
PH YSICAL RE VIE% C VOLUME 17, N UMBER 3 MARCH 1978

Dyrutnncs of induced 6ssion*

J W Negelet
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts OZI39

S. E. Koonint
JK K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91J25

P. Moiler~ and J. R. Nix
Theoretical Division, Los A lamos Scientific Laboratory, University of California, Los A lamos, New Mexico 87545

A. J. Sierkt
W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 9/125

and Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545
(Received 18 October 1977)

Induced fission of "U is calculated in the time-dependent mean-field approximation assuming axial and
reflection symmetry and omitting the spin-orbit interaction. Constrained static solutions are used to generate
the appropriate initial condition and are compared in detail with resul'ts of macroscopic-microscopic
calculations. Although dynamic mean-field results are strongly dependent upon an effective pairing gap,
predicted observables are consistent with experiment for plausible values of the gap. Detailed comparisons
with macroscopic models indicate that both a modified one-body dissipation and two-body viscosity yield
observables similar to those of the mean-field theory, even though these physical dissipation mechanisms are
fundamentally different.

NUCLEAH REACTIONS, FISSION 6U induced fission calculated in tnne-depen-
dent mean-field approximation and with modified liquid-drop model. Compari-

son of dissipation mechanisms.

I. INTRODUCTION

Fission dynamics provides an invaluable testing
ground for nuclear many-body theory. Many of
the crucial questions arising in heavy-ion reactions
concerning dissipation mechanisms, the validity
of fluid-dynamic and mea~-field approximations,
and the role of quantal effects are also relevant
to fission. Given the availability of comprehen-
sive, systematic fission data and the reasonably
well developed state of computational technology,
it is worthwhile to attempt to use fission as a
definitive test of alternative theoretical approaches.

Microscopic many-body theory aspires to sys-
tematically calculate expectation values of rele-
vant few-body operators in terms of the underly-
ing two-body interaction. One possible starting
point for a microscopic theory is the time-depen-
dent mean-field approximation, usually referred
to as the time-dependent Hartree-Fock (TDHF)
approximation, which has been explored exten-
sively in simplified slab geometry, light-ion sys-
tems, '~ and analytically soluble models. "' This
approximation specifies the time evolution of the
one-body density matrix, including the shape,
surface thickness, interior density fluctuations,
neck formation, and dissipation solely in terms of

the effective two-body interaction and an initial
condition. Since, in the case of induced fission,
the appropriate initial condition is conceptually
unambiguous, and because the theory is otherwise
in principle independent of additional parametri-
zations or arbitrary phenomenological adjustments,
one may hope to obtain a definitive test of the
mean-field theory.

In the mean-field approximation, single-par-
ticle wave functions propagate in the nuclear in-
terior like free wave packets in a constant poten-
tial, so dissipation and evolution of the nuclear
shape arise from scattering from the edges of the
self-consistent potential. ' The crucial question,
therefore, is whether this approximation de-
scribes the essential physics of fission or if the
omitted two-particle-two-hoke excitations are so
important that the conspicuous single-particle be-
havior and suppression of scattering in the nuclear
interior are grossly iriaccurate oversimplifica-
tions. Experimental quantities with which we may
compare the results of a general mean-field cal-
culation, include the mass asymmetry, mean values,
and dispersion in fragment proton and neutron num-
ber, and the mean translational kinetic energies of
fragments.

Macroscopic liquid-drop descriptions, in con-
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trast, emphasize rather different physical aspects.
Instead of attempting to formulate a theory which
is uniquely specified by the two-body force, only
very general features of the underlying interac-
tion are invoked. One tacitly assumes that the
force saturates at the proper density, that two-
body collisions dominate so completely that local
equilibration occurs throughout the medium, and
that the forces give rise to a surface of the proper
thickness. In this description, one is still free to
explore alternative assumptions regarding vis-
cosity or the presence of surface dissipation mech-
anisms. It is the opportunity for detailed compari-
sons of these alternative descriptions with each
other and with experiment to distinguish between
different physical mechanisms which motivated
the investigations and comparisons presented in
this work.

Unfortunately, practical limitations in imple-
menting TDHF calculations have rendered thepres-
ent investigation less definitive than is possible
in principle. ' In the first place, because of com-
putational costs we have restricted our attention
to the single nucleus '"U, thereby giving up the
constraints imposed by fission systematics. To
the extent to which shell effects are unimportant,
the systematics as a function of fissility could be
explored in future work by simply varying the pro-
ton charge, greatly facilitating the calculation of
the initial wave functions.

Second, because of the great computational sav-
ings effected by the imposition of symmetries, we
have restricted the wave function to be axially and
reflection symmetric. In contrast to the case of
a general wave function, the single-particle Ham-
iltonian for an axially and reflection symmetric
wave function does not connect single-particle
states of different angular momentum projection
and parity. Thus, in the mean-field theory, an
axial and reflection symmetric wave function
evolves only in an unreasonably restricted and
completely unphysical subspace in which fission
cannot occur at all. In this work, we have there-
fore used the constant-gap pairing approximation"
as the simplest available mechanism to introduce
matrix elements connecting states comprised of
single-particle wave functions of differing pari-
ties or angular momentum projection. It must be
understood from the outset that one decals with an

effective gap or pairing strength which is intended
to simulate the average effect of symmetry-break-
ing mean-field matrix elements, as well as the
two-body residual interaction. Given that we are
presently unable to derive the value of the effective
gap, the present calculation therefore suffers from
the introduction of one phenomenological parameter.

The final compromise arising from computation-
al considerations is the omission of the spin-orbit
force. This approximation accomplishes two ma-
jor savings by avoiding the solution of sets of cou-
pled equations for the spatial functions corres-
ponding to the two spin projections and by decreas-
ing the total number of spatial functions to be cal-
culated and stored by almost a factor of 2. As a
result of this approximation, the single-particle
shell effects in the '~U fission barrier are totally
unrealistic. To the extent to which induced fission
is independent of shell effects, this limitation is
inconsequential. Furthermore, comparisons with
macroscopic calcu1ations are not jeopardized by
unrealistic shell effects, since the macroscopic
theories neglect shell corrections altogether. How-
ever, we do give up the opportunity for exploring
one of the key features of the microscopic theory:
the interplay between single-particle and collective
effects.

Thus, the present investigation is highly ex-
ploratory and falls short both of displaying the full
capabilities of the mean field theory and of cri-
tically testing it to the fullest extent with available
data.

