% £h7,7 £,

r
where £ is a Pauli spinor for isospin and 7,

(¢=1,2,3) is the usual Pauli 2 X2 matrix. These
projectors obey the idempotency relation

D W, f(y, @)=6,,1@B,a). (38)
k4

B. Partial wave expansion of integral terms

Next we discuss the evaluation of the integrals
in (28) with the expansion (36) substituted for the
half-off-mass shell amplitudes. A typical integral

/38, a)= 6, - ' /3(8, @) , (37 is of the form
d M L
E }: Z,Tqazqiq (017,00 g5 ,0,7)a x5 12,713, (0) [p) q—q%;—"——-) : (39)

The values of u, v, ﬁ, and € in the c.m. frame for the four integrals DH, CH, DS, and CS are given in
Table I. Whenever L #0 the integrations over the angles of d, and d, are difficult. The difficulty is re-
moved by rewriting the integral in the following manner:

[ d(We +T2)1/2
(

PLPEM
N [Z 2 f(z,,,sg’q“oq (P4l O |ans,a,7)

(g, 2,717,(0) |90y +d, - T)0gyo+ g0 =~ (W* +f2>”2)] - (40)
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W is the total energy of the intermediate state in its own c.m. frame. Its minimum value is M +m,. The
expression within the square brackets is a Lorentz invariant. Therefore one can evaluate it in a frame
where the intermediate state is at rest. Upon doing so one gets

AW +1%)
WeThi_e ( 22, 2(2,,)3 sprk [ A0;0313,(0)|-ds’, @) -Gs’, 3713, (0) lpo) (41)

Here g is the c.m. frame momentum of the pion corresponding to the total energy W, i.e.,
W=(Mz+62)1/2 (m +q2)1/2 (42)

As a result of the boost to the intermediate state c.m. frame (ICM) ﬁ, changes to 5;, etc, Now we can sub-
stitute expansion (36) for the half-off-mass shell amplitudes

2\1/2 e
J’(% (2 Z: Z; ; fdﬂ /21,2445 Ipfl)le 21 @) Ipi DIy, W "M, v)

n

x (033", Bis1) ]'@{1(&s’,ﬁ§s()> .

Summing over v and s’, integrating over Q;, and using the idempotency conditions (30) and (38) gives

1 -
j (W2+L2)‘/2 "'—zz')m Zf21,2j q, Ipfl)le,Zj(q) |pi|)II'(p., @j(pfs}"’ pisi) . (43)

At this stage it is useful to illustrate the form of the operators ¢/ (p,s ,,p;s /) by considering the case
j=%andl-=

2(B1s! RJlg?) = — 35"5'
A e Ol (e el ey e e AR

1
T [(pfo= M) (P = M)

72 (L/W = 1)> u(pysy) .

r

Here we have used the covariant nature of the pro- From Table I we see that for the direct hard
jection operators and the results (32). The four (DH) integral L=0. The projection operators in
vector (43) are those for the final (or initial) state c.m.
- frame (FCM) and (43) has the proper form for the
L=[(w+120/2,T] (44) (FCM) and (43) prop

partial wave expansion of (28).

For the other three integrals I,#0 and the pro-
jection operators appearing in (43) are not pro-
.L jection operators for the FCM frame. For each of
biosPro= Plosbfo =&'ﬁ£/_" ’ these integrals the partial wave expansion in the

FCM will have to be carried out. An immediate
P ‘;:%_1'_1’_)_ Biby) - (45) consequence is that the integral equation for any

partial wave is coupled to all partial waves. The

coupling arises not only through the crossed inte-

replaces P in the Egs. (32). Thus

TABLE I. c.m. frame expressions for the variables gral but also through the soft integrals. The iso-
u, v, L, and € in Eq. (39) for each of the four integrals spin crossing, present for both crossed terms, is
of Eq. (28).

exactly the same as in the Chew-Low theory.
The FCM partial wave projection can be carried

koo L € out with the help of Eq. (35). Expression (43) de-
Direct hard . pends on the scattering angle 6 between B, and B,
DH B« Ps+k=0 Protko+in through the kinematical factors as well as through
Crossed hard .- . |5%| and |p}| appearing as arguments in the par-
CcH o B ~k=P;+By bi—ko tial wave amplitudes. The expressions for |p}|?
Direct soft 5« 5 » =pi’ - M?, etc., can be readily obtained from (45),
DS 4 o since the nucleons are always on their mass shell.
Cégssed soft 5, Puo The Dirac matrix y appearing in the projection op-

erators can be eliminated by adding to L an appro-
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priate linear combination of ,~ M and §, -
which then puts Eq. (43) in the form of Eq. (35).

