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The derivation of nuclear neutron distributions from hadron-nucleus scattering data is critically examined.
Using the Glauber model, we investigate how the total and differential cross sections depend on specific
properties of the radial nucleon densities py(r) of the target nucleus. Emphasis is placed on the
interpretation of hadron-nucleus total cross sections. As to the deduction of r.m.s radii from total cross-
section measurements only, we find that a large systematic error arises from the a priori unknown shape of
px(r). This error can be reduced if physically justified constraints are imposed on py(r). In many published
analyses, however, the constraint on py(r) has been of mathematical origin since only density distributions
of a certain shape (e.g., Fermi distributions) have been used. As an example, our findings are applied to two
recent pion-nucleus total cross section experiments. It is also shown that earlier attempts to avoid a
mathematical constraint on py(r) must be viewed with reservations.

[NUC LEAR STRUCTURE Hadron-nucleus scattering, deduction of matter ]
radius, model dependence.

I. INTRODUCTION

Radial distributions of protons in nuclei are
known much more precisely than those of neutrons;
the former can be investigated via the electromag-
netic interaction, while for the latter we depend on
processes involving the strong interaction (with
the exception of one special case!). Methods to
study nuclear neutron distributions are listed,
e.g., in Table I of Ref. 2. Among these methods is
the scattering of hadrons from nuclei: Experi-
ments with various probes at many bombarding en-
ergies and for different nuclei have been ana-
lyzed®* '3 in terms of the (unknown) neutron density
distribution p,(7). Obviously, such a procedure is
somewhat uncertain at present because it depends
on a reliable model for the projectile-nucleus in-
teraction, such that p,(») can be considered the
only unknown quantity. However, for medium-
and high-energy hadron scattering this difficulty
is not very serious where the data are well ex-
plained by theories which start from the density
distributions p,(») and p,(r) and the interaction of
the projectile with individual free nucleons (e.g.,
Glauber model, Kisslinger optical model).

If one postulates the validity of such a model and
assumes p,(#) to be known (from elastic electron
scattering), one can search for a p,(r) which leads
to agreement between the calculated observables
and the experimental quantities. In such an analy-
sis, p,() is commonly described by a function of
v with as few parameters as needed to fit the data.
Often a Fermi distribution'* is chosen®!3:15 for
p,(7) which, beside the (fixed) normalization, de-
pends on two parameters, e.g., the skin thickness
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z and the half-density radius ¢ (or the rms radius
(r®/2), Sometimes a third parameter w is intro-
duced.!*

Using Fermi distributions it has long been real-
ized™® that the scattering observables calculated
within various interaction models depend strongly
on {22 but only weakly on z. It is common
practice to jump from this fact to the conclusion
that the method just described is equivalent to a
determination of the rms radius of the true neu-
tron distribution. It is not clear, however, if the
true neutron density actually is close enough to a
Fermi distribution. The selective sensitivity of
the data to the rms radius could well be simulated
by the choice of a particular mathematical form
for p,(r) with only a few arbitrary degrees of
freedom.

This difficulty has first been recognized in elec-
tron scattering for which various so-called model-
independent densities (e.g., Ref. 16) have been pro-
posed. For a few cases of hadron scattering, in-
vestigations along similar lines have been reported
recently!”'° (for details see Sec. IV).

The purpose of the present paper is to demon-
strate which particular properties of p,(») are de-
termined by hadron-nucleus scattering experi-
ments, and to explore the impact of a model for
p,(7) (e.g., Fermi distribution) on conclusions
about p,(7) deduced from such data. To keep the
necessary formalism to a minimum we make use
of the Glauber model in a simple approximation
from which in Sec. II we derive the dependence of
scattering observables on the nuclear densities.

In Sec. III this formalism is applied to the case
of total cross sections. This is exemplified by a
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reevaluation of some findings of recent experi-
ments. Simple consequences of our results re-
garding angular distributions of the differential
elastic cross section are given in Sec. IV, followed
by a discussion of model-independent analyses
available at present.

