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The derivation of nuclear neutron distributions from hadron-nucleus scattering data is critically examined.

Using the Glauber model, we investigate how the total and differential cross sections depend on specific

properties of the radial nucleon densities p„(r) of the target nucleus. Emphasis is placed on the
interpretation of hadron-nucleus total cross sections. As to the deduction of r.m.s radii from total cross-
section measurements only, we find that a large systematic error arises from the a priori unknown shape of
p„(r). This error can be reduced if physically justified constraints are imposed on p„(r). In many published

analyses, however, the constraint on p&(r) has been of mathematical origin since only density distributions
of a certain shape (e.g., Fermi distributions) have been used. As an example, our findings are applied to two

recent pion-nucleus total cross section experiments. It is also shown that earlier attempts to avoid a
mathematical constraint on pN(r) must be viewed with reservations.

NUC LEAR STRUCTURE Hadron-nucleus scattering, deduction of matter
radius, model dependence.

I. INTRODUCTION

Radial distributions of protons in nuclei are
known much more precisely than those of neutrons;
the former can be investigated via the electromag-
netic interaction, while for the latter we depend on
processes involving the strong interaction (with
the exception of one special case'). Methods to
study nuclear neutron distributions are listed,
e.g. , in Table I of Ref. 2. Among these methods is
the scattering of hadrons from nuclei: Experi-
ments with various probes at many bombarding en-
ergies and for different nuclei have been ana-
lyzed' " in terms of the (unknown) neutron density
distribution p„(r). Obviously, such a procedure is
somewhat uncertain at present because it depends
on a reliable model for the projectile-nucleus in-
teraction, such that p„(r} can be considered the
only unknown quantity. However, for medium-
and high-energy hadron scattering this difficulty
is not very serious where the data are well ex-
plained by theories which start from the density
distributions p„(r) and p~(~) and the interaction of
the projectile with individual free nucleons (e.g. ,
Glauber model, Kisslinger optical model).

If one postulates the validity of such a model and
assumes p~(~) to be known (from elastic electron
scattering), one can search for a p„(x) which leads
to agreement between the calculated observables
and the experimental quantities. In such an analy-
sis, p„(r) is commonly described by a function of
r with as few parameters as needed to fit the data.
Often a Fermi distribution ~ is chosen ' 5 for
p„(r) which, beside the (fixed) normalization, de-
pends on two parameters, e.g. , the skin thickness

z and the half-density radius c (or the rms radius
(r')'~'). Sometimes a third parameter nr is intro
duced "

Using Fermi distributions it has long been real-
ized' ' that the scattering observables calculated
within various interaction models depend strongly
on (r')'~' but only weakly on z. It is common
practice to jump from this fact to the conclusion
that the method just described is equivalent to a
determination of the rms radius of the true neu-
tron distribution. It is not clear, however, if the
true neutron density actually is close enough to a
Fermi distribution. The selective sensitivity of
the data to the rms radius could well be simulated
by the choice of a particular mathematical form
for p„(r) with only a few arbitrary degrees of
freedom.

This difficulty has first been recognized in elec-
tron scattering for which various so-called model-
independent densities (e.g. , Ref. 16) have been pro-
posed. For a few cases of hadron scattering, in-
vestigations along similar lines have been reported
recently" " (for details see Sec. IV).

The purpose of the present paper is to demon-
strate which particular properties of p„(r) are de-
termined by hadron-nucleus scattering experi-
ments, and to explore the impact of a model for
p„(x) (e.g. , Fermi distribution} on conclusions
about p„(r) deduced from such data. To keep the
necessary formalism to a minimum we make use
of the Glauber model in a simple approximation
from which in Sec. II we derive the dependence of
scattering observables on the nuclear densities.

Irl Sec. III this formalism is applied to the case
of total cross sections. This is exemplified by a
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reevaluation of some findings of recent experi-
ments. Simple consequences of our results re-
garding angular distributions of the differential
elastic cross section are given in Sec. IV, followed

by a discussion of model-independent analyses
available at present.

II. DEPENDENCE OF SCATTERING OBSERVASLES
ON NUCLEAR DENSITIES, INTERACTION MODEL

In the following, the sensitivity of an interaction
model on details of the input density distributions
is investigated. For this purpose it is sufficient
to use a simple (transparent) formalism. The
amplitude for the scattering of a projectile x from
a nucleus in the framework of the Glauber multi-
ple scattering theory"" (optical limit) can be
written as

x,(q)=it f q (qq)(( —q *' ')( dl .
0

Here, k is the projectile momentum in the projec-
tile-nucleus c.m. system, b is the irapact param-
eter, and q = 2k sin-,'8, the transferred momen-
tum. We assume the nucleus to be spherically
symmetric and neglect the spin of projectile and
target. The "elementary" amplitude for the scat-
tering of the projectile x from a free nucleon N

(n or p} is given by

(2)

with a.
„N the total projectile-nucleon cross section

and q„N the ratio of real to imaginary part of the
projectile-nucleon forward amplitude f„„(0). For
the moment we assume a zero-range interaction,
i.e. , we use P„„'=0 for the slope parameter in

Eq. (2). Qne then obtains for the phase function
("eikonal") G,(b) in Eq. (1):

G„(b) = Q ox»(1- ie„»)S»(b}. (3
E=n, P

The thickness of the target nucleus at a given im-
pact parameter is measur'ed by

minus the total elastic cross section)

tot, r (1 —
~

e x'" ~')b db.