In our study of the S-wave scattering amplitudes
we include the recoil effects from P-wave only.
Preliminary examination shows that D and F waves
have individually small contributions to the S-wave
equations and, furthermore, they tend to cancel
one another.

To include the effects of the P-wave amplitudes
we must make a model for the half-off-mass shell
amplitudes in the four P-wave channels. We use
the factorable form

_b o)
flq,p)= p ¢(q)f(q,q),

v=(P,,, Py, Py, Py;),

(46)

where the on-shell elastic scattering amplitude

4TW 1 =n e

fla,q)=~ ™M 2ig

(47)

with 7, the modulus of the S matrix element and

167rf‘ 14
Mm, (W2+.I:2)1/2"

J

W2 pppiop)e ()
€ M(W2+'I:2)1/2 ‘¢ q 4

To evaluate this expression, we will use the P-
wave phases and inelasticities of the CERN theo-

retical fit.?®

C. S-wave equation

The nonlinear integral equation for S-wave am-
plitudes can be schematically represented in the
style of (28),

5=+ [ [0+ e lum [ [0+ els:
(50)

The driving term D, is the sum of all terms in the
integral equation which do not contain the S-wave
amplitudes. It includes the S-wave projections of
the 0 commutator, nucleon pole, z-graphs, and the
P-wave contribution to the S wave. The o0 commu-
tator is a purely isoscalar, repulsive (negative)
term. The z graphs in the limit |B,|=|p;|=0 have
the form

m
gl 4M2 [TB! Tu] gtz 4_11‘,;3 5«

One finds that the leading term of the hard-pion

z graphs, the isoscalar expression —(Z,2/M)3

is canceled by the corresponding term of the soft-

pion graphs. The soft-pion subtraction thus effects

Fila,p)(a,p).

r
the familiar “pair suppression.’

J. B. CAMMARATA 17
5, the real phase shift. The form factor ¢(p) is
parametrized as
1
()= (48)

1+p2/“2)5/2 *
The power oi 3 was chosen so that POBy==p™ >
which we felt wvas the desirable rate for damping
at high momentum. So far as the low energy phase
shifts are concerned the quantity of interest is
(d/dp®)d(p) ,”‘,=— 5/2u%, not the power or the val-
ue of u? individually.

The form (46) is likely to be quite good for the
P, channel because of the resonance dominance,
but for the other channels it may not be as good.
These amplitudes always appear in the form
In other words, the channel elas-
tic cross sections determine their sizes. Inspec-
tion of Eq. (19) shows all P-wave inelastic chan-
nels can be included by simply extending the fac-
torability ansatz to the inelastic amplitudes. Thus

the complete P-wave contribution to expression
(43) is

1-7,p,,c0826,, ., ; - >
; b I, v)@Y(5] 51, Bs)) .

(P wave)

(49)

)

After subtraction
the isovector part of the z graphs becomes the
leading term. This is also the largest isovector
term in D,.

The remaining parts of the driving term, the
nucleon pole terms and the P-wave contribution,
vanish when |B,|=|B,|=0. Nevertheless, these
terms have a significant effect on the S-wave phase
shifts. The omission of either of these terms fromD,
causes the low-energy S,, phase shifts to increase
about 20%. Their effects on the S,, phase shifts
are even larger because of the partial cancellation
between the ¢ term and the z graphs.

Having excluded the S-wave inelastic channels
our amplitudes satisfy elastic unitarity conditions

Imf, (q,q)‘4,TW g, 0)[?, (51a)

Imf,(q,p)= 4HWfJ‘(q,q)f,,(q,t>) . (51b)
From these equations it is easy to see that

Imflg(q,i’) =0. (52)

fla,9)

These conditions are maintained exactly by the
method of numerical evaluation of Eq. (50) which
we now describe.
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D. Method of Padé approximants

In the schematic equation (50) we attach an order
parameter A with D,

£,=30,+ [ (5t (FPu]= [ 17D+ (75

(53)
and iterate to obtain the power series
f= 2N, (54)
n=l

f&=b,, (55)