II. DEPENDENCE OF SCATTERING OBSERVABLES
ON NUCLEAR DENSITIES, INTERACTION MODEL

In the following, the sensitivity of an interaction
model on details of the input density distributions
is investigated. For this purpose it is sufficient
to use a simple (transparent) formalism. The
amplitude for the scattering of a projectile x from
a nucleus in the framework of the Glauber multi-
ple scattering theory?»? (optical limit) can be
written as

Flq)=ik f wJo(qb)(l - e CP)p b, (1)

Here, k is the projectile momentum in the projec-
tile-nucleus c.m. system, b is the impact param-
eter, and g =2k sin36, . the transferred momen-
tum. We assume the nucleus to be spherically
symmetric and neglect the spin of projectile and
target. The “elementary” amplitude for the scat-
tering of the projectile x from a free nucleon N

(n or p) is given by

Fer(@) =200, (1 - ) XD~ 48, ) (2)

with o, the total projectile-nucleon cross section
and ¢,, the ratio of real to imaginary part of the
projectile-nucleon forward amplitude f,,(0). For
the moment we assume a zero-range interaction,
i.e., we use B,,?=0 for the slope parameter in
Eq. (2). One then obtains for the phase function
(“eikonal”) G,(b) in Eq. (1):

Gx(b) = oxN(l - i€ xN)SN(b) . (3)
N=n, p

The thickness of the target nucleus at a given im-
pact parameter is measured by

Sy(b)= fﬁ (N2 = b)Y 2rdy. 4)
b

The observables we want to discuss are the elastic
differential cross section

do(q)/dS=|F (q)|?, (5)
the total cross section
0%, ,=(41/k) ImF,(0)
=47 f (1 —Ree ®®)pap , (6)
0

and the total reaction cross section (i.e., the total

minus the total elastic cross section)
ozot,,=2nf (1=|eex®|2)bab. ()
0

Given the elementary amplitudes (0,,, €.y, N=n or
p), the observables can be calculated from the
neutron and proton density distributions p,(7) and

p,(7).

We assume that the frue densities p,,(») and
p,o(r) are known. Any other density different from
pxo(?) is described by Ap,(») such that

APN(T) = pn('r) - p)vo('r) . (8)

We define the generalized moment

(8Mapy =47 [ 728(NBpy(N)ar (©)
o]
and require the same normalization for pN(r) as
for py(7), i.e.,
(l)ApN=0. (10)

Having set the stage, we turn to the crucial step,
calculating the changes AF,(q), A0}, and A0}, ,
caused by an increment Ap,(») in one of the nu-
cleon distributions. In this way we investigate
how well one can experimentally detect the differ-
ence between the true nucleon distribution p No('r)
and a p,(») assumed in the analysis. Expanding the
scattering amplitude Eq. (1) in AS,(d)=S,(d)
~Syo(b) and retaining only terms linear in AS,(b)
[thus in fact limiting Ap,(7) to small values]
yields

AF(@)=477,(0) [ a0 Wor )y (1)
(1]
with
Wr('r’ CI) = £rJo(bq)e'Gx(b)(yz _ bz)_l/zgdb .

(12)
Expanding the Bessel function in Eq. (12) leads to

- - (‘l)j 25 A%,
AP0 =fun®) 320 gy AT ey
(13)
where

H 1
A;(‘)’) = (2324]‘ 1')" ! £ g2j+1e-6x( r()(l - gz)-l/zdg (14)

and, according to Eq. (6),
A0, =0,y Re(AS() 4, - (15)

For the increment in the total reaction cross sec-
tion an analogous derivation, starting from Eq.
(7), yields

ATy, = Ten B’(y»AﬂN (16)
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with

1
B*(#) = f te™ Rer(rt)(l - gz)-uzdg . am
V]
As an example, consider the limiting case of a
“transparent” nucleus (0,y—=0,¢,,—~0). It follows
that Aj(»)~1 and B*(»)~1 for all j and », and
AF,(q) takes the form

SFL) = O 0, J.

(18)

Because of the normalization condition [Eq. (10)]
there is no g-independent term in the expansion.
Therefore, the changes AF, (¢=0), Ac},,, and

A0 Y., , vanish. This means that the corresponding
observables only depend on the normalizations of
p,(7) and p, (7). Consequently, only if there are
regions in » where the radial weights Aj(r) and
B*(7) differ substantially from unity is it possible
that o%,, or 0}, , depend on the nucleon distribu-
tion in a nontrivial way. This condition is met for
hadron-nucleus scattering as will be seen from a
discussion of Aj(r) and B*(») in Sec. III.