II. TDHF APPROACH

A. Effective interaction

In contrast to the strict definition of TDHF, which
would utij. ize the true two-body force, the time-
dependent mean-field approximation requires the
derivation of a suitable effective interaction. The
interaction used in this work differs from that of
Refs. 1 and 4 both with respect to isospin depen-
dence and nonlocality. Guided by the fact that ex-
pansion of the exchange term of the nuclear den-
sity matrix and use of the Reid 6 matrix yields a
Hamiltonian density very similar to that obtained
with the Skyrme II and III interactions, "we uti-
lize the following form for the Hamiltonian func-
tional":

X=
(

d'r (r„+r~)+—' [(2+x,)p„p~+ ' (p„'+ p~')]+ ' ' [(p„+p~)(r„+ r~) (J„+J~}']

~ * ' (p & ' ~ py~, &,.*).~ 4(p.py-* ~ p..p '))~ ~-g(E (p p) &F(py. (|yl( ~ U,E (p.. py) , &, , (().,n n n

where the direct Coulomb contribution is and the direct Yukawa contribution is
e' , p,(r)p,(r')Ec(p~}=
2

' d'rd'r' (2) Er (p„p,,) =
Jl

d'rd'r' ~,
~

p,(r)p,,(r') (3).
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The densities p and v are defined by TABLE I. Modified Skyrme parameters appearing in
Eq. (1).

p(r) =g n, (P,(r) )' (4a)
tp

Force (MeV fm3) Xp

P VV

(fm ~) (MeU)
'VL

(MeV)

(4b)
-104.49
-334.47

4.01 2.175 -868.53 -444.85
1.743 2.175 -619.60 -355.79

and the current is

J(r) =g q, Imp,*. (r)VJ,.(r), {4c)

where q,. denotes the occupation probability of the
ith single-particle wave function. Since calcula-
tions with realistic interactions" yield a nonlo-
cality corresponding to an effective mass m "/m
=0.6, the p~ —J2 terms are taken over directly
from the Skyrme force. The isospin dependence
of the Skyrme force is also included, since we now

address '~U, which has a large neutron excess.
Because there is no real advantage in expanding
the finite-range direct terms in the Skyrme form,
we have retained explicit finite-range Yukawa for-
ces as in Refs. 1 and 4. Given the form of Eq. (1)
and the Yukawa range of Ref. 4, a unique corre-
spondence with a set of Skyrme parameters may be
established by requiring that a Taylor-series ex-
pansion of the Yukawa term E„(p„p,,) exactly re-
produce the coefficient of p,V2p, , in the Skyrme
Ha. miltonian, Eq. (12) of Ref. 13. This yields the
relations

3~5
2vv~ = (t, —t,)L 32 1 2 (5a)

and

4vv, ='Bp'(t, —st, ),, (5b)

where t, and t, are Skyrme parameters. The first
term in the expansion of Er(p„p, .) corresponds to
a 6 function, so that the volume integrals of the
Yukawa functions must be removed from the zero-
range components:

1-x ) = —'(1—tO - to 2mVL (6a)

to - to 4mvv

2
(2+x,) = —'(2+x,)— (6b)

The parameters thus obtained from the Skyrme
II and Skyrme III interactions are tabulated in
Table I. By construction the corresponding Yukawa
and Skyrme forces yield identical results in nu-
clear matter, and differ negligibly in heavy nuclei.
Except when indicated otherwise, all calculations
were performed with interaction II of Table I.
Constrained static calculations of the fission bar-

rier were also carried out with interaction III, and

the negligible differences in the barrier shapes in-
dicate that the two interactions are equivalent for
our present purposes.

B. Initial conditions

In induced fission, the initial conditions for our
dynamical calculations may be determined con-
veniently by means of the transition-state meth-
od. '"" In this method one first determines the
normal modes of the system at its saddle point and
then divides the original system of N degrees of
freedom into two systems: a system with a single
degree of freedom representing unstable motion in
the fission direction, and a second system with
X —1 degrees of freedom representing stable mo-
tion in the nonfission directions.

The standard assumption of the transition-state
method is that statistical equilibrium is estab-
lished by the time the system arrives in the vi-
cinity of its saddle point. This assumption should
be valid because a compound nucleus undergoing
fission typically executes about 10' oscillations be-
tween formation and reaching the saddle point,
which provide ample opportunity for many inter-
changes of energy. From this assumption one may
calculate the probability that when the nucleus
passes through the vicinity of its saddle point each
of the normal coordinates are displaced from their
equilibrium values by given amounts and that their
conjugate momenta have specified values.

At high excitation energies, where classical sta-
tistical mechanics is valid, this probability is
given by the usual Boltzmann factor evaluated at
the'saddle point. This leads in the harmonic ap-
proximation to Gaussian probability distributions
in each of the normal coordinates and momenta,
with widths proportional to the square root of the
nuclear temperature at the saddle point. For the
N —1 normal coordinates and momenta represent-
ing bounded motion, the probability in the harmon-
ic approximation remains Gaussian also through
intermediate excitation energies down to zero ex-
citation energy at the saddle point. ~ &" In this
latter limit the widths of the distributions are de-
termined by quantal zero-point oscillations. How-

ever, for the fission normal coordinate, the prob-
ability has been worked out only in the classical
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limit.
From this discussion, it is evident that one

should ideally sample an ensemble of initial con-
ditions corresponding to the distribution of con-
figurations occurring at the saddle point. A con-
ceivable microscopic framework for such a cal-
culation would be the adiabatic time-dependent
Hartree-Fock theory, "'" in which a Hamiltonian
in the space of elongation and necking coordinates,
a reflection asymmetry coordinate, an axial asym-
metry coordinate, and the conjugate momenta may
be derived. Since the adiabatic hypothesis is well
justified. in this case and both the potential sur-
face and corresponding mass parameters are com-
pletely defined in such a theory, one could in prin-
ciple calculate a wave function yielding the proba-
bility distribution of all relevant configurations
near the saddle point.

In induced fission, the most probable path cor-
responds to passing through the saddle point with
negligible coQective velocity. Thus, the obvious
initial condition for our axial and reflection sym-
metric TDHF calculation is to use a static con-
strained HF solution calculated slightly beyond the
saddle point. Although, in general, the shape of
a constrained HF energy of deformation cuzve
changes arbitrarily with the choice of constraining
coordinate, the saddle point is unique. Since any
infinitesimal push away from the saddle point yields
the same path, requiring the initial quadrupole
constrained configuration to be slightly beyond the
saddle point (1 MeV below the maximum in our
case) yields an essentially unique init. ial condition.

For a more general calculation in which one did
not enforce symmetry and calculated an initial
probability distribution for initial. saddle configura-
tions, an exactly symmetric initial condition is
both extremely improbable and totally misleading
(since it will not fission in the mean-field theory
with no residual interaction). In contrast, all in-
itial conditions with even infinitesimal symmetry
breaking do fission. Thus the distribution of in-
itial conditions is equivalent to a distribution of
symmetry breaking matrix elements. So, very
crudely, one could transform the distribution of
initial. conditions into a distribution of values for
the effective pairing matrixelement 6 or gap 4.
If the symmetry breaking matrix element were
zero, 6 should just be the pairing strength G=23
MeV/2 =0.1 MeV. For nonzero symmetry break-
ing, G should be correspondingly enhanced, and
we shall subsequently investigate a reasonable
range of possible 6 values.