1

flfn) = i (f [(f'(n-m)*ffm)v_,_ (f(n-m)ffm)c]”
m=1

- f [(f‘"-'")*f"')p+(.f("-"‘)7’")c]s> .
(56)

The power series (54) satisfies the unitarity
conditions (51) and (52) in every order. This may
be verified with the help of the following observa-
tions. Since the driving terms are real an imag-
inary part can arise only from the integrals. If
the numerator in the integrals are all real then the
im8(W - ko - pyo) factor is the only source of an
imaginary part, exactly as demanded by elastic
unitarity. If all f for m <n satisfy the unitarity
conditions, i.e.,

M 1
Imf{™(q,p)= o L SO, 7 a,p),
=1

1
m<n, (57)

then in the process of evaluating f{™ one will find
all the numerators to be real and that Imf™
satisfies the unitarity condition of the form (57).

In many areas of physics a power series like
that of (54) has often been approximated by a ra-
tional function of A.*® This is known as the meth-
od of Pade approximants. It has the advantage
that the rational function may be a good represen-
tation of the initial function even when A=1 is out-
side the radius of convergence of the series.

We found no tendency of convergence in our pow-
er series expansion of the S-wave equation, not
even of logarithmic type. We have therefore tried
the method of Padée approximants to obtain a solu-
tion. Though the method of Padé approximants has
been studied extensively in the context of linear
integral equations, there have been few applica-
tions to nonlinear equations.’® Nevertheless, we
find that it is possible to construct a solution of the
nonlinear S-wave equation using Padé approximants.
The validity of the solution is established by put-

ting it into the equation and verifying that it ac-
curately reproduces itself,

In the context of scattering theory it has been
customary to approximate the half-off-mass shell
amplitude with a rational function®

Sy =, (R k)=——iﬁﬂ-j——Pmm (58)
HEEO T 1IN’

where 7 and j label the on-mass-shell and the off-
mass-shell momenta, respectively. The polyno-
mials are

N
PN =D A,
n=1 (59)
M
QN =20 Ng (P
n=1
Itiswellknown that the unitarity condition imposes
the restriction N <M. We found that [N ,M ] Padé
approximants with N <M are quite unsatisfactory
for the S,, amplitude. We therefore circumvented

the unitarity restriction by making Pad€ approxi-
mants not for f,, but for the amplitude

K. = fis
41 +i(ME/ATW,)f,,

(60)

where W, =(M* +K )%+ (m 2 +K2)'/?, The on-shell
element

47w
K,ﬁﬁk—“tanéi. (61)

The inverse of (60) is

f = KIJ
71— i(ME,/4TW)K,,

(62)

The unitarity conditions (51) are identically sat-
isfied when the K,,’s are real and, conversely,
when the f,,’s satisfy (51) the K,,’s are real. As
we have noted before, the iteration procedure sat-
isfies the constraints of (51) as a_series of iden-
tities. Thus maintaining the reality of the K,,’s
is not a problem. We are therefore free to try
Padé approximants for K, with real polynomials.
Our procedure is as follows. First we find the
Padé approximants for the on-mass-shell elements

f P[N]
K. = ii =4
HUTri(ME,/4TW)f,, 1+Q7D "

(63)

Then for the half-off-mass shell elements we use
the form
f“ P[N]

K{j=1+i(Mki/41rW‘)f“ =1—+5"l':71 ’ (64)
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where the denominator is the one determined for
the on-mass-shell element. This procedure is
dictated by practical considerations. 1+i(Mk,/
4TW,)f,;=e?*1 cosd,. Hence both K, and K, have
poles when 6=7/2, In other words, 1+Q}¥¥)and
1+Q¥(1) should both be zero at the same time
for a value of %, for which 9, =7/2. Because of
numerical maccuracies itis not possible to achieve
this exactly. So we enforce the condition with the
form (64). As a result, for K, i+j, we have to
determine only the numerator polynomial.

E. Details of numerical calculation
1. Evaluation of integrals

The entire range of momentum, from 0 to «,
was divided into five sectors with 1.25m,, 2.5m,,
9m,, and 24m, as the interval dividing points. In-
tegration over each of the first four sectors was
carried out with five-point Gaussian quadrature.
The sector 24m, < p < « was mapped into -1<y
=(p-48m,)/p < 1 and the integration over y was
also carried out with five-point Gaussian quadra-
ture.