For the sake of simplicity, we have introduced
several approximations in the formalism described
so far. For a detailed analysis this simple model
would have to be corrected for a number of ef-
fects.?” However, if we only attempt to discuss
the influence of a small change of the nucleon dis-
tribution we may neglect these corrections. In
addition, the approximations used are not unrea-
sonable. This can be seen, e.g., from the fact
that for the *8Ca-%°Ca differences of 7 total cross
sections in the (3, 3) resonance region, the simple
model described here yields virtually the same
answer as more sophisticated interaction models
(see Fig. 2 of Ref. 7). This is not surprising,
since it can be seen that those impact parameters
which contribute most to the calculated difference
in o} , belong to trajectories sampling the low
density region of the nucleus, where most of the
higher-order effects (e.g., from pair correlations)
are small anyhow. This argument still holds for
projectiles with spin, since it has been shown that
the spin-orbit interaction leads to rather small
corrections.??

Nevertheless, in the following, we inspect some
of the approximations made so far, especially
since they can affect the first term in the multiple
scattering expansion.

One such approximation has been the omission of
the slope parameter B of Eq. (2), thus neglecting
the finite range of the projectile-nucleon interac-
tion. A second one enters if the nucleon densities
of Eq. (4) are to be compared with the prediction

of an independent-particle model. This “c.m. ef-
fect” has been discussed® for the harmonic oscil-
lator. Both effects mentioned above result in cor-
rections to the nuclear form factor. To a good ap-
proximation they can be taken into account simul-
taneously® by evaluating Eq. (4) with densities
py(T) which are the independent-particle model
point nucleon densities.py(F - T) folded with a func-
tion

¢(ﬂ=ex})<~m;_im>, (19)

where a denotes the oscillator parameter. These
two corrections obviously can be applied by an
appropriate modification of the input densities
py(7); thus they tend to be unimportant in cases
where differences Apy(») of nucleon densities are
considered.

Since most hadronic scattering data involve
charged projectiles it is necessary to include the
electromagnetic interaction which has also been
neglected so far. Various methods to do this in
the framework of the Glauber model have been
proposed.?»?5 For the purpose of this paper, it
suffices to mention an approximate method for
taking into account the Coulomb interaction in the
case of total cross sections. To arrive at the
usually quoted experimental o} ,, terms containing
the pure Coulomb amplitude f, are subtracted from
the directly observable quantities.” However, the
resulting o} , still contains electromagnetic ef-
fects which can be estimated by considering the
distortion of the wave function of the incident
charged projectile in the Coulomb field of the nu-
cleus. A semiclassical treatment for pion-nucleus
scattering?® leads to

o=(1+5)"20,, (20)

where o stands for either the total, total elastic,
or total reaction cross section and ¢, for the cor-
responding quantities in the absence of the Cou-
lomb interaction. The parameter § is given by
Eq. (2) of Ref. 26. This semiclassical Coulomb
correction satisfactorily explains, e.g., experi-
mental 7*-7" total cross-section differences in the
(3, 3) resonance region.2” 28

III. TOTAL CROSS SECTION

Measured hadron-nucleus total cross sections
0% OT 0%, , have been used to extract information
on the matter distribution, or—with p,(») known—
the neutron distribution p,(»). The list of experi-
ments which have been exploited in this way in-
cludes o, (isotopic differences) at 0.1-0.25 GeV
on #4h40Ca7; ol /ot ,at0.7-2 GeV on C,Ca,
Ni, Sn, Pb*% o¢"  _at 1-T7 GeV on 4<A<238,?

tot, r
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FIG. 1. Real part of the radial weight A§ () [detined
in Eq. (14)] for several projectiles bombarding 4’Ca
(solid lines). Also shown (dashed line) is the nucleon
point density distribution used in the calculation of A§ (r)
(see Sec. III).