C. Constant-gap pairing approximation

The equations of motion derived from applying
the time-dependent variational principle to a BCS

wave function with the assumption of a constant
gap are very simple. " The single-particle wave
functions evolve according to

where the single-particle Hamiltonian h obtained
from variation of Eq. (1) is given in detail in Ap-
pendix I of Ref. 12 and the occupation probabilities
in Eq. (4) are given by 'I), = v, '. The u's and v's
are determined by

i (v—, ') = 4[(u,v, ) —(,uv, )*]

and

i —(u, v, ) = 2u, v, (a, X) + b(2v, ' —1), (8b)

where

and the Lagrange multiplier X is defined to con-
serve particle number:

4N+ &g Qg5g+Qg5g —~ @g&g+@g&g

g&0 g&o

D. Computational methods

There are two principal approaches to the solu-
tion of the static HF equations and integration of
the TDHF equations. In the familiar technique of
expansion in a one- or two-eenter ha.rmonic- oscilla-
tor (HO) basis, "matrix equations for the expan-
sion coefficients are diagonalized or integrated in
time for the static and dynamic problems, re-
spectively. Although the oscillator expansion
yields reasonably accurate variational bounds for
static HF solutions, the accuracy is highly shape
dependent, yielding energy of deformation curves

Since the constant gap theory is equivalent to a corre-
sponding Landau- Zener energy-level crossing prob-
lem, "it is clear that in the early stages of fission
during which the motion is very slow, the strength
of 4 is immaterial. Once the collective velocity
builds up, a large value of b mill keep most of the
probability in the lowest energy states, whereas
a small value of b will greatly enhance the dis-
sipation by causing non-negligible occupation of
high-energy single-particle levels. Thus, there is
an unavoidable interplay between the usual TDHF
dissipation arising from the scattering of single-
particle wave functions from the mell edges and the
dissipation originating from the Landau-Zener
jump probabilities parametrized by 4.
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of uncertain and unquantifiable accuracy. In the
alternative method of solution in coordinate space,
the Hamiltonian is discretized on a rectangular
mesh, replacing the functional of the individual
single-particle wave functions by a function of
the values of the single-partic1. e wave functions on
the mesh points. Because we have only been able
to implement a 3-point second-differenceformula
in cylindrical coordinates, "the constrained HF
energy is significantly less accurate than in the
oscillator case and does not constitute a bound,
However, as discussed below, the accuracy is
quite independent of shape and thus offers signi-
ficant advantages for problems like collisions and
fission, where many different shapes are involved.

Solution in coordinate space

Matrix equations for the values of the single-
particle wave functions at the mesh points are de-
rived by varying a discretized Hamiltonian rather
than discretizing the HF or TDHF differential equa-
tions. Hence, the resulting matrices are auto-
matically Hermitian, and a well-defineel approxi-
mation to the energy is exactly minimized in sta-
tic HF and rigorously conserved in TDHF. The de-
tails of the static constrained HF calculation mith
the present interaction are presented in Ref. 12.
The TDHF equations are solved by the Peaceman-
Rachford method as described in Appendix A of
Ref. 4 using the single-particle Hamiltonian ma-
trix given in Ref. 12, modified to include the pres-
ence of a current.

As mentioned above, the primary inaccuracy in
the energy arises from replacing derivatives by
finite differences. Since the nuclear volume and
interior potential remain essentially constant, ' lo-
cally the nuclear wave functior. is approximately
given by a Fermi sea of wave functions with maxi-
mum momentum k~. At least on a rectangular
mesh in Cartesian coordinates, one would then ex-
pect the discretization error to be independent of
the nuclear shape. For this Cartesian case, the
kinet j.c-energy error is easily estimated as follows.
Since

f(x+&)+f(x —&) —2f(x) 6' f~( ) ( )

the kinetic energy error per particle for a Fermi
gas ls

4 2

m 280 ~

corresponding to a fractional error of ~28(krd)'.
For a mesh spacing & of 1.0 fm, the largest used

in this work, this estimate yields a 6% error or
roughly 1.3 MeV per particle. The smallest mesh
spacing used in this investigation, 0.65 fm, re-

duces the error to less than half this value. For
the neutron to proton ratio in '~U, this simple es-
timate yields an error in the total energy of 320
MeV for ~= 1.0 fm and 135 MeV for &=0.65 fm.
The difference af 185 MeV is in fortuitously good
agreement with the calculated HF energy differ-
ence of 200 MeV.for the tmo meshes, given that we
use cylindrical coordinates, have ignored discreti-
zation errors in the p& term, and have omitted the
Euler-Maclaurin corrections. " Thus, the fact
that the kinetic energy is basically a volume con-
tribution is one solid argument for the shape in-
dependence of the discretization error.

Additional evidence is provided by calculations
of light nuclei in Ref. 12. The shape of the "Ni
energy of deformation curve for &= 0.55 fm is ex-
tremely accurate, with the energy discrepancy
being a. shape-independent constant shift. Increas-
ing the mesh spacing to ~=1.1 fm yields a curve
of qualitatively similar shape, with the minima at
approximately the same locations and comparable
relative depth. The anisotropy of the mesh does
not lead to significant orientation dependence, as
shown by the near degeneracy of single-particle
levels in the same j shell in "Ca, even on a 1.0
fm mesh. Also, the shape of the radial density
distribution is not significantly altered by discreti-
zation on a finite mesh, as shown by the &=0.8 fm
results for 4'Ca. In that case, the density remains
spherically symmetric, with only a small density
compression resulting from the underestimate of
the kinetic energy. (This and certain other gross
effects of a 6' underestimate of the kinetic energy
could be removed in subsequent investigations by
defining an adjusted nucleon mass such that the to-
tal second-difference energy reproduces the proper
total kinetic energy. ) Since one might worry that
discretization errors might contribute significantly
to the surface energy, and thus produce a spurious
deformation dependence, it is particularly reas-
suring that no serious discretization errors arise
in the deformation energy of light nuclei me have
discussed, where the ratio of surface to volume
energy is much larger than in '~U.

The final check on discretization errors is pro-
vided by selected comparisons of '~U calculations
on 1.0 and 0.65 fm meshes. The double humped
fission barrier obtained with ~=1.0 fm shomn sub-
sequently in the lower right-hand frame of Fig. 1
is qualitatively unchanged by reduction of the mesh
to 0.65 fm. The deformation at mhich the first
minimum occurs is somewhat decreased, so for
values of the quadrupole moment less than 1.5AAp',
the 0.65 fm curve agrees somewhat more closely
with the macroscopic-microscopic calculation in
the lower left-hand frame of Fig. 2. Dynamic
TDHF calculations with initial conditions con-
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strained to have quadrupole moment 1.86AB,' were
compared using a 16- by 40-point mesh with
& = 0.65 fm and a 10- by 24-point mesh with & = 1.0
fm. The shapes of the resulting half-density con-
tours differed negligibly at corresponding times.
For example, for the case of T=3x10" s shown
in Fig. 6, the maximum discrepancy between half-
density contours was less than 0.3 fm, which is at
the limit of the uncertainty in interpolation and

plotting. Prior to scission, elongation and de-
formation coordinates, as defined in Refs. 2 and 4,
differed'Igy less than 3' at corresponding times,
and the maximum discrepancy in quadrupole mo-
ments was 6'. The final translational kinetic en-
ergy of the fission fragments was roughly 5 MeV
lower for &=1.0 fm than for 6=0.65 fm, although
the 6 = 0.65 fm mesh was deliberately lengthened
to obtain a more precise determination of this
quantity.

On the basis of these arguments and numerical
tests, we are confident that the discretization er-
rors for the 6= 0.65 fm mesh are under firm con-
trol and should not affect any of the conclusions of
this work. Indeed, given the fact that the &=0.65
fm fission calculation requires 30 minutes of CDC
7600 time, additional numerical accuracy does not
appear commensurate with the serious physical ap-
proximation of constant-gap pairing and the omis-
sion of the spin-orbit force.