Evaluation of the CH, CS, and DS integrals re-

J

H(W) aw
@f W= Ww—wy V= W°H(W°)@f W= W)

Wo)

11 W,
= - —_ —_0
[M+m A ln<M+

r

The value of the quantity in the large parentheses
at the point W= W, was obtained by interpolation
from its values at the two nearest points, When-
ever the on-mass-shell momentum was greater
than 25m, the reciprocal of the momentum was
chosen the variable for the purpose of interpola-
tion.

Because of the large intervals between the mo-
mentum mesh points at the upper range, the cal-
culation of f{"(q,p), n=>2, becomes increasingly
unreliable as g and p increase. So instead of ac-
tually calculating for the last two mesh points at
104m, and 512m,, we evaluated the amplitudes by
an extrapolation procedure assuming a quadratic
form a, + a,/q(p)+ a;/qg*(p?).

The accuracy of our calculation is severely re-
stricted by the number of momentum mesh points.
The time for calculating a complete set of ele-
ments " (g, p) goes as N" where N is the number
of momentum mesh points and 4>n>3. It also
increases linearly with n. For example, a Uni-
vac 1140 computer takes 7.5 minutes to calculate
all second order terms and 11 minutes for all

1>]H(W f”:,,' TW—W,)
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quire angle integrations. A certain amount of care
is necessary in carrying out these integrals be-
cause of the considerable cancellation between a
hard and the corresponding soft term. The angle
dependence always arises in the form p p, cosé.

So the number of Gaussian mesh points used to
span the range of cosé was increased as the value
of p,p; increased. The entire range of p,p, from

0 to « was divided into seven sectors with 4m 2,
12mp?, 36m,?, 108m,?, 324m 2, and 972m ? as the
interval dividing points. The number of cosé mesh
points for each sector was increased from 6 to 24
in steps of 3.

From (43) one also sees that the integrals CH,
DS, and CS refer to the quantities |J} | = (b2 - M?)*/2,
etc., where p}, is defined by (45). The latter de-
pends on p,, p;, q, and cos6. In general, the val-
ue of p} and p} is not equal to any of the momentum
mesh points. The values of f{"(qg, lp,] , etc., were
obtained from the calculated values at the mesh
points by using three-point interpolation or extra-
polation. For |p?|>25m, the reciprocal of the
momentum was used as the basic variable for the
inter- (extra-) polation.

The principle value integral in the DH integral
was evaluated by rearranging it in the form

*
Mm'

aw

w(W -

W) (H(W) —QH(WO)>

= (o - ¥apwp).

"sixth order terms. Thus it was not practical for

us to increase the number of momentum mesh
points. It is obvious that a more efficient nu-
merical approach is required.

2. Construction of solution

As stated earlier the accuracy of the calcula-
tion of f{"X(¢,p) worsens as q and p increase.
The problem first appears in the calculation of
the second order term. As we calculate higher
order terms the errors in the lower order terms
flow down to the lower momentum region, which
makes it very difficult to check the convergence
of the Padé approximants. In Table II the S;; and
S,; phase shifts from [N, N] Padé approximants
with 1 <N <4 are listed. The results from
[N+1,N] Padé approximants are listed in Table
II. The [4,4] Padé results are quite different
from those of all lower order approximants for
both isospins. The [5,4] Padé results for I=3
exhibit the same feature.

Since a convergent Padé approximant was not
feasible we decided to use the amplitudes ob-
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TABLE II. S;; and S;; phase shifts in degrees corresponding to the set (b) parameters listed
in Sec. IV for various order [N,N] Padé approximants. The c.m. energy is given in MeV.

