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Exact calculation of the penetrability for a simple'two-dimensional heavy-ion fusion barrier*
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In a study of the effect of the quantal zero-point oscillations of nuclei on their low-energy fusion cross
section, we calculate exactly the penetrability for a simple two-dimensional barrier V(r,0). The coordinate
r is the distance between the centers of mass of the two nuclei, and o is the sum of the root-mean-square
extensions along the symmetry axis of the matter distribution of each nucleus about its center of mass. The
potential V(r,0) is a parabolic peak in r and is one or the other of two harmonic oscillators in o, depending
upon whether r is greater than or less than a critical value r,. The oscillators differ both in the locations of
their minima and in their curvatures. This simulates the dominant feature in the two-dimensional nuclear
potential-energy surface of two misaligned valleys (the fission and fusion valleys) separated by a ridge
between them. When an incident wave that is localized in the fusion valley encounters the potential-energy
ridge, it is partially transmitted and partially reflected in waves that correspond to different excited states in
the transverse direction and hence to different amounts of energy in the fusion direction. The amplitudes of
these waves are determined by requiring that the wave functions (expressed exactly in terms of parabolic-
cylinder functions) and their first derivatives be continuous at r,. The penetrability is then obtained from the
amplitudes of the transmitted waves. As a specific example, we use this formalism to calculate the
penetrability for a two-dimensional potential-energy surface appropriate to the reaction
100Mo + %Mo —?Po. The calculated penetrability is substantially different from the result for a one-
dimensional calculation. In particular, 10 MeV below the maximum in the one-dimensional fusion barrier the
two-dimensional penetrability is 10'° times as large as the one-dimensional result. Also, for equal
penetrability the slopes of the two curves are very different.
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I. INTRODUCTION

The goal of many experiments in heavy-ion
physics. is to provide information on the nuclear
potential energy of deformation. In particular,
the measurement of heavy-ion fusion cross sec-
tions at low bombarding energies provides infor-
mation on the height of the interaction barrier and
on its curvature near the point where the two nu-
clei first come into contact. These quantities are
usually extracted by analyzing the experimental
fusion cross section in terms of the penetrability
for a one-dimensional interaction barrier. The
shape of this barrier is often assumed to be para-
bolic, which leads to a simple analytic expression
for the penetrability.!™ If the target or projectile
is deformed in its ground state, the height of the
interaction barrier depends upon the angular ori-
entation of the deformed nucleus. This effect is
usually taken into account by averaging over ori-
entation?™® or in some other way.’

Such procedures are fair approximations in the
case of a relatively light incident projectile, where
the nuclear potential energy depends primarily up-
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on a single coordinate that describes the distance
between the centers of mass of the two nuclei,
However, as the mass of the projectile increases
it becomes increasingly important to take into
account the possibility that the nuclei may deform
duringthe collision. Inparticular, nearthe point at
which the nuclei first come into contact, the po-
tential energy depends strongly upon the distance
between their equivalent sharp nuclear surfaces.
For a fixed separation of their centers of mass,
this distance is related to the sum of their defor-
mations along a common symmétry axis. Prolate
deformations lower the potential energy relative
to that for two spheres, whereas oblate deforma- -
tions raise it. In terms of a center-of-mass sep-
aration coordinate 7 and a fragment elongation
coordinate o, the two-dimensional potential-energy
surface V(r, o) has the appearance of two misalign-
ed valleys—one associated with fission and the
other with fusion—separated by a ridge between
them.?"** This is illustrated!® in Fig. 1 for the
reaction Mo+ %Mo - 2°°Po. Although the poten-
tial-energy surface is not invariant under coordi-
nate transformations, the coordinates » and o used
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FIG. 1. Calculated (Ref. 13) macroscopic two-dimen-
sional potential-energy surface for the reaction “Mo
+10016~20po, The coordinate 7 is the distance between
the centers of mass of the two nuclei, and o is the sum
of the root-mean-square extensions along the symmetry
axis of the mass of each nucleus about its center of
mass. The radius R of the spherical nucleus is given
by Ry=7r,413=1.16 (200)!/3 fm =6.78 fm. In this figure
the zero of potential energy is at the sphere, whose
location is given by a solid point. The configuration of
two touching spheres is located at »/R;=1.59, /R,
=0.71, as indicated by two adjacent solid points. The lo-
cation of the fission saddle point is given by two crossed
solid lines.

here represent a logical choice because they lead
to a kinetic energy that is approximately diagonal
in the vicinity of the contact point.!?