Truncation ofpairing space

Solution, either on a mesh or by an oscillator
expansion, '0 requires truncation of the space of un-
occupied single-particle orbitals. In coordinate
space, it is convenient to truncate at the onset of
the continuum and, thus remove explicit dependence
on the volume enclosed by the mesh boundaries.
This truncation yields roughly 100 active single-
particle wave functions of which 20 are normally
unoccupied. In each angular momentum projection
and parity subspace, there is at least one unoc-
cupied orbital, so the most crucial level crossings
should always be included. For a given gap 4, the
strength of the pairing matrix element G depends
on the truncation of the pairing space. The con-
stant gap pairing energy E is twice the true pair-
ing energy and may be written

&= —&& g [gII(& -gIg) j'"=—&(&'/G) . (l3)
l&0

For our calculation, truncating the pairing space
at the continuum yields G = 0.12, 0.17, and 0.29
MeV for 4=0.7, 2.0, and 6 MeV, respectively.
Since 23 MeV/A gives O. l MeV and realistic ma-
trix elements in the uranium region~' average
0, 15 MeV, and range from 0.0 to 0.4 MeV, it is
clear that the lower values of b correspond roughly

0 NTH ZERO SPIN - ORBIT INTERACTION
IO I II II I I I I

(
I I I I

I
I I I I I I I I I

J
I II I I I I I

I
I I I I

I
I I I I II I I I

I
I I I I

I
I I I I

5

-IO—

I5 — MACROSCOPIC ENERGY

y- FAMILY SHAPES

IO

LLI 0
O
CL

TOTAL ENERGY
y- FAMILY SHAPFS

-IO HARTREE - FOCK ENERGY
MINIMUM AT FIXED Q

)
-l5

~= 2 MeV

20 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.0 0.5 1.0 I.5 2.0 2,5 0.0 0.5 I.O I.5 2.0 2.5
QUADRUPOLE MOMENT Q (UNITS OF AQ )

FLG. l. Potential energy of BU with zero spin-orbit
interaction vs matter quadrupole moment q.

I.O r

0.8—

LLII-
Z 06—
C5

O0u 04—

ILI

0.2—

I I I I I I I I I
I I I I I I I I I

«~FANllY SHAPES IIPPER FISSION,
VALLEY

RIDGE~~-~
(~

PARANETERIZATIO~N

BOIINDARY

IS

236

2ERO SPIN-ORBIT INTERACTION
1

I I I I i t I I I I I I I I I I ll I I

05 I 0 I5 20 25
QUADRUPOI E MOMENT Q (UNITS OF ARO )

FIG. 2. Locations in the q-q plane of our parame-
trization boundary, y-family shapes, and valleys and
ridge in the macroscopic-microscopic potential-energy
surface of 3 U with zero spin-orbit interaction. The
neck coordinate q is defined as the ratio of the neck
radius of the shape to the neck radius of a spheroid with
the same quadrupole moment.

to the strength of the true residual interaction.
The highest value effectively accounts for the ad-
ditional strength of symmetry breaking matrix ele-
ments.

In an oscillator expansion, it is straightforward
to include unbound states which provide a discrete
approximation to the continuum. In principle,
these states are just as arbitrary as continuum
states normalized in a box, but are somewhat more
convenient because they are localized in the region
of thenucleus. The effect of different truncations of
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the continuum are being explored in a two cen-
tered HO basis by Flocard. '0

IH. MACROSCOPK APPROACH

In a macroscopic hydrodynamical description of
large-scale nuclear collective motion, one starts
with a distribution of matter that is subjected to
given forces and golves the resulting classical
equations of motion in some approximation. Al-
though attempts have been made recently to solve
the equations of motion directly by use of finite-
difference techniques, "2' the more common pro-
cedure is to assume that the matter is incompres-
sible and to parametrize the nuclear shape in some
way, which leads to a system of coupled nonlinear
differential equations that is in turn solved nu-
merically. '""'"~ This latter method is relatively
simple, concentrates on a few essential degrees
of freedom, and permits incorporating microscop-
ic effects into an otherwise macroscopic model.
In such an approach one first specifies the degrees
of freedom by parametrizing the nuclear shape,
and then specifies three fundamental quantities: (1)
the nuclear potential energy of deformation, (2)
the collective kinetic energy, and (3} the dissipa-
tion mechanism for converting collective energy
into internal single-particle excitation energy.

A. Degrees of freedom

We restrict ourselves to axially symmetric nuclei
and describe the shape of a fissioning nucleus
prior to scission in terms of smoothly joined por-
tions of three quadratic surfaces of revolu-
tion. """"" The results reported here are also
restricted to reflection-symmetric nuclei, which
means that, we consider explicitly only three de-
grees of freedom. These specify the distance be-
tween the two end spheroids tQat form the shape,
the eccentricity of these end spheroids, and the
eccentricity of the middle quadratic surface that
forms the neck.

After scission, which occurs when the repulsive
Coulomb force overcomes the attractive nuclear
force and ruptures the neck, "the fission fragments
are described in terms of two separated spher-
oids. '~'3"" The transition from one shape param-
etrization to the other is accomplished by equating
the two most important central moments of the
matter distribution and their time derivatives be-
fore and after scission. "'" This introduces a
small but nevertheless tolerable discontinuity in
the various contributions to the total energy.
Throughout our discussion we use the notation

for the X generalized coordinates that specify the
nuclear shape.

8~2g3~ 2p 2 Y~
0 q

(14)

where Er is given in Eq. (3) and the strength is
defined to reproduce the proper surface energy.
The quantity r, is as before the nuclear-radius
constant, a= 1/p, is the range of the Yukawa po-
tential, and p =A/(4 PRO~) is here the interior nu-
cleon density. Furthermore,

Ca Qs ~ —K (15}

where a, is the surface-energy constant and K is

B. Potential energy of deformation

We calculate the nuclear potential energy of de-
formation V(q) by means of a macroscopic-micro-
scopic approach, ""with the smooth trends of the
potential energy obtained from a modified liquid-
drop model4~' and the local fluctuations obtained
by means of Strutinsky's method"'" from a folded
Yukawa single-particle model. ~ In the dynamical
calculations themselves, we neglect the single-par-
ticle corrections, but they are nevertheless useful
for comparing with the static constrained HF po-
tential-energy surface.

The modified liquid-drop model includes the re-
pulsive Coulomb energy and the attractive nuclear
macroscopic energy. The Coulomb energy of a
deformed nuclear system is calculated for a uni-
formly charged, sharp-surface body according to
Eq. (2}, with an interior proton density

p~= Z/( —', vB,').

The radius of the spherical nucleus is given by

8,= rg'
where x0 is the nuclear-radius constant. The in-
tegrations are ever the volume of the deformed
system; as the system deforms, this volume is as-
sumed to remain constant at 43wR0'. Because the
first-order surface-diffuseness correction to the
Coulomb energy is zero, the second-order cor-
rection is independent of shape, 4' and the third-or-
der correction is proportional to the surface
area, "this method takes into account implicitly the
effect of the surface diffuseness on the Coulomb
energy through third order in diffuseness.

In analogy with the calculation of the Coulomb
energy, the nuclear macroscopic energy is cal-
culated by means of a double integral of a Yukawa
two-body interaction potential over the volume of
the deformed system. "" In particular,
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the surface-asymmetry constant. The values of
these constants are" "

and

y'0= 1.16 fm,

a=1.4 fm,

a, = 24.7 MeV,

x= 4.0.