S11 Sst
Energy (1,1} [2,2] [3,3] [4,4] 1,1] [2,2] [3,3] [4,4]
1078.4 0.38 0.38 0.44 0.86 -0.30 -0.29 -0.32 -0.45
1084.6 1.85 1.85 2.14 4.60 -1.48 -1.43 -1.61 -2.36
1107.2 3.83 3.82 4.50 17.34 ~-3.47 -3.34 -3.78 —-6.34
1141.7 5.45 5.43 6.54 -37.63 ~5.92 -5.66 -6.42 ~17.57
1170.2 6.29 6.24 7.71 -2.19 ~-7.87 -7.53 —-8.49 -14.88
1186.0 6.64 6.55 8.29 0.39 ~8.94 -8.53 -9.64 0.18
1218.9 7.16 6.96 9.26 4.66 -11.18 -10.87 -12.02 -3.49
1271.0 7.64 7.11 10.50 6.60 -14.73 -14.62 -15.71  -10.33
1326.8 7.95 7.18 12.37 7.17 -18.50 -18.50 -19.60 -1.25
1366.7 8.28 7.84 15.12 6.60 -21.18 -21.08 -21.97 -17.69
1432.6 11.46 10.04 15.89 7.53 -25.45 -24.99 —-26.28 —-24.15
1667.6 -1.37 6.60 14.61 7.49 -36.78 -35.81 -38.29 -23.47
2049.7 -14.11 -6.56 -6.56 -1.69 —-43.16 —-42.53 -53.71 -48.09
2462.3 -30.20 —-17.47 -17.44 -18.76 —-46.73 —-46.19 -70.32 -56.38
2756.2 —-41.52 -32.83 =7.77 -3%.69 —-48.92 -48.92 —-67.87 -57.02
TABLE III. Same as Table II, except for [N +1,N] Padé approximants.
S11 Sst
Energy [2,1] [3,2] 14,31 [5,4] [2,1] [3,2] [4,3] [5,4]
1078.4 0.38 0.47 0.51 0.49 -0.31 -0.34 —-0.38 —-0.38
1084.6 1.88 2.34 2.51 2.41 -1.55 -1.72 -1.90 -1.88
1107.2 3.90 4.94 5.31 5.01 -3.63 —-4.03 -4.40 -4.31
1141.7 5.60 7.28 7.96 7.31 —-6.19 —6.80 -7.23 —6.98
1170.2 6.55 8.60 9.24 7.95 -8.21 -9.00 -9.64 -9.43
1186.0 6.97 9.23 9.78 8.12 -9.32 -10.13 -10.51 -9.96
1218.9 7.68 10.32 10.78 7.45 -11.58  -12.48 -12.72  -12.02
1271.0 8.43 11.29 11.41 5.81 -15.05 -16.11 -16.24 -15.23
1326.8 8.90 11.11 11.23 2.79 -18.41 -19.64 ~19.64 -18.87
1366.7 9.08 10.33 11.28 2.37 -20.44 -21.92 -21.92 _16.67
1432.6 9.02 8.20 10.45 -3.65 ~26.48 —-25.45 -25.60 -18.85
1667.6 5.83 5.72 7.61 7.62 —-34.66 -28.31 -35.42 —40.69
2049.7 ~4.88 -6.96 ~5.23 —4.39 -46.69 -16.16 —41.45 —44.96
2462.3 -18.08 -17.83 -18.03 ~18.29 ~50.44 -27.80 -42.17 -57.11
2756.2 -17.76  -23.99  -22.90 -32.79 -48.83  -32.81 -43.86 -56.51
tained from the various Padé approximants as I:], |B;|<2m, the average percentage differ-
trial solutions. These solutions were put into ence between the output and the input amplitudes
the right-hand side of the integral equation (50) (200 |f,outout _ fiuout | /( poutout , ¢ imputyy jg 36 for |
and the output was compared with the input. We =3 and 21 for I=% when we use pure [3, 2] and
required that the output and input agree well for [3, 3] amplitudes for I=% and £, respectively.
low values of p; and p,. After many trials we Both these numbers reduce to 3 when we combine
found that the quality of the agreement could be the two sets of amplitudes with x, = -0.05 for I
improved vastly by taking linear combinations of =3 and x, =1.195 for I=3. The improvements
amplitudes from two Padé approximants. The occur mainly in the off-mass-shell amplitudes.
combination which worked best was of the form An inspection of Tables II and III shows that the
o % PL(N, M)+ (L= x)PL(N,,M,) phase. shifts for the two sets of values of x, ,, and
TR QTN M) + (L = x)QT,(N,, M) ° X3p chfferbyless‘than 1%. ‘
LA PRS2 e (65) The most plausible explanation of these results

where P{,(N,M) and @{,(N,M) are the numerator
and denominator polynomials for [N, M ] Padé ap-
proximants, defined by (63) and (64). Our best
result is obtained by combining the amplitudes
from the [3,2] and [3, 3] Padé approximants. For

is that had it not been for the limited accuracy of
the calculation the [N+1,N] Padé approximants
would have converged for I=3 and the [N, N] for I
=3%. It appears possible to suppress the effects
of errors by a linear combination of the ampli-
tudes from two different approximants.
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IV. NUMERICAL RESULTS
A. Experimental phase shifts