It has been recognized for several years that
nuclei can deform during heavy-ion collisions, and
classical dynamical calculations have been per-
formed to describe the deformation of nuclei both
before they come into contact*"?* and after con-
tact.!>?226 However, for energies near or below
the top of the one-dimensional interaction barrier,
classical mechanics is no longer valid. For these
energies it is necessary to use a quantal approach
in describing the collision.

Within the collective model of the nucleus, the
full solution of the quantal collision problem would
require solving a multidimensional Schrodinger
equation in terms of the coordinates that describe
the shapes and angular orientations of the two col-
liding nuclei. We do not solve this multidimen-
sional problem here, but instead calculate the
penetrability for a restricted two-dimensional
problem, taking into account only a center-of-
mass separation coordinate and a fragment-elon-
gation coordinate.

When the two nuclei are far apart, the ground-
state wave function for the motion perpendicular
to the fusion valley is approximately a Gaussian
function centered about the bottom of the valley.
The width of this function, which regulates the
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amplitude of the zero-point oscillations, is deter-
mined by the curvature of the potential energy per-
pendicular to the valley and by the associated ef-
fective mass. v

During a heavy-ion fusion reaction, when an in-
cident wave localized in this way in the fusion val-
ley arrives in the vicinity of the potential-energy
ridge and the fission valley, it is partially trans-
mitted and partially reflected in waves that corre-
spond to different excited states in the transverse
direction. The nonzero amplitudes in the region
of the saddle point allow the system to exploit the
lowered barrier, which increases the penetrabil-
ity. Because this is especially true for low inci-
dent energies, the resulting dependence of the
penetrability on energy is qualitatively similar
to that calculated for a one-dimensional barrier
that is somewhat lower in height and substantially
thinner.

The importance of calculating the penetrability
for a two-dimensional barrier has long been rec-
ognized, and some advances have been made re-
cently on this problem. Hofmann has applied the
WKB approximation and the Born approximation to
two-dimensional potentials of interest in fission.?’
Miller has developed a classical-limit treatment
of quantum mechanics that involves solving classi-
cal equations of motion for complex time.?® This
method has been used by Massmann, Ring, and
Rasmussen to calculate the penetrability through
a simple two-dimensional fission barrier at en-
ergies well below the top of the barrier.?*3° Un-
fortunately, the Born approximation that appears
in Hofmann’s treatment is poor when applied to a
potential ridge, and Miller’s method does not
apply for incident energies near the top of the bar-
rier, which is a region of great experimental in-
terest. )

We are therefore led to consider a two-dimen-
sional potential which displays the salient feature
of two misaligned valleys, but that is nevertheless
sufficiently simple that an exact solution can be
effected. Some preliminary accounts of our ap-
proach are given in Refs, 31 and 32.

II. POTENTIAL AND KINETIC ENERGIES

We represent the dependence of the potential en-
ergy on the separation coordinate in terms of a
parabolic peak centered at the maximum in the
one-dimensional interaction barrier, and repre-
sent the fission and fusion valleys in terms of two
harmonic oscillators whose curvatures and equi-
librium positions are different. To be specific, we
approximate the two-dimensional potential-energy
surface V(»,o) by
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Vo=2k (r =72 +35k (0 -0,)%, 7=,

V(?’,O')r- VO_%kr(V—’Vo)Z"'ékz(o"Uz)z
—~3ky(0,~0,)%, <7, 1)

The position of the peak in the separation coordi-
nate is at »=7,. The fusion valley is centered
about o=0, and occurs for values of » greater
than or equal to the critical value ;. The fission
valley is centered about ‘o =0, and occurs for val-
ues of » less than »,. The positive quantity &,
specifies the curvature with respect to » of the
parabblic peak, and %, and k, specify the curva-
tures with respect to o in the fusion and fission
valleys, respectively. Along the one-dimensional
path defined by o=0,, the potential energy is con-
tinuous and has the maximum value V,at r=7.
The energy of the fission saddle point, which oc-
curs at =7, 0=0,, is V,-3k,(0,-0,)%