and 0§, , (x=7,K",p) at 20-60 GeV on C, Al, Sn,
Pb.® Commonly, the resulting p,(7) is quoted in
terms of the parameters of a Fermi distribution
or parameters derived therefrom (e.g., (»2)!/2).
Let us assume that a neutron density p,(») has
been found which is consistent with the measured
0%t OF 0%, ,. From the results of the preceding
section it is obvious that any p,(¥)=p,(r)+ Ap,(7)
will also fit the data, provided the change Ac%,,
or Acf,, , [Egs. (15) and (16)] caused by Ap,(7) is

less than the experimental error. Since this
change equals the normalization integral [Eq. (10)]
folded with a radial weight ReA}(») or B*(7), total
cross sections are only sensitive to p,(#) if these
weight functions are not everywhere equal to 1
(otherwise one would just determine the total num-
ber of neutrons). This is actually the case for
hadron-nucleus scattering, because here the pro-
jectile is strongly absorbed in the nuclear interior.
As an example ReAj(»), Eq. (14), is displayed in
Fig. 1 for various projectiles x and a *°Ca target.
The respective elementary forward amplitudes
are listed in Table I. The densities p,,(») and
Pyo(7) assumed for *°Ca are identical with the ones
of Ref. 7, where two-parameter Fermi distribu-
tions with ¢,=3.296 fm, ¢,=3.364 fm, z,=z2,
=0.585 fm are used. As expected, ReAj(r) is
zero or small in the nuclear interior and quickly
approaches unity beyond the nuclear surface. For
180 MeV 77, as an example, this rise takes place
at approximately 5 fm, where the density has fal-
len to about 5% of its central value. It is obvious
that there is a set of density distributions which
yield the same calculated total cross section, the
only condition being [see Eq. (15)] that all mem-
bers are normalized to the same number of nu-
cleons in the region outside the rise of ReA%(r).

In the interior “black” region of the nucleus,
where ReAj(7)=0, p,(») is unbounded by o,,,, €x-
cept, of course, for the overall normalization.

Total cross sections therefore strongly depend
on the number of nucleons outside the absorptive
nuclear interior; thus o§ , is not directly sensitive
to the rms radius (»2)*/2 of p,(7). To obtain any
information on (#2)!/2, it is absolutely necessary
to restrict the shape of p,(») by involving a model
or by using independent information.

A model is necessarily introduced if p,(7) is
given by a Fermi distribution. One can study the
significance of the two free parameters by numer-
ically evaluating the right hand side of Eq. (15).

In this case, Ap(7) is taken to be the change of the

TABLE I. Parameters of elementary forward amplitudes, Eq. (2).

Projectile Ty (GeV) 0, (fm? €n 0, (fm?) €
2 0.18 20.40 —-0.05 6.90 0.13
TP 0.84 1.98 -0.90 4.53 0.15
i 0.84 4,53 0.15 1.98 —-0.90
=P 1.58 3.61 -0.14 3.61 -0.38
pe 1.04 4.04 —0.45 4.75 -0.10
ad 1.37 10.70 0.29 10.70 0.29

2Reference 31.

bReference 4, Table 8.

°Reference 11.

9Reference 32, p-a scattering at 345 MeV.
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Fermi distribution if either z or (»2)!/2 is varied
(with the normalization fixed). For a typical case
(such as 7+%°Ca, quoted above) it can be seen that
a change in (»2)*/2 affects the integral Re(AX(7)),,
much more than a corresponding change in z. This
behavior is a consequence of the mathematical
structure of a Fermi distribution. It makes pos-
sible the findings of most analyses where neutron
rms radii are deduced from 0§, or o}, , data.

To appreciate the caveats associated with such
analyses two recently published examples are
discussed in the following. The first concerns a
measurement of 0};, on ‘*%%%Ca in the (3, 3)
resonance region.” Because of the uncertainty of
the interaction model and the influence of the
Coulomb interaction, isotopic differences between
cross sections measured with pions of the same
charge state are chosen as observables. If the
isotopes **48Ca are compared, four distributions
p,(*°Ca), p,(*°Ca), p,(**Ca), p,(**Ca) are involved.
Using two-parameter Fermi distributions, all
eight parameters are fixed to values in accordance
either with elastic electron scattering or Hartree-
Fock calculations, except two, which were chosen
as the isotopic differences AR,, AR, between the
rms radii of the neutron and proton distributions,
respectively. AR, and AR, are adjusted to fit the
7~ and 7* data. This procedure leads to AR,
=0.14+0.05 fm and a AR, which is consistent with
elastic electron scattering. The corresponding
48Ca neutron point density p,(7) is shown as a
dashed line in Fig. 2.