Before discussing the numerical results a few
comments on the status of the low-energy S-wave
phase shifts are necessary. There are two gen-
eral types of analysis by which phase shifts are
obtained from cross section data. One is the so-
called energy-dependent fit, where a certain
reasonable, smooth dependence of the phase
shifts on energy is assumed, and the other is the
energy-independent fit, where data are analyzed
separately at each energy. Several recent energy-
dependent fits are available.® For the present
discussion we consider a preliminary set of en-
ergy-dependent phase shifts due to Zidell, Arndt,
and Roper® (ZAR). We also consider the energy-
independent fit of Carter, Bugg, and Carter3?
(CBC). The two sets are shown in Fig. 3.

For I=3% there is a remarkable difference be-
tween the two sets. The CBC phase shifts as a
function of 7',, the pion lab energy, have a gentle
curvature. The ZAR phase shifts, on the other
hand, start with a larger slope and then around
T,~70 MeV the slope rapidly decreases to a very
small value. The entire change occurs in an in-
terval of 20 MeV. Other energy-dependent analy-
ses, for example, the CERN theoretical fit,” give
S,, phase shifts with a similar energy dependence.
For I=3% both types of analysis appear to give
phase shifts with the same general qualitative
behavior. The qualitative nature of the energy
dependence of the experimental phase shifts is a
particularly important consideration in the pres-
ent work, since we find that when our theoretically
calculated phase shifts have the experimentally
observed energy dependence, getting high quality
agreement with experiment is then a matter of
carefully searching the parameter values.

Our theory contains no scale parameter com-
parable to 20 MeV, so it is not surprising that
we failed to find a set of parameters which can
reproduce the energy dependence of the S,, phase
shifts of ZAR. We therefore simply assume that
the CBC phase shifts for 7 =% are the correct ex-
perimental data. For I=3 we take the ZAR set
as the experimental data. These authors have a
high level of confidence in these phase shifts. The
ZAR and the CBC sets for I=% differ slightly as
T, increases. But in that energy region our pres-
ent calculations are also not reliable as we have
not included S-wave inelasticity.

From the standpoint of our theory we prefer the
CBC set for I=3. An additional reason for pre-
ferring these CBC phase shifts is that when our
theoretical S, phase shifts agree with the CBC
fit we get for the charge exchange scattering

I
8
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FIG. 3. The dashed lines are our results with (a), (b),
and (c) representing different choices for ¢(nN) and g, ,
as discussed in the text. The solid lines give Ref. 31
phase shifts, while flagged circles are from Ref. 32.

length, a'”, the value 0.0793m,™ in excellent
agreement with the current algebra prediction?:
of 0.0786m,™.

B. Parameter search for best results

In its present form the theory has six param-
eters: o(mN), u, and y, (0 commutator), g, (z
graphs), p (P wave), and m, (nucleon pole terms
and z graphs). It should be noted that g,(0) is
fixed by g,(0) and f, through the Goldberger-
Treiman relation. The numerical results are
most sensitive to the values of ¢(7N) and Z,. As
stated previously the phase shifts are less sensi-
tive to the four form factor mass parameters.

We searched for the best values of the mass pa-
rameters by examining the qualitative behavior
of the [1,] Padé phase shifts. The values we
settled on are

u,=8.24m,, p,=T.5m,,

my=8.6m, and u=8m,. (66)
Obviously some variations in these parameters
are possible. But we think that u , u,, and m,

are within 1m, of their best values. Since the en-
tire role of the P waves is smaller than that of

the o-commutator term or the z graphs, the pa-
rameter u has a larger uncertainty when we try

to fix it from the low-energy S-wave data only.
The P-wave work is in progress. When it is com-
plete we will have a better knowledge of the off-
mass-shell P-wave amplitude.?* However, as sub-
sequent discussion will show a better value of u

is about 10m,.