(is)

To lowest order in the Yukawa range, this meth-
od for calculating the nuclear macroscopic energy
yields the surface energy of the liquid-drop model.
The higher-order corrections are associated with
the finite range of the nuclear force and lower the
energy relative to the surface energy. These fi-
nite-range corrections are very important for cer-
tain shapes, such as those near the scission point
in fission and those near the point of first contact
in heavy-ion reactions.

The microscopic shell and pairing corrections
are calculated by means of Strutinsky's method4" 4'

applied to the single-particle levels obtained from
a folded Yukawa potential. ~ This is a diffuse-sur-
face single-particle potential generated by folding
a Yukawa function over a finite square-well poten-
tial of the appropriate geometrical shape. In order
to compare with the static constrained HF poten-
tial-energy surface, we set the spin-orbit interac-
tion strengths X„and X~ for neutrons and protons
equal to zero. The remaining parameters V„,
V~, R„and a, which define the depths of the neu-
tron and proton single-particle potentials, their
overall size, and their surface diffuseness, are
taken from Refs. 49 and 50. The Coulomb poten-
tial for protons is calculated by assuming that the
protons are distributed uniformly over the same
shape and volume as the square well that generated
the single-particle potential. Once the single-par-
ticle levels are known, the shell and pairing correc-
tions are calculated by means of the procedures
discussed in Ref. 46.

C. Collective kinetic energy

We calculate the collective kinetic energy for
incompressible, nearly irrotational hydrodynami-
cal flow. Because the collective velocities are
small compared to the nuclear sound speed, the
restriction to incompressible Qow should be ade-
quate. On the other hand, the collective velocities
are sufficiently large that the adiabatic cranking
approximation" for computigg the collective kine-
tic energy is not valid. Because of the moderate
collective velocities and because the pairing re-
sidual interaction is effectively destxoyed at the
high excitation energies that are present, there

are no large transfers of matter at level crossings,
which suggests that the collective kinetic energy
is approximately that for irrotational collective-
shape flow. " As an approximation to irrotational
flow we use the %'erner-Wheeler method, which
determines the flow in terms of circular layers of
luld ~4

With this approximation, the collective kinetic
energy depends quadratically on the generalized
velocities, i.e. ,

1T= —Q M(y(q)qgqy (iv)
iej

where time differentiation is denoted by a dot. The
shape dependence of T is contained in the elements

M&( )qof the inertia tensor, the calculation of
which is discussed in Refs. 15 and 31.

D. Dissipation mechanisms

We study three different mechanisms for the
conversion of collective energy into internal sin-
gle-particle excitation energy: ordinary two-body
viscosity, "'"'"original one-body dissipa-
tj.on 3 ' 5' " and modified one-body dissipation. ~
In each case, the Rayleigh dissipation function may
be written in the quadratic form

1 ~ ~

+=
2 Q '7(y(q)q(qy (lS)

where q, z(q) denotes an element of the shape-de-
pendent damping tensor. The rate of dissipation
of collective energy into internal energy is equal
to 2F.

For an incompressible Quid with a constant two-
body viscosity coefficient p, , the Hayleigh dissipa-
tion function is given by the volume integral"'"

E ~~= ~p. V v + Vxv —2V vx Vxv d x,

(i9)

where v is the velocity of the fluid inside the shape.
For irrotational flow the last two terms of this
expression are zero, and the Gaussian divergence
theorem may be used to transform the first term
into the surface integral

F2-~y a p' Vv dS
y

where dS denotes an outward-directed element of
surface area. However, in the Werner-Wheeler
approximation that we use, the flow contains a
small rotational component. Formulas for the
evaluation of E using the complete expression are
given in Ref. 31.

Ordinary two-body viscosity, which arises from
collisions between individual nucleons, damps
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p =0.03+0.01 TP

=19+6X10 '4 MeVs/fm', (21)

when account is taken of the rupture of the neck at
a finite radius. "

Two-body dissipation is physically suspect be-
cause, due to the Pauli exclusion principle, the
collision mean free path of a nucleon inside a nu-
cleus is larger than the nuclear diameter. Thus,
it is interesting to consider an alternative approxi-
mation in which the nucleus does not dissipate col-
lective energy through collisions between individual
nucleons, but instead throughnucleons colliding
with the moving boundary of the nucleus. "'"'""
Clearly, this approximation is much closer in
spirit to that of TDHF. In the original derivation
of this one-body dissipation, the Rayleigh dissipa-
tion function is given by the surface integral" "

P

F, ~~= gpv v„dS, (22)

where p is the mass density, v is the average
speed of the nucleons inside the nucleus, and v„
is the normal velocity of the surface. For a Fer-
mi-gas model of the nucleus, V is equal to & the
Fermi velocity. In the derivation of this expres-
sion it is assumed that ~u„~ «vr and that there is
no overall motion of the matter inside the nucleus.

This original formula for one-body dissipation
predicts that nuclei should be highly dissipative
and —unlike the case for ordinary two-body vis-
cosity —that multipole oscillations of low degree
should be damped more rapidly than those of high
degree. In fission this leads to a slow descent from
saddle to scission and to a compact scission con-
figuration. Vfith no adjustable parameters used,
the resulting calculated most probable fission-
fragment kinetic energies for the fission of nuclei
throughout the Periodic Table are in approximate
agreement with experimental values. In particular,
the. calculated energies are about BVo larger than
the experimental values, when account is taken of
the rupture of the neck at a finite radius, "

In dynamical calculations of fission, the original
formula for one-body dissipation is suspect in the
later stages of fission because for the uniform
translation of the fission fragments it yieMs a fi-

multipole oscillations of high-degree more rapidly
than those of low degree. In fission, two-body
viscosity leads to more elongated scission shapes
and to decreased fission-fragment kinetic ener-
gies compared to the nonviscous case. Experi-
mental most probable fission-fragment kinetic en-
ergies for the fission of nuclei throughout the
Periodic Table are reproduced adequately by a two-
body viscosity coefficient of

nite dissipation rather than zero. For either a
uniform translation or a uniform rotation, the ori-
ginal formula may be modified to remove this
spurious dissipation, but there is no satisfactory
way to interpolate between the one-body dissipa-
tion formula that applies to compact shapes and
that which applies to shapes with separating end
bodies.

An attempt has been made to modify the formula
for one-body dissipation by incorporating self-con-
sistency in a heuristic way. ~ In this modification,
the normal velocity v„ is replaced by the relative
normal velocity hv„between the nuclear surface
and the matter colliding with it. This relative nor-
mal velocity is approximated by the first term in
a Taylor-series expansion of v about a point on the
surface, which leads to

Bv
Bn

(22)

This modified formula leads automatically to zero
dissipation for either a uniform translation or a
uniform rotation, as should be the case.

The properties of modified one-body dissipation
are qualitatively similar to those of ordinary two-
body viscosity rather than to those of the original
one-body dissipation. In particular, it damps
multipole oscillations of high degree more rapidly
than those of low degree, and in fission it leads
to more elongated scission shapes and to decreased
fission-fragment kinetic energies. Experimental
most probable fission-fragment kinetic energies
for the fission of nuclei throughout the Periodic
Table are reproduced adequately by the value

X'= 3+1 fm' (24)

when account is taken of the rupture of the neck at
a finite radius.