This representation of the potential-energy sur-
face is shown in the lower part of Fig. 2 for the
reaction Mo+ ®Mo - 2°Po. For comparison,
the upper part of the figure shows the actual cal-
culated macroscopic potential-energy surface for
this reaction.!® The eight constants appearing in

/
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FIG. 2. Comparison of calculated (Ref. 13) macro-
scopic two-dimensional potential-energy surface (upper)
and our approximation to it (lower) for the reaction
1000 +100pjo — 20Po, In this figure the zero of potential
energy is at the maximum in the one-dimensional inter-
action barrier, which is located at »/R,=1.64, o/R,
=0.71. This is slightly outside the configuration of two
touching spheres, whose location is given by two adja-
cent solid points.

Eq. (1) were selected to yield the correct energy
and location in both » and ¢ of the maximum in the
one-dimensional interaction barrier, the correct
energy and location in ¢ of the fission saddle point,
the correct energy and location in » where stability
with respect to o deformations is lost in the fusion
valley, and the correct curvature with respect to o
in the fusion valley. The energies in both the up-
per and lower parts of Fig. 2 are plotted relative
to the maximum V in the one-dimensional inter-
action barrier.

The kinetic energy 7 is taken to be

Lo r2 L e2 >
T={gm;r +3m, 5%, r=7,

L ° L .
M2 eEm,0°, r<r,,

where the effective masses m,, m,, and m, are
independent of position. The frequencies of oscil-
lation in the fusion and fission valleys are there-
fore

w, = (ky /m, )2
and

w,= (ky/myl 2,

respectively. The associated curvature parameter
for the parabolic peak is

w, = (k,/m,)" 2.

For m, we use the reduced mass of the two col-
liding nuclei, and for both m, and m, we use the
incompressible, irrotational mass for vibrations
about spherical equilibrium shapes in the fusion
valley.'®* For the reaction °°Mo+ **°Mo— 2°°Po this
leads to the values

w,=2.61 MeV,
7w, =3.29 MeV,

and
- fw,=4.25 MeV .

When the bombarding energy is measured relative
to the maximum V, in the one-dimensional inter-
action barrier, the pehetrability depends upon only
two additional quantities, whose values for this re-
action are

7, =7,=1.56 fm
and

0,—0,=1.45 fm.

III. PENETRABILITY

Because of the forms chosen for the potential
and kinetic energies, the total wave function ¥(r, o)
is given exactly in each of the two regions in .
terms of a sum of parabolic-cylinder functions in
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7 times harmonic-oscillator wave functions in o.
The boundary conditions that we are interested in
correspond to an incident wave in the ground state
in the fusion valley traveling toward the left from
7=+ and to a sum of transmitted and reflected
waves. The transmitted waves correspond to ex-
citing different harmonic-oscillator states in the
fission valley and travel asymptotically toward

= ~x, The reflected waves correspond to excit-
ing different harmonic-oscillator states in the fu-
sion valley and travel asymptotically toward »
= 4 oo’

The wave function in the fusion valley is there-
fore given by ’ i

\]!1(1’) G)=E*(a107u)d)1()(o. - 01)

+ ) AE(a,,u) ¥ ,(0-0),
n=0
where the parabolic-cylinder functions E and E*
are solutions in standard notation®*3* of the dif-
ferential equation

d2

ZiZ%+ (Fu®-a)p=0.

Complex conjugation is denoted by an asterisk.
The dimensionless variable «# that appears in these
functions is related to » by

u=(2m,w, /TN 2 (r —ry)=[2k,/(Fw,) ] 2(r =7,).
The quantity a,, is given by
a,,=Vy— (E =nliw,)]/(Fw,)

and specifies in units of Zw, the energy deficit rel-
ative to V, for motion in the » direction when the
nth harmonic-oscillator state in the fusion valley
“is excited. The total energy of the system E (not
to be confused with the parabolic-cylinder func-
tions denoted by the same symbol) includes the
zero-point energy %h“wl. The properly normalized
harmonic-oscillator wave functions in the fusion

3

valley are given by
b (0 —0,)=la,/@mIVD M 2H [a (0 - ,)]
xexp[-z @, %0 - 0,7, (2)
where
@, = (my0, /W 2= [k, /(0,2 (3)
and where H, denotes the nth Hermite polynomial.