Giving up the parametrization of p,(7) as a
Fermi distribution, any 5,(7)=p,(7)+ Ap,(r) would
also be acceptable, if only Ap,(7) yields Ac ,~0,
according to Eq. (15). An example for such a
P.(7) is shown as a solid line in Fig. 2. The insert
in Fig. 2 shows the isotopic o}, difference mea-
sured’ and calculated with the distributions p,(7)
and p,(»), keeping the remaining nucleon distribu-
tions in °Ca and *Ca fixed. It can be seen that it
is impossible to distinguish between the two Ca
neutron distributions by means of the measure-
ment. Nevertheless, the corresponding AR, for
the two cases are different by more than 3 times
the error +0.05 fm originally quoted.”

We wish to point out that we do not consider
p,(7) in Fig. 2 to be physically “reasonable.” On
the other hand, it is a difficult task to state the
conditions of physical acceptability of the radial
shape of neutron distributions. This may explain
why none of the papers on neutron densities quoted
so far®!® are concerned with the reason for not
considering densities like the above p,(7). To
make things worse, the situation of Fig. 2 repre-
sents a favorable case, because first, we require
Aot~ 0 although Ao} , may well be of the order

| 0o dilference **Ca *°Ca

\

ﬁ
g
<
N

‘{\’,,(r)

AR, =0.31fm

)
\

\

\

\
" " A ‘g

2 4 6 8 10 12 % 16
r (fm)

FIG. 2. Two different neutron density distributions
for #Ca. I the insert the ¥Ca-4'Ca 7" total cross-sec-
tion differences are calculated with these two distribu-
tions keeping the remaining nucleon distributions in 48Ca
and 40Ca fixed. The data are from Ref. 7.

of the experimental uncertainties, and second, one
can apply a similar manipulation also to the neu-
tron distribution in “°Ca. It also has been shown?®
that it can be insufficient to use Fermi-type proton
distributions p,(»). There is no indication of this
in the analysis of 0T, on “»*%Ca under discussion,’
since the resulting AR, is consistent with the ac-
cepted value. In general, however, it seems ad-
visable that proton distributions introduced in

such an analysis should rather be the true ones
(obtained, e.g., from a model-independent analysis
of elastic electron scattering'®). We conclude that
parameters like AR, extracted from o}, data are
subject to a large systematic error which can only
be reduced if (physically justified) constraints are
imposed on the radial densities. However, it is
correct to reverse the logic and to use experi-
mental data as a test for theoretical predictions

of radial densities. The inconsistency between
experimental isotopic o{,, differences and Hartree-
Fock predictions for p,(») which has been found’

is therefore not removed by the present consider-
ations.

As a second example, we would like to seruti-
nize a measurement?* of o{:m on C, Ca, and Pb
from 0.7 to 2 GeV. The elementary amplitudes
fm and f,, differ from each other in this energy re-
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gion which causes the data to be sensitive to dif-
ferences between p,(r) and p,(»). Possible insuf-
ficiencies of the interaction model are this time
suppressed by considering the ratio y=o%,, ,/
0%t~ We use the formalism developed in Sec. II
to express the dependence of ¥ on the difference
Ap(7) =p,(7) — p,(r) between the neutron and the
proton density. From Eq. (16) one finds

ov'n - Ur‘n

%(Ozot, r+ az;t, r)
where o,:, are the respective elementary total
cross sections. The radial weight B™(») [Eq. (17)]
is displayed for various cases in Fig. 3. The cor-
responding elementary amplitudes are listed in
Table I. The intrinsic densities assumed for °Ca
and 2°°Pb are two-parameter Fermi distributions.
The parameters for 4°Ca have already been quoted;
the ones for 2®®*Pb are c,=c,=6.542 fm and 2,
=2,=0.549 fm. The '°C densities have been calcu-
lated from single particle wave functions generated
in a Woods-Saxon potential requiring agreement
with data on separation energies and elastic elec-

IR

Ll 1 (B,(y))Ap ’ (21)

1.0 T a v r v Y v

06

Pb
. 0.84 Gev

o

0.4

0.2

2 4 6 8 10 12 14
r (fm)

FIG. 3. Radial weight B** () [defined in Eq. (17)] for
7* bombarding C, Ca, and Pb (see Sec. III).
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aos} “Ca

(y-1)

]
L

T, (GeV)

FIG. 4. Deviation from unity of the /" total reac-
tion cross-section ratio y as a function of bombarding
energy for Ca and Pb. The dashed curve [Eq. (22)]
represents the Coulomb effect alone. The solid curve
[sum of Egs. (21) and (22)] in addition contains the ef-
fect of the strong interaction. The data are taken from
Ref. 4.