E. Equations of motion

We determine the time evolution of the system
by solving numerically classical equations of mo-
tion. The classical approximation is valid as long
as the de Broglie wavelength for motion in a given
direction is sma11 compared to the distance over
which the potential changes appreciably. Except
for motion close to the saddle point, this condition

+vq=~n' —+' ' '
Bn

The range X is the effective distance between the
nuclear surface and the matter colliding with it,
n is the outward-directed normal unit vector at the
surface, and the normal derivative s/sn = n v is
evaluated at the surface. With this replacement,
the modified formula for one-body dissipation be-
comes~
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is in general satisfied in fission.
The generalized Lagrange equations of motion

ar e31t 38' 59

d BI 8J 9E
say 1 s t'''0 t

where

I (q, q) = T(q, q) —V(q)

(2&)

(26)

+Q q, ~(q)qq+ =0, i =1, 2, . . . ,X, (27)
s l'(q)

Bing

a system of N coupled nonlinear differential equa-
tions for the generalized coordinates.

We find it convenient in practice to transform
these equations into the generalized Hamilton
equations of motion, which are a system of 2X
coupled nonlinear first-order differential equations
for the generalized coordinates and generalized
momenta. " Then, for a given set of initial con-
ditions, we integrate these equations numerically
by use of a fourth-order Adams-Moulton predictor-
corrector method, "with the starting procedure
based on a. modified fourth-order Runge-Kutta
method "'"

IV. CALCULATED POTENTIAL ENERGY

As an a.id in interpreting the results of the dy-
namical calculations to be presented in Sec. V, we
now compare the static potential energy calculated
in various ways for a '~U nucleus without spin-or-
bit interaction. Because for the macroscopic en-
ergy and the macroscopic-microscopic energy we
have calculated two-dimensional potential-energy
surfaces as functions of the quadrupole moment
and a neck coordinate, we discuss these energies
first. This is followed by a discussion of the con-
strained HF energy as a function of the quadrupole
moment.

A. Macroscopic energy

As discussed in Sec. IIIA, our three-quadratic-
surface shape parametrization contains three sym-
metric degrees of freedom. For displaying the
calculated potential energy, it is useful to project
out of this three-dimensional space the most im-
portant deformation leading to fission. Although
the precise determination of the fission coordi-
nate would require performing a dynamical cal-

is the Lagrangian for the system. Upon substitut-
ing Egs. (17), (18), and (26) into Eq. (25) and using
the symmetry of the inertia and damping tensors,
we obtain

BM(q(q) 1 BM~q(q) ~

&af

culation, during the early stages of fission the y-
family shapes introduced by Hill and Wheeler pro-
vide a fair approximation to the fission coordi-
nate. ~' ' These shapes correspond to the saddle-
point shapes for a uniformly charged liquid drop
and range from a single sphere through symmetric
dumbbell-like shapes to two tangent spheres. The
advantage of the y-family shapes over other one-
parameter families is that they include automati-
cally the liquid-drop-model saddle-point shapes
for all nuclei, which are fairly close to the actual
-saddle-point shapes of interest.

In the upper left-hand portion of Fig. 1 we show
the macroscopic energy of '~U calcula, ted along
the y-family shapes. For ease of later compari-
sons the energy is plotted versus the matter quadru-
pole- moment Q, in units of AA, ', where A is the
mass number and R, is the radius of the equivalent
sharp-surface spherical shape. With increasing
deformation from the spherical shape, the macro-
scopic energy increases monotonically until it
reaches a maximum value of 4.5 MeV and then de-
creases monotonically.

To explore the effect on the potential energy of
an additional degree of freedom, we now introduce
a neck coordinate q (not to be confused with the
elements of the damping tensor denoted by the
same symbol). This coordinate is defined as the
ratio of the neck radius of the shape to the neck
radius of a spheroid with the same quadrupole mo-
ment. In order to generate a two-parameter family
of shapes as a function of Q and g, we must elimin-
ate the third degree of freedom appearing in the
symmetric three-quadratic-surface space param-
etrization. This we do by requiring that for a
given value of Q the eccentricity of the two end
spheroids comprising the shape remain equal to
that for the corresponding y-family shape.

For small values of Q there is a minimum value
of g below which we are unable to generate a shape
in the three-quadratic-surface parametrization.
The lower boundary of shapes accessible in this
parametrization is shown by the dot-dashed curve
in Fig. 2. The y-family shapes l.ie al.ong the long-
dashed curve, and the top of the figure at q=1 cor-
responds to pure spheroidal distortions.

We show in Fig. 3 the macroscopic energy for
'~U as a function of Q and g. The position of the
saddle point is located approximately along the y-
family shapes. Also, for values of Q/AR, ' ~ 2.5
the static fission valley {defined here as the posi-
tion of the minimum energy with respect to g for
a fixed value of Q) lies fairly close to the y-family
shapes. For larger values of Q the fission valley
disappears, and the minimum energy is located
instead in the fusion valley corresponding to two
separated nuclei. "
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constrained HF solutions in detail motivated the
thorough investigation of the macroscopic-micro-
scopic energy-of-deformation surface described
in Sec. IVB.

The discovery of two fission valleys and the cal-
culation of the energy minimum with respect to q
at fixed Q essentially resolve the apparent dis-
crepancies between the two methods, and give use-
ful insight into several puzzling aspects of the con-
strained HF problem. The subsidiary plateau
at Q = 0.6-0.BAR,' for they-family shapes is removed
when the energy is minimized with respect to p,
yielding qualitative agreement with the HF curve
at low Q. The double-valued behavior beyond
Q = 1.PRO' in the lower left-hand portion of Fig. 1
is also consistent with the HF results if one as-
sumes that the HF solutions correspond to the lo-
cal minima in the lower fission valley.

Since a HF calculation with a single constraint
has no control over which local minimum is at-
tained, it is not surprising that the present co-
ordinate space solutions and similar two-center
Ho calculations" sometimes yielded large-Q so-
lutions with qualitatively different degrees of neck-
ing. The coordinate-space density contours are
compared with the minimum-energy macroscopic-
microscopic shapes at representative values of Q
in Fig. 5. Here, one clearly observes that at
Q = 1.8MR, ' the HF solution corresponds to the
lower fission valley configuration. Thus, the high-
Q HF results in the lower right-hand portion of
Fig. 1 really should be compared with the lower
valley segment in the lower left-hand portion of
Fig. 1. Since the constrained HF wave functions
at a given Q were generated iteratively from a previ-
ous solution at slightly lower Q, and because the
shapes varied smoothly and regularly with Q, we are
confident that all other high-Q solutions also corre-
spond to the lower valley. A crude attempt to generate
solutions in the upper valley using both quadrupole
and hexadecapole constraints failed, presumably
because a hexadecapole field of sufficient strength
to eliminate the neck significantly disrupts the end
caps.