17 THEORY OF THE LOW-ENERGY PION-NUCLEON INTERACTION 1141

The preliminary search of the parameters o(mN)
and 2, was carried out also with the [1,1] Padé

results. The final search was made in terms of the

solutions constructed in the manner described at
the end of Sec. III. In Fig. 3 we present the phase
shifts due to three sets of values of o(7N) and g,
given in Table IV, with the other parameters
given by Eq. (66). The parameters were chosen
to have the S, phase shifts in very good agree-
ment with the ZAR results. It was possible to
accomplish this for T, <100 MeV. As we have not
included S-wave inelasticity we have no justifica-
tion for demanding good agreement for larger val-
ues of T,. But since we have a once-subtracted
Low equation, and the effects of S-wave inelastic-
ity are quite small near the elastic threshold, the
theory is required to do well at low energy.

The values of o(7N) and g, for the sets (a) and
(c) differ from those of set (b) by 2% and 1.3%,
respectively, while the corresponding S, phase
shifts differ by 10% in each case. For I=3 there
is considerable cancellation between the attraction
from the isovector terms produced by the z graphs
and the repulsive isoscalar o-commutator term.
The two terms are both repulsive in the I=3% chan-
nel. This explains the sensitivity of the S, phase
shifts on the two parameters. At present we con-
sider the set (b) our best result for u=8m,. The
various order Padé results listed in Tables II and
11, the percentage differences between the input
and output solutions and the values of x,,, and
X4/, quoted in Sec. III are all for set (b). The cor-
responding parameters of the effective range ex-
pansion

1
E cotd(k)=— -+ 3 7 k% + Pk?
are listed in Table V.

TABLE IV. Values of the main parameters of solutions
(a), (b), and (c). All other parameters for each of these
solutions are fixed at the values listed in Eq. (66).

o(mN)
Set Zy in MeV
a 11.85 25
b 11.69 25.5
c 11.54 26

TABLE V. Parameters of the effective range expan-
sion corresponding to solution (b).

Quantity Sit S34
a (in m, ™) ~0.143 0.095
7o (in m, ) 0.981 5.349
P (in m,™) 0.036 —0.768

V. DISCUSSION OF RESULTS

If the true S,, phase shifts have the gentle energy
dependence of the CBC fit®® then the theory dis-
cussed in this paper can explain the low-energy
S-wave phase shifts. If the true phase shifts,
while having the desired energy dependence, are
numerically different from the CBC fit the major
parameters ¢(1N) and &, = |g,(4 M?) | will be
commensurately different from the values 25.5
MeV and 11.69, respectively, obtained by us. It
is very likely that such changes would be small.

It is desirable to have independent checks of
o(nN) and g,. Since the introduction of the notion
of the 0 commutator as a measure of chiral sym-
metry breaking, there has been a large amount of
work on the evaluation of o(nN). The situation in
regards to g, is quite the opposite; there are no
reliable theoretical estimates of g,(t) for { ~4 M?,
so there is nothing to compare with our result.

Reya®* has reviewed the work prior to 1974 on
the determination of o(nN). Though there is a wide
spread in the values obtained by various authors in
the earlier work, more recent evaluations®* appear
to have converged to c(mN)=65+5 MeV, in violent
disagreement with our result. In a recent paper3?®
we have analyzed this problem carefully. We con-
cluded that the large value results from errors of
extrapolation. With o(nN)=25.5 MeV our theory
gives reasonably good quantitative agreement with
the basic amplitudes which are used for extraction
of 0(7N) by extrapolation to the unphysical value
t=2m,2. The agreement is improved if we in-
crease u, the P-wave form factor mass, from its
present value of 8m, to 10m,. With the larger val-
ue of u we can essentially reproduce the set (b)
S-wave phase shifts discussed earlier if we change
o(nN) to 24.9 MeV and g, to 11.90, all other pa-
rameters remaining the same.3® We find that on-
ly the smaller value of o(nN)~25 MeV appears to
be consistent with the experimental data and theo-
retical constraints.

Before ending this section we make a few com-
ments on the consequences of nucleon recoil in the
S-wave equations. The nucleon pole terms and the
P-wave contributions are entirely due to recoil
and so they vanish in the static limit. To illustrate
the role of nucleon recoil we have calculated the
S-wave phase shifts by dropping these terms one
at a time but keeping all other parameters exactly
the same as those of curves (b) of Fig. 3. These
results along with curves (b) are shown in Fig. 4.
The accuracy of these new solutions are not as
good as that of solution (b). But this does not af-
fect the conclusion one can draw frem inspection
of Fig. 4, namely, that the recoil terms are of
considerable importance.
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FIG. 4. Ilustration of the sensitivity of phase shifts
to nucleon recoil terms in the S-wave equation. Curves
labeled (1) result when the P-wave contributions are
dropped, while those labeled (2) result when the N-pole
terms are omitted. In each calculation all other terms
in the S-wave equation are exactly the same as in solu-
tion (b) of Fig. 3, which is redrawn here for comparison.