Similarly, the wave function in the fission valley
'is given by

b, (r,0)= Z‘:B,,E(az,,, —u) Y0 -0,),
where )
Ay =1{Vy =3ky(0, — 0, — [E+ 5710, — (n+3Fw, ]}/ (Fw,)

and where the harmonic-oscillator wave functions
are given by expressions analogous to Eqgs. (2) and
(3).

The reflection and transmission coefficients 4,
and B, are determined by requiring that the wave
function and its gradient be continuous at 7, for
all values of 0. The resulting two equations are
transformed into two systems of algebraic equa-
tions by multiplying by ¥,%(c —0,) and integrating
over all values of ¢. This leads to

E*(ay0,1,)8 o+ E(amrul)Am:ZcmnE(azn , —u,)B,
‘ n=0

and
8E*(ay,,u) 5 4 0E(a,,, ,u) A
ou u=uy mo u U=ty m
_ i 0E(ay,, —u) B
= Cmn oy ns
n=0 u=uy
where
cm,,=f Px (0 —0,) Yyulo —0,)do . 4)

Elimination of A,, from these equations leads to

2 *(a’_();u) 8E*(a1m)u) E* a
- u,) |0
[E(a1m:u1) Su ety u ety ( 109 1) mo
) 9E(a,,, —u) 3E(a,,,u)
=Y Counl B(@y ) 212 ‘ - — E(a,,, —u,)|B,.
The presence of the Kronecker & in the left-hand i:M B.=5 (5)
side of this equation permits us to use the Wron- Ly o Tmo s

skian property®*3*

W[E(a,u), EXa,u)]= -2i.
In terms of the matrix M defined by

M = 36C g WIE(@y sty E(@ppy —u,)],
the system of equations to be solved for the coef-
ficients B, becomes simply

The expansion coefficients c,,, are obtained con-
veniently by multiplying both sides of Eq. (4) by
x™"/(m!n!) and summing on m and » from 0 to
©  which permits the use of the Hermite-polyno-
mial generating function to evaluate the integral.
Subsequent use of the generating function returns
the right-hand side of the equation to a summation,
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and the value of ¢, is determined by equating the coefficients of x™y". This leads to

minla.a 1/2/y 2 _ q 2\tmm)/2 o
172 ] 2 1 exp| — =% 277

Con= =
mn [27;&" 1(a12+ 0122) a12+ azz

mi%,n) 1 40110!2 k {
X
k!(m-—k)!(n—k)!(azz—al2> Hones

k=0

where we specialize to the physically interesting
case in which a,>a, and where

H,(x)=(=i)"H (ix) .

The penetrability P is obtained by taking the
ratio of the transmitted flux to the incident flux,
integrated over all values of 0. By virtue of Eq.
(5) the final expression for P becomes

P=i anP: iI(M-l)no|2= [(MMT)-l]oo ’

where M' denotes the transposed complex conju-
gate of M. ,

In the limiting case in which the fission and fusion
valleys become coincident (0, =0,, ,=k,, and m,
=m,), the expansion coefficients c,, are given
simply by ¢,,,=0,. In this case the expression for
the penetrability reduces to the usual Hill-Wheeler
formulal

P=[1+exp(2ma,,)]?,
where
a,=0ay=(Vy - E)/(iw,) .

When calculating the penetrability by use of the
above formalism, one must take extreme care
with the numerical procedures employed. This is
especially true when calculating the parabolic-
cylinder functions for moderately large values of
the arguments, as significant loss of accuracy oc-
curs through the subtraction of terms of comparable
magnitude. In our calculations, we have uséd the
standard power-series expansions for the para-
bolic-cylinder functions®** and have overcome the
numerical difficulties by performing the computa-
tions in double-precision arithmetic on a CDC-6600
computer, which yields a word length of approxi-
mately 28 decimal figures. If a computer with
such precision is not available, or if the parabolic-
cylinder functions are needed for other ranges of
the arguments, then other methods must be used
for computing them.*® Also, one must insure that
the calculated penetrability has converged as a
function of basis size. In our calculations, we
used 20 basis functions when E -V < ~15 MeV and
25 basis functions when E - V= — 15 MeV.