Given the elementary amplitudes (o„„,e„»,N = n or
p), the observables can be calculated from the
neutron and proton density distributions p„(r) and

p,(r)
We assume that the true densities p„,(r) and

p~(r} are known. Any other density different from
p»(r} is described by t2p„(r} such that

&p (r) = p (r) —p,.(r).
We define the generalized moment

(6)

(g(r))~, =-4v r 2g(r)ttp»(r}dr

and require the same normalization for p„(r) as
for p»(r), i.e. ,

(10)

t)F,(q) =4vf »(0) rxt)p»(r)W(r, q)dr

with

gr (r q)
— qf (bq) eex( )(2r—2 b ) 2 —db .b

0

(12)

Expanding the Bessel function in Eq. (12) leads to

(1)„=0.
Having set the stage, we turn to the crucial step,
calculating the changes exF„(q}, b, o t„, and ex' "t,t,
caused by an increment t)p»(r) in one of the nu-
cleon distributions. In this way we investigate
how well one can experimentally detect the differ-
ence between the true nucleon distribution p„,(r)
and a p„(r) assumed in the analysis. Expanding the
scattering amplitude Eq. (2) in AS»(b) =S„(b)
-S„,(b} and retaining only terms linear in ES»(b}
[thus in fact limiting ttp»(r) to small values]
yields

S (b)= p„(r)(r2 —b2) '~2rdr. (4)
where

(22)

The observables we want to discuss are the elastic
differential cross section

2*+1» &

Ax(r) ( 2 ) ' $2j+le G (qt)(2 t2) t/2d(
(2i)) I

(14)

do, (q)/dQ=
~
F„(q)(',

the total cross section

o *„,= (4v/k} lmF„(0}

= 4v (1 —Ree *' )eb d2b), (6)

and, according to Eq. (6),

+ t(qt x» R ( ()( ))(t(q» '

For the increment in the total reaction cross sec-
tion an analogous derivation, starting from Eq.
(1), yields

and the total reaction cross section (i.e. , the total t( o "„,„=a„„(B*(r)), (16)
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with

t+-2 BeC (eC j(I ~2)-1/2dt (17)

As an example, consider the limiting case of a
"transparent" nucleus (C,„-O,e„„-0}.It follows
that A/(r) - 1 and B*(r)—1 for all j and r, and
nF, (q) takes the form

of an independent-particle model. This "c.m. ef-
fect" has been discussed" for the harmonic oscil-
lator. Both effects mentioned above result in cor-
rections to the nuclear form factor. To a good ap-
proximation they can be taken into account simul-
taneously" by evaluating Eq. (4) with densities
p„(r) which are the independent-particle model
point nucleon densities. p„'(r —2)f'olded with a func-
tion

(18)
Because of the normalization condition [Eq. (10}]
there is no q-independent term in the expansion.
Therefore, the changes nF„(q =0), no*„„and
ho"„, „vanish. This means that the corresponding
observables only depend on the normalizations of
p„(r) and p2(r} Con. sequently, only if there are
regions in r where the radial weights A,*(r) and
B*(r) differ substantially from unity is it possible
that o "„,or o "„,„depend on the nucleon distribu-
tion in a nontrivial way. This condition is met for
hadron-nucleus scattering as will be seen from a
discussion of A,*(r) and B'(r) in Sec. III.

For the sake of simplicity, we have introduced
several approximations in the formalism described
so far. For a detailed analysis this simple model
would have to be corrected for a number of ef-
fects." However, if we only attempt to discuss
the influence of a small change of the nucleon dis-
tribution we may neglect these corrections. In
addition, the approximations used are not unrea-
sonable. This can be seen, e.g. , from the fact
that for the 'Ca-"Ca differences of w total cross
sections in the (3,3} resonance region, the simple
model described here yields virtually the same
answer as more sophisticated interaction models
(see Fig. 2 of Ref. 7). This is not surprising,
since it can be seen that those impact parameters
which contribute most to the calculated difference
in 0"„,belong to trajectories sampling the low
density region of the nucleus, where most of the
higher-order effects (e.g. , from pair correlations}
are small anyhow. This argument still holds for
projectiles with spin, since it has been shown that
the spin-orbit interaction leads to rather small
corrections. '

Nevertheless, in the following, we inspect some
of the approximations made so far, especially
since they can affect the first term in the multiple
scattering expansion.