VI. SUMMARY AND CONCLUDING REMARKS

We have discussed a theory of pion-nucleon scat-
tering based on the dynamics of boson exchange,
the absorption-emission process and the z graphs.
The dynamics enter through PCAC, the o-commu-
tator term, the coupling constants g, and g, and
the various form factor masses. We have con-
structed solutions of the nonlinear integral equa-

tions for the S-wave amplitudes using Padé ap-
proximants. We succeed in reproducing the ener-
gy dependence of the low-energy S;, and S,; (CBC)
phase shifts. In the process we evaluated the ma-
jor parameters o(nN) and g,, g, being fixed by the
Goldberger-Treiman relation. Our low value of
25.5 MeV for o(mN) has been justified in a previous
paper.®®

The complete numerical evaluation of the ampli-
tude required for pion-nuclear scattering must
await completion of work on the P-wave ampli-
tudes, which is in progress. However, our pres-
ent work already establishes a very important
feature of the theoretical description of pion-
nuclear scattering. The presence of the factor
(t =m,?) in Eq. (18) tells us that the pion-nucleus
optical “potential” (for use in the Klein-Gordon
equation) will contain a Laplacian term of well-
defined magnitude. From Eq. (18) we determine
this term to be (V2 /f,)*m 20 (TN)VZp
=-0.414m2v?p, where p is the nuclear density.
A preliminary study® of the role of this term in
pion-nuclear scattering has shown it to be of great
importance at low energies.
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APPENDIX

We illustrate the separation into connected and disconnected parts of a product of matrix elements of the
pion current by considering the first term on the right of Eq. (19). Denoting by P =(H, P) the energy-mo-

mentum four-vector operator, we have

E <pf ‘JB(O) ’nxn |ja(0) |p£> 53

Ro+Dso=Mo+in

= (0 |a,(out)js(0)

®+5,-) =, IJ.,(O)—U“—*&-——

—H+in ]a(O) |P;>

o3 (k+, — P)

Fovpy, = Hrin 12 0ai(m)]0), (A1)

where we have arbitrarily chosen the second quantized creation (annihilation) operator for the initial (final)
state nucleon to be an in (out) operator. Equation (A1) can be expressed as

(k"l'p/ P)
~H +in
M
ko+pgo—H +i7)

63 (+p, P)
-H+

©|{[a;(out),75(0)] +j B(O)af(out)}
= (0|[a, (out), j5(0)]

+{0j js(0)a, (out)

[7400),a}(in)]|0)+{0|[a,(out), ;4 (0)]

[]a(O) al(in)]|0) +(0]j(0)a, (out)

{[j4(0),a%(in)] +al(in)j, (0)}|0)

os(k+p, - P) ,
ko-l-p—H-HT_a (m)] (0),0)
83 (K +D, - P)

Fovh,,—Hram 0. 0)[0). (a2)
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Using the operator identities, valid for either in or out operators,

=qt
Pa;‘ =a, ,(P +Dis)s
a, P=(P+p;,la

Pis Pif?

(A3)

and inserting complete sets of physical states between all terms in (A2) we obtain

Z (Pf '73(0) ln)c<n |ja(0) |p‘)c 53(E+5f _9+

(pf |]B(0)|P‘,n> <nl]a(0)|0> 63(k+p p,— [}

7 ko+Dso=no+10 0

Z ©15(0) | n) (n, b, |70 £y, 5,k -1

n ky—n,

ko+Dso=Dio =Mo+iN

2(0135(0”1’4,71)(13;, nlie®@10) g5 %), (a9)

n).
n k pm—no

The subsecript ¢ denotes a connected matrix element. The first term is thus the fully connected part, the
second and third are the semiconnected (semidisconnected) parts, and the final term is the fully discon-
nected part. The minus sign in front of this term comes from commuting a,(out) and al(in) in (A2).
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