Figure 3 shows the calculated penetrability as
a function of bombarding energy for a two-dimen-
sional potential-energy surface appropriate to the

20,20, -0 )2}

2(a,%+a,?)

a2a,(

T

reaction ®Mo+ 1°°Mo - 2°°Po. The penetrability
for the two-dimensional barrier is substantially
different from that for a one-dimensional para-
bolic barrier corresponding to the cut along the
bottom of the fusion valley (at o/R,=0.71). At
energies well below the maximum V, in the one-
dimensional barrier, the penetrability for the two-
dimensional barrier is substantially larger than
that for the one-dimensional barrier. For exam-
ple, 10 MeV below V, it is 10*° times as large.
This increased penetrability arises because in the
two-dimensional potential-energy surface increased
fragment elongation leads to a decrease in'po-
tential energy near the maximum in the one-dimen-
sional interaction barrier. At energies well above
V, the penetrability for the two-dimensional barri-
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FIG. 3. Calculated penetrability for the reaction 1Mo
+10000 —20pg as a function of center-of-mass bombard-
ing energy relative to the maximum in the one-dimen-
sional interaction barrier. The solid curve gives the
result for the two-dimensional barrier shown in the
lower part of Fig. 2. As this curve is calculated at
energy intervals of 0.25 MeV, the values at the reso-
nances and local minima have limited precision. The
dashed curve gives the result for a one-dimensional
parabolic barrier corresponding to the cut along the
bottom of the fusion valley (at o/R,=0.71).
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er is less than that for the one-dimensional inter-
action barrier. This arises because the discontinu-
ity inthe two-dimensional potential-energy surface at
7, increases the reflection of the incident wave at
high energies. Finally, for equal penetrability the
slopes of the two curves are very different.

The resonances in the penetrability for the two-
dimensional barrier arise because of the lake be-
tween the fission saddle point and the fusion valley
that occurs in our approximation to the potential-
energy surface; see again the lower part of Fig.

2. Because this lake is not present in the actual
macroscopic potential-energy surface, the reso-
nances would not occur for this case. However,
single-particle effects could lead to small lakes
in the total potential-energy surface, which would
in turn give rise to small resonances in the pene-
trability.

IV. SUMMARY AND CONCLUSION

We have calculated exactly the penetrability for
a simple two-dimensional potential-energy surface
V(r,o) where 7 is the distance between the centers
of mass of the two nuclei, and o is a fragment-
elongation coordinate. The potential is a parabolic
peak in 7 and is one or the other of two harmonic
oscillators in o, depending upon whether v is
greater than or less than a critical value r,. It
reproduces correctly several features of the true
macroscopic two-dimensional potential-energy
surface, including the energy and location in both
v and o of the maximum in the one-dimensional
interaction barrier, the energy and location in o
of the fission saddle point, the energy and location
in » where stability with respect to o deformations
is lost in the fusion valley, and the correct curva-
ture with respect to o in the fusion valley.

For such a potential the total wave function
¥(r,0) was written exactly in each of the two re-
gions in terms of a sum of parabolic-cylinder func
tions in 7 times harmonic-oscillator wave func-

tions in 0. The reflection and transmission coef-
ficients were determined by requiring that the
wave function and its gradient be continuous at »,
for all values of 0. The penetrability was then ob-
tained by taking the ratio of the transmitted flux
to the incident flux, integrated over all values of
o.

With this formalism, we calculated the penetra-
bility as a function of bombarding energy for a two-
dimensional potential-energy surface appropriate
to the reaction **°Mo+ %Mo —~ 2°°Po. The calculat-
ed penetrability was found to be substantially dif-
ferent from the result calculated for a correspond-
ing one-dimensional parabolic barrier. For ex-
ample, 10 MeV below the maximum in the one-di-
mensional barrier, the penetrability for the two-
dimensional barrier is 10!° times as large as that
for the one-dimensional barrier. Also, for equal
penetrability the slopes of the two curves are very
different.

Previous analyses of heavy-ion fusion cross sec-
tions at low bombarding energies have taken into
account the effect of the static nuclear ground-
state deformations on the penetrability.>” The re-
sults of the present study indicate that the penetra-
bility is also affected by the dependence of the po-
tential energy upon fragment elongation near the
maximum in the one-dimensional interaction bar-
rier. We hope that future analyses of heavy-ion
fusion cross sections at low bombarding energies
will take into account the effect of the multidimen-
sional potential-energy surface on the penetrabil-
ity.
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