One such approximation has been the omission of
the slope parameter P of Eq. (2}, thus neglecting
the finite range of the projectile-nucleon interac-
tion. A second one enters if the nucleon densities
of Eq. (4} are to be compared with the prediction

o(l+ 5} 'o, , (20)

where a stands for either the total, total elastic,
or total reaction cross section and a, for the cor-
responding quantities in the absence of the Cou-
lomb interaction. The parameter 5 is given by
Eq. (2} of Ref. 26. This semiclassical Coulomb
correction satisfactorily explains, e.g. , experi-
mental m'-m total cross-section differences in the
(3, 3) resonance region. ""

III. TOTAL CROSS SECTION

Measured hadron-nucleus total cross sections
o"„,or o "„,„have been used to extract information
on the matter distribution, or—with p2(r) known-
the neutron distribution p„(r) The list o.f experi-
ments which have been exploited in this way in-
cludes o'„', (isotopic differences) at 0.1-0.25 GeV
on e Ca', o'„', Jo t„„at0.7-2 GeV on C, Ca,

i, Sn, I'b4'5' ~t ~ ~ at ~-~ GeV'on 4~+~2

where a denotes the oscillator parameter. These
two corrections obviously can be applied by an
appropriate modification of the input densities
p„(r); thus they tend to be unimportant in cases
where differences np„(r) of nucleon densities are
considered.

Since most hadronic scattering data involve
charged projectiles it is necessary to include the
electromagnetic interaction which has also been
neglected so far. Various methods to do this in
the framework of the Glauber model have been
proposed. O' For the purpose of this paper, it
suffices to mention an approximate method for
taking into account the Coulomb interaction in the
case of total cross sections. To arrive at the
usually quoted experimental o "„„terms containing
the pure Coulomb amplitude fo are subtracted from
the directly observable quantities. ' However, the
resulting o "„,still contains electromagnetic ef-
fects which can be estimated by considering the
distortion of the wave function of the incident
charged projectile in the Coulomb field of the nu-
cleus. A semiclassical treatment for pion-nucleus
scattering" leads to
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Fermi distribution if either z or (r')' ' is varied
(with the normalization fixed). For a typical case
(such as v+ "Ca, quoted above) it can be seen that
a change in (r')' ' affects the integral Re(A;(~))~,
much more than a, corresponding change in z. This
behavior is a consequence of the mathematical
structure of a Fermi distribution. It makes pos-
sible the findings of most analyses where neutron
rms radii are deduced from ~"„,or o"„,„data.

To appreciate the caveats associated with such
analyses two recently published examples are
discussed in the following. The first concerns a
measurement of o",„on "~4'Ca in the (2, 2}
resonance region. ' because of the uncertainty of
the interaction model and the influence of the
Coulomb interaction, isotopic differences between
cross sections measured with pions of the same
charge state are chosen as observables. If the
isotopes "'"Ca are compared, four distributions
p„(4'Ca), p~("Ca), p„("Ca),p~(~Ca) are involved.
Using two-parameter Fermi distributions, all
eight parameters are fixed to values in accordance
either with elastic electron scattering or Hartree-
Fock calculations, except two, which were chosen
as the isotopic differences hR„, hB~ between the
rms radii of the neutron and proton distributions,
respectively. AR„and AR~ are adjusted to fit the
w and m' data. This procedure leads to 4R„
= 0.14+ 0.05 fm and a 4R~ which is consistent with
elastic electron scattering. The corresponding
4'Ca neutron point density p„(r} is shown as a
dashed line in Fig. 2.

Giving up the parametrization of p„(r) as a
Fermi distribution, any p„(r) = p„(r)+ 4p„(r) would
also be acceptable, if only 4p„(r}yields no'„, -0,
according to Eq. (15). An example for such a
p„(r) is shown as a solid line in Fig. 2. The insert
in Fig. 2 shows the isotopic o'„, difference mea-
sured' and calculated with the distributions p„(r)
and p„(r), keeping the remaining nucleon distribu-
tions in 4'Ca and "Ca fixed. It can be seen that it
is impossible to distinguish between the two 4'Ca
neutron distributions by means of the measure-
ment. Nevertheless, the corresponding hg„ for
the two cases are different by more than 3 times
the error +0.05 fm originally quoted. '

%e wish to point out that we do not consider
p„(r) in Fig. 2 to be physically "reasonable. "

On
the other hand, it is a difficult task to state the
conditions of physical acceptability of the radial
shape of neutron distributions. This may explain
why none of the papers on neutron densities quoted
so far' "are concerned with the reason for not
considering densities like the above p„(r). To
make things worse, the situation of Fig. 2 repre-
sents a favorable case, because first, we require
4o'„,-0 although Ao'„, may weQ be of the order