}‘\‘%{ EAN N

tron scattering.’® As is seen from Fig. 3, B*(7)
exhibits the same general behavior as ReA%(r) of
Fig. 1. Note, that in our approximation y is inde-
pendent of the real part of the elementary ampli-
tude which is significant since this quantity is often
badly determined. B'(7) (Fig. 3) is practically in-
dependent of the charge state of the projectile [this
fact has been used in the derivation of Eq. (21)]
and the bombarding energy. Since projectiles of
different charge are compared in y, the Coulomb
interaction causes an additional effect which is
estimated according to Eq. (20):

(7" 1)Coul g(l_fGOF' (22)

The “black-sphere-equivalent” radius occurring
in 5 [Eq. (2) of Ref. 26] has been arbitrarily fixed
to the radius R where B'(R)=0.2. In Fig. 4 we
compare our model to the data.? The solid line
corresponds to the sum of Egs. (21) and (22),
while the Coulomb contribution alone, Eq. (22), is
marked by a dashed line. Several points become
clear. First, our crude model describes the mea-
surements surprisingly well, thus suggesting that
many of the corrections taken into account in the
original analysis? are of minor significance. Se-
cond, the nuclear part of the observable is negli-
gible for the isoconjugate “°Ca and shows up in
208ph only because there are many more neutrons
than protons. Third, the contribution of the strong
interaction which contains the information on the
matter distribution is obscured by purely electro-
magnetic effects, even at these high bombarding
energies., It is therefore most important that all
approximations of introducing the Coulomb force



1122 H. 0. MEYER 17

into the interaction model (e.g., charge form fac-
tors, relativistic effects) be carefully checked,
before reliable nuclear matter information can be
extracted from the data.

We conclude this section by noting that we are
not aware of any investigation of p,(») by proton or
a total cross sections, say in the GeV range, al-
though these projectiles are as well suited as pions
for this purpose. In addition, due to differences in
the radial weights ReAj(7) (Fig. 1) cross-section
data obtained with different projectiles x are com-
plementary and should simultaneously be used in
an analysis.

IV. DIFFERENTIAL CROSS SECTION

The previous section was addressed to total
cross sections as a possible source of information
about p,(7). Alternatively, cross-section measure-
ments of elastic hadron-nucleus scattering have
also been analyzed in terms of p,(r). It is appro-
priate to briefly touch upon some consequences of
the results of Sec. II with respect to the elastic
differential cross section [Eq. (5)]. We shall pass
over the scattering of p and « at relatively low en-
ergies®!3 where p,(») has to be extracted from an
optical potential, as well as the scattering of 7*
below the (3, 3) resonance® for which a reliable
parameter-free description is lacking at present.
Rather, we are interested in the scattering of p
or a around 1 GeV,'%! which is satisfactorily de-
scribed by the Glauber model.

Unfortunately, the connection between Ap,(7) and
the corresponding change in the differential cross
section is not as transparent as in the case of
Ot and 0%, .. Some facts, however, follow di-
rectly from an inspection of the momentum ex-
pansion of AF,(q), Eq. (13). First, with increasing
momentum transfer g, gradually higher moments
{r™*/" of Ap,(r) become important. Thus, an an-
gular distribution which spans a range of g is sen-
sitive to properties of the shape of Apy(r) and not
just to a normalization condition as 0§ ,. Second,
the contribution of any 2jth moment is again
masked by a radial weight Aj(). As an example,
the real and imaginary parts of A§(7)(j < 3) for
1.37 GeV a scattering from 4°Ca are displayed in
Fig. 5. Note that radial weights for different mo-
ments are quite similar and that the “black” re-
gion persists for all j. Thus, again p,(7) is not
determined in the nuclear interior (< 3 fm), even
by scattering at large momentum transfer. It
should be remembered that the useful range of ¢
is limited by the interaction model which becomes
unreliable for large g because higher terms in the
multiple scattering expansion become dominant.