Having achieved qualitative agreement between
the macroscopic-microscopic and HF results,
several quantitative comments are relevant. As
noted in Sec. IID, decreasing the mesh spacing
from 1.0 to 0.65 fm brought the position and width
of the second HF minimum into excellent agree-
ment with the lower left-hand portion of Fig. 1. The
HF fission barrier height is sensitive to the pair-
ing strength, as expected from Strutinsky's argu-
ments, ranging from 20 MeV for 4 = 6 MeV to
32 MeV for &=0.7 MeV. Presumably the differ-
ence between the HF and macroscopic barrier
heights arises from somewhat different level spac-

STATIC
HARTREE- FOCK

MACROSCOPIC-
MICROSCOP IC

QUADRUPOLE
MOMENT Q

(UNITS OF ARO )

0 oo

0.32

0.97

l,45

FIG. 5. Comparison as a function of quadrupole mo-
ment of shapes for 3 U with zero spin-orbit interaction
calculated in the static constrained-Hartree- Fock
approximation and in the macroscopic-microscopic
method. In the former case, the contours correspond
to matter densities of 0.02, 0.08, and 0.14 nucleons/fm3,
which represent approximately 8, ~, and 8 of the den-
sity of nuclear matter.

ings in the two single-particle potentials.
Although we believe the constrained HF solutions

are understood adequately for our present pur-
poses, the elucidation of the topology of the multi-
dimensional static HF pOtential energy surface
remains an important cha, llenge for the future.

D. Specification of initial conditions

As discussed in Sec. IIB, when a nucleus under-
going induced fission passes through the vicinity
of its saddle point, the probability that a particular
normal coordinate or momentum has a specified
value is to lowest order a Gaussian distribution.
The most probable initial conditions for induced
fission therefore correspond to starting from rest
at the fission saddle point. Because classically it
would require an infinite time for fission to occur
from such an unstable equilibrium point, it is nec-
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essary in practice either to give the system a
small amount of initial kinetic energy directed
toward fission or to start it a short distance be-
yond the fission saddle point.

For both the macroscopic and microscopic cal-
culations, we have started the system from rest
at a point with energy 1 MeV below that of the cor-
responding saddle point. For the macroscopic cal-
culations, this point is chosen along the most
probable path for nonviscous flow, which is de-
termined by starting the system from rest an in-
finitesimal distance in the fission direction beyond
the saddle point. For the microscopic calculations,
this point is chosen along the static constrained-
HF curve for 4= 2 MeV. The initial shape for the
microscopic calculation lies in the lower fission
valley of the total potential-energy surface. It is
more deformed than the initial shape for the ma-
croscopic calculation, which wouM be expected
at first sight to make the comparison between the
two dynamical calculations difficult.

However, for dissipative systems, the later
stages of the dynamical evolution, as well as such
calculated quantities as the final fission-fragment
kinetic energies of the fragments at infinity, are
surprisingly insensitive to the initial conditions

that are used. To check this sensitivity, we also
used for the macroscopic calculations an initial
shape that was constructed to reproduce optimally
the initial microscopic shape. With the exception
of the nonviscous case, the final results were
similar to those obtained with the original initial
conditions. For the microscopic calculations, we
also used initial conditions corresponding to start-
ing from rest 6 MeV beyond the saddle point. The
final results differed negligibly from those ob-
tained with the original initial conditions.

V. RESULTS OF DYNAMICAL CALCULATIONS

The results of the microscopic and macroscopic
calculation for the fission of '"U are summarized
in Figs. 6 and 7 and Tables II and III.

A. TDHF solutions

Density contours for a TDHF fission calculation
with a gap of 2 MeV are shown in the left-hand
column of Fig. 6 at intervals of 10 ' s. The three
contours denote p= 0.02, 0.08, and 0.14 fm ', cor-
responding to roughiy $, 2, and —', of nuclear mat-
ter density, respectively. The middle contour is
therefore most directly comparable to the sur-

Ml CROSCOP IC
CALCULATION

TDHF NONVISCOUS

TWO- BODY
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p, i003 TP

MOD ONE-BODY
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FIG. 6. Comparison as a function of time of shapes for ~~SU with zero spin-orbit interaction calculated in the TDHF
approximation for 6 =2 MeV and in a macroscopic approach with various types of dissipation. For modified one-body
dissipation, we show the result for the preliminary value of A =3.2 fm; the final value is 3 fm (Ref. 36). Note that
the time scale for the original one-body dissipation is 3 times as long as the time scale for the remaining cases.
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PRE-SCISSION

TDHF

POST- SCISSION

6.0 MeV

6=0.7 MeV

FIQ. 7. Comparison of prescission and postscission
shapes for 236U with zero spin-orbit interaction cal-
culated in the TDHF approximation for two values of the
effective pairing gap A. The elapsed time between the
two configurations for each 6 is 0.4x 10 s.
face in a macroscopic calculation. In order to
avoid confusion, the interior density fluctuations
have been suppressed in this figure, but may be
observed in Fig. 1 of Ref. 19. The solution at
time T=0 is the initial constrained HF w'ave func-
tion with Q = 1.86ARp As discussed previously,
this configuration corresponds to a deformation
1 MeV below' the barrier in the second fission val-
ley and, because of shell effects, has a smaller
neck radius than the macroscopic y-family shape
in the remaining columns.

The time evolution of the density is completely
consistent with one's intuitive expectations. As
indicated by the 8 and 8 density contours, the sur-
face comprises a sizable fraction of the nucleus
and remains very accurately constant in thickness.
Elongation and neck formation involve gradual

shape deformation of the entire nucleus, and scis-
sion is a very smooth, continuous process due to
the finite surface thickness and exponential fall
off of single-particle orbitals. The last remnant
of the neck, which shows uy as the sharp bulges in
the receding fission fragments of course quickly
disappear during subsequent evolution of the sys-
tem. The time scale is fast, with scission occur-
ring within 3.4 x 10 "s, in contrast to the much
slower one-body dissipation theory to be discussed
subsequently.

The dependence of the dynamics on the value of
the gap is shown in Fig. 7 and Table II. The pre-
scission and postscission shapes for b =6 MeV in

Fig. 7 are qualitatively similar to those in Fig.
6 for a 2 MeV gap. In detail, the interior density
is slightly smoother, as expected for very strong
pairing. The case of a 0.7 MeV gap, however, is
quite different with an u-like cluster remaining
in the neck region. The mean diameter of the half-
density contour is roughly 3.5 fm, in excellent
agreement with the value of 3.7 fm expected for an
n particle.

Whereas the ternary fission may be partially
fortuitous, it is highly suggestive of the known

emission of a particles from the neck region with
a probability of 1 in 600. That matter should get
trapped in the neck region in the small gap limit,
if at all, follows from the fact that small coupling
matrix elements yield non-negligible occupation
of the higher-energy orbitals localized in the neck.
Furthermore, if we consider an ensemble of val-
ues of 4, corresponding to a wave packet of sym-
metry-violating initial conditions, only those very

TABLE II. Comparison of calculated properties at the point of neck rupture for the fission
of the compound nucleus 6U. The initial conditions correspond in each case to starting from
rest 1 MeV beyond the fission saddle point.

Result
Time

(10-2f s)

Translational
kinetic
energy
(Mev)

Vibrational
kinetic
energy
(MeV)

Dissipated Potential
energy energy
(Mev) (Mev)

~=6.0 MeV
6=2.0 MeV
b, =0.7 MeV

Nonviscous
Two-body viscosity,
@=0.03 TP

Modified one-body
dissipation, X =3 fm

One-body dissipation,
Fermi-gas value

2.2
3.4
5.0

2.5
3.4

3.2

12.9

Microscopic

11
12

Macroscopic

24.1
18.1

18.2

0.5

1.7
0.6

0,6

0.1

0.0
11.9

11.9

17.6

-22.4
-27.1

-27.3

-14.7
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TABLE gI. Comparison of experimental and calcu-
lated most probable fission-fr8gment kinetic energies
for the fission of the compound nucleus 238U. The initial
conditions for each calculation correspond to starting
from rest 1 MeV beyond the fission saddle point.