I
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io'-
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E S

4 6 B 10 12 14 t6

r (fm)
FIG. 2. Two different neutron density distributions

for 4 Ca. & the insert the 48Ca-40Ca x total cross-sec-
tion differences are calculated with these two distribu-
tions keeping the remaining nucleon distributions in SCa
and Ca fixed. The data are from Ref. 7.

of the experimental uncertainties, and second, one
can apply a similar manipulation also to the neu-
tron distribution in "Ca. It also has been shown"
that it can be insufficient to use Fermi-type proton
distributions p~(r}. There is no indication of this
in the analysis of o ~t„on ""Caunder discussion, '
since the resulting 4B~ is consistent with the ac-
cepted value. In general, however, it seems ad-
visable that proton distributions introduced in
such an analysis should rather be the true ones
(obtained, e.g. , from a model-independent analysis
of elastic electron scattering"). We conclude that
parameters like 4R„extracted from 0'„, data are
subject to a large systematic error which can only
be reduced if (physically justified) constraints are
imposed on the radial densities. However, it is
correct to reverse the logic and to use experi-
mental data as a test for theoretical predictions
of radial densities. The inconsistency between
experimenta, l isotopic o'„, differences and Hartree-
Pock predictions for p„(r}which has been found'
is therefore not removed by the present consider-
ations.

As a second example, we would like to scruti-
nize a measurement4 of o'„, „on C, Ca, and Pb
from O.V to 2 GeV. The elementary amplitudes
f and f,~ differ from each other in this energy re-
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another analysis of high-energy proton scattering, "
which is also claimed to be model independent with
respect to p„(r). There, the profile function
[which depends on Sz(b), Eq. (4)], rather than

p„(r), is described by a sum of step functions at
random impact parameters b& with amplitudes de-
termined by a fit to the data. In such a paramet-
rization each step function j introduces an inherent
coupling of p„(r) in the range b~&r &". This in-
correctly suppresses the effects of the shielding
of the nuclear interior by strong absorption. Fu-
ture analyses along these lines should try to ac-
commodate these peculiarities which typically occur
with strongly absorbed probes.

V. SUMMARY

The extraction of information on the nuclear
neutron distribution from the scattering of strong-
ly interacting projectiles suffers from the follow-
ing difficulties. First, a reliable model has to be
found for the description of scattering in terms of
the elementary projectile- nucleon interaction. At
present, there is no case where this task has been
accomplished with no reservations. Second, ac-
curate knowledge of the elementary amplitudes is
required. To date, there are considerable uncer-
tainties as, e.g. , for the nucleon-nucleon ampli-
tude at eaergies around 1 GeV aad above. 'third,
p~(r) has to be known and fourth, some paramet-
rization of p„(r) has to be chosen.

The present investigation is devoted to this lat-
ter difficulty. Using the Glauber model, we find
that changes of p„(r) influence the calculated cross
sections only if they occur outside the strongly
absorptive nuclear interior. The total cross sec-
tion, in particular, depends on the total number of
nucleons outside this absorptive region. From
this quantity one can deduce the rms radius of

p„(r), provided additional conditions are imposed
on p„(r). Such conditions should come from physi-
cal arguments; it is questionable to introduce them

by restricting the nucleon distributions to a simple
mathematical form, as in the past has been com-
mon practice. This is exemplified by a discussion
of the neutron distributions in, Ca isotopes.

Sometimes it may be helpful to assay how

strongly the observables depend on given proper-
ties of the nucleon distributions. On the basis of
the simple model derived in this paper, this is
done for a measurement of ratios of v'/v total re-
action cross sections.

We arrive at the conclusion that it is difficult to
derive independent information on the neutron or
matter distribution from total cross sections only.
We rather recommend that such data be used ei-
ther as complementary input in analyses simul-
taneously taking into account a/l of the available
information on a given nucleus, or as one possible
test of a theoretical prediction of the matter dis-

tributionn.

Also discussed are angular distributions of the
elastic differential cross section. In comparison
to total. cross sections, we show that more infor-
mation can be expected from an analysis of mea-
surements at varying momentum transfer. How-

ever, no matter how large the momentum trans-
fer, differential cross- section data (like total
cross sections) are insensitive to the matter dis
tribution in the nuclear interior. We also critical-
ly review previous attempts to parametrize p„(r)
free of a particular model assumption.

Finally, it is a pleasure to acknowledge many
profitable comments by Dr. M. D. Cooper, Dr.
L. Knutson, Dr. G. R. Plattner, Dr. R. Redwine,
Dr. F. Roesel, Dr. I. Sick, Dr. D. Trautmann,
and Dr. R. Viollier.
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