In principle, angular distributions of the differ-

1.0 —p———— pe——
j2
r it _ 4
ReAj(r) j=0
osp p
- !
0.6 p 4
04t “%ca, 1.37 GeV a ;
r -
0.2p 4
1
op p
Yy lmA,(f) j=0 J
j=3
R
r (fm)

FIG. 5. Radial weight A}() (j=0,1,2,3) [defined in
Eq. (14)] for 1.37 GeV « bombarding °Ca (see Sec. IV).

ential elastic cross section offer the possibility of
an analysis which is free of a specific model for
p,(7). One such method was originally introduced
for the analysis of elastic electron scattering!®
and was later applied to high-energy proton scat-
tering.'® The idea is to represent py(r) by a sum
of Gaussians (SOG) centered at random radii 7;
with amplitudes determined from a fit to the data.
The method is not completely model independent
since physical arguments are needed to fix the
width of the Gaussians. If, in the analysis of had-
ron-nucleus scatteripg the SOG parametrization is
chosen for p,(r) one has to appreciate the follow-
ing. Each Gaussian in the sum couples values of
py(7) for a range of radii (in the case of Ca for
example, the 10% width used for the Gaussians is
~3.5 fm). For the sake of the argument we assume
that the nucleus has a completely black inner re-
gion. The coupling of py(r) at different radii then
produces a fake sensitivity of the calculated ob-
servables on p,(r) inside the black region. Such
a parametrization, therefore, may not be appro-
priate for probes that lead to strongly varying
weight functions like those shown in Figs. 1, 3,
and 5. This difficulty becomes very serious in
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another analysis of high-energy proton scattering,'®
which is also claimed to be model independent with
respect to py(r). There, the profile function
[which depends on S,(b), Eq. (4)], rather than
py(7), is described by a sum of step functions at
random impact parameters b, with amplitudes de-
termined by a fit to the data. In such a paramet-
rization each step function j introduces an inherent
coupling of py(r) in the range b,<¥<«. This in-
correctly suppresses the effects of the shielding
of the nuclear interior by strong absorption. Fu-
ture analyses along these lines should try to ac-
commodate these peculiarities whichtypically occur
with strongly absorbed probes.

V. SUMMARY

The extraction of information on the nuclear
neutron distribution from the scattering of strong-
ly interacting projectiles suffers from the follow-
ing difficulties. First, a reliable model has to be
found for the description of scattering in terms of
the elementary projectile-nucleon interaction. At
present, there is no case where this task has been
accomplished with no reservations. Second, ac-
curate knowledge of the elementary amplitudes is
required. To date, there are considerable uncer-
tainties as, e.g., for the nucleon-nucleon ampli-
tude at energies around 1 GeV aad above. Third,
p,(7) has to be known and fourth, some paramet-
rization of p,(r) has to be chosen.

The present investigation is devoted to this lat-
ter difficulty. Using the Glauber model, we find
that changes of p,(») influence the calculated cross
sections only if they occur outside the strongly
absorptive nuclear interior. The total cross sec-
tion, in particular, depends on the total number of
nucleons outside this absorptive region. From
this quantity one car deduce the rms radius of

p,(7), provided additional conditions are imposed
on p,,(r). Such conditions should come from physi-
cal arguments; it is questionable to introduce them
by restricting the nucleon distributions to a simple
mathematical form, as in the past has been com-
mon practice. This is exemplified by a discussion
of the neutron distributions in Ca isotopes.

Sometimes it may be helpful to assay how
strongly the observables depend on given proper-
ties of the nucleon distributions. On the basis of
the simple model derived in this paper, this is
done for a measurement of ratios of 7*/7" total re-
action cross sections.

We arrive at the conclusion that it is difficult to
derive independent information on the neutron or
matter distribution from total cross sections only.
We rather recommend that such data be used ei-
ther as complementary input in analyses simul-
taneously taking into account all of the available
information on a given nucleus, or as one possible
test of a theoretical prediction of the matter dis-
tribution.

Also discussed are angular distributions of the
elastic differential cross section. In comparison
to total cross sections, we show that more infor-
mation can be expected from an analysis of mea-
surements at varying momentum transfer. How-
ever, no matter how large the momentum trans-
fer, differential cross-section data (like total
cross sections) are insensitive to the matter dis-
tribution in the nuclear interior. We also critical-
ly review previous attempts to parametrize p,(»)
free of a particular model assumption.

Finally, it is a pleasure to acknowledge many
profitable comments by Dr. M. D. Cooper, Dr.
L. Knutson, Dr. G. R. Plattner, Dr. R. Redwine,
Dr. F. Roesel, Dr. I. Sick, Dr. D. Trautmann,
and Dr. R. Viollier.
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