Kinetic energy
yaev)

Experimental ~

Microscopic
4=6 MeV
b, =2 MeV

Macroscopic
Nonviscous
Toro-body viscosity, p =0.03 TP
Modified one-body dissipation,

&2=3 fm2

One-body dissipation, Fermi-gas
value

168.0+4.5

166
142

186
167
166

~ For the fission of 3 Th induced by 65.0 MeV 0. par-
ticles, averaged over a11 Qssion-fragment mass divi-
sions and corrected for the effects of fragment neutron
emission (Ref. 64).

rare initial conditions which have negligible asym-
metry can yield a total effective matrix element
as small as the realistic pairing 6= 0.12 MeV cor-
responding to 4 O.V MeV. Increasing 6 beyond
this value yields two-body states in our calcula-
tions, so it is plausible that TDHF is even consis
tent with the relative rarity of such events

One possible measure of the translational kinetic
energy at the point of neck rupture is given by ~

the reduced mass of the system times r' at that
point, where r is the time derivative of the dis-
tance r between the centers of mass of the two
halves of the system. The scission time, this
translational kinetic energy, and the Coulomb en-
ergy at scission are tabulated in Table II for var-
ious values of d, although there is some arbi-
trariness in the definition of the point of neck
rupture for the smooth scission occurring in
TDHF. The asymptotic translational kinetic ener-
gies of binary fission fragments are tabulated and
compared with experiment in Table IG. The ex-
perimental result shown in Table III corresponds
to the fission of "'Th induced by 65.0 MeV n par-
ticles." This reaction was selected because at this
excitation energy the most probable fission-frag-
ment mass division is into two equal fragments and
the most probable fission-fragment kinetic energy
is relatively insensitive to excitation energy, which
suggests that single-particle effects have become
negligible. The result corresponds to a weighted
average over all mass divisions and has been cor-
rected for the effects of neutron emission from the
fragments. In accordance with usual practice, we

refer loosely to this result as the most probable
fission-fragment kinetic energy.

As observed in Table III, the fission fragment
translational kinetic energy increases with increas-
ing effective gap. This is consistent with the fact
that less probability is retained in highly excited
states for large 4, and is usually described in
terms of dissipation. Since ternary events were
not envisioned when the calculation of asymptotic
translational energies was programed, we have
no result fot the case of the O. V MeV gap.

The 20 MeV change in asymptotic kin8hc energy
between 4 = 6 MeV and 4 = 2 MeV is interesting and
has several important implications. First, it is
evident that we cannot use fission a,s a definitive
test of dissipation in the mean-field theory until
we obtain an accurate theoretical calculation of ~
or include asymmetry. Second, compared with
20 MeV, the various uncertainties in the calcula-
tion of final kinetic energies are inconsequential.
The 5 MeV uncertainty associated with the mesh
size has already been discussed. With total con-
stant-gap pairing energies E as large as 500 MeV,
one might worry about sizable discrepancies be-
tween the pairing energy of the saddle configura-
tion and that of the final fragments. Fortunately,
fluctuations in the pairing energy in our results
are always less than 3 MeV, so this uncertainty
is negligible compared with 20 MeV. Finally, the
limited region in which the receding fragments are
sufficiently far apart that the asymptotic energy
may be accurately estimated and yet still not too
close to the mesh edge introduces an additional un-
certainty in the determinations of the dissipation.
However, variation of the mesh size again indi-
cates that this error is small on the scale of 20
MeV.

The origin of the variation of fission-fragment
kinetic energies with 4 is clarified by Table II.
Here, one observes that the scission translational
energy is virtually independent of the gap. Thus,
none of the variation in the final energy can be
described in terms of dissipation in the coordinate
r. Rather, the variation arises primarily from
the higher Coulomb interaction energy of the much
more compact scission shape which occurs for
large &. This dependence of scission elongation
on the gap is particularly evident in Fig. 7. Mi-
croscopically, for small 4, orbit occupations do
not change easily and shape changes are somewhat
restricted to stretching of the original shape,
which necessarily creates a long neck. For large
&, since macroscopic volume and surface ener-
gies prefer a shorter neck and &gore spherical
fragments at each end of the dumbbell, appropri-
ate reoccupation of single-paqticle levels will cre-
ate such a configuration. To the degree to which
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occupied orbitals in each fragment correspond
more closely to ground state levels in spherical
nuclei, the fission fragments will have lower ex-
citation energy. By overall energy conservation,
this lower excitation energy compensates the scis-
sion Coulomb interaction energy which eventually
is transformed primarily into kinetic energy of the
receding fragments.

From this discussion, it is evident that there is
no furxiamental relation between the gap and a
classical viscosity. Although superficially, with
respect to scission time and fragment kinetic en-
ergy, 1/n does behave qualitatively the same as
viscosity, the scission translational energy is es-
sentially unaffected by 6 whereas, as shown be-
low, it depends significantly on viscosity.

8. Macroscopic solutions

The nuclear shapes corresponding to the ma-
croscopic solutions with various types of dissipa-
tion are shown in the four right-hand columns of
Fig. 6. In each case we use a dashed line for the
shape at which the neck loses stability against
rupture. " Compared to the nonviscous case, both
two-body viscosity and modified one-body dissipa-
tion lead to more elongated shapes during the de-
scent, whereas the original one-body dissipation
leads to more compact shapes. For two-body vis-
cosity and modified one-body dissipation, the time
required to reach the point of neck rupture is about
1.8 times as long as that for the nonviscous case,
whereas for the original one-body dissipation it is
about 5, 2 times as long. Vfith respect to both over-
all elongation and the time required. to reach the
point of neck rupture, the TDHF solution re-
sembles the macroscopic solutions with two-body
viscosity and modified one-body dissipation ra-
ther than the macroscopic solution with the origi-
nal one-body dissipation.

The time required to reach the point of neck rup-
ture is tabulated for each case in Table II, where
we also give the translational kinetic energy, the
vibrational kinetic energy, the dissipated energy,
and the potential energy at neck rupture. The vi-
brational kinetic energy is the collective kinetic
energy relative to the center-of-mass motion of
each half of the system. The dissipated energy is
equal to the time integral of twice the Rayleigh dis-
sipation function along the dynamical trajectory.
The potential energy is given relative to that for
the spherical shape.

For two-body viscosity and modified one-body
dissipation, the translational kinetic energy at
neck rupture is about O.V times as large as that
for the nonviscous case and is about 1.6 times as
large as that for the TDHF solutions. This is to

be contrasted with the original one-body dissipa-
tion, where the translational kinetic energy at
neck rupture is about 0.02 times as large as that
for the nonviscous case and is about 0.04 times
as large as that for the time-dependent Hartree-
Fock solutions.

Although the vibrational kinetic energy at neck
rupture is small in all cases, the original one-
body dissipation reduces it much more than does
either two-body viscosity or modified one-body
dissipation. For the original one-body dissipa-
tion, the dissipated energy at neck rupture is
about 1.4 times as large as that for two-body vis-
cosity or modified one-body dissipation. Com-
pared to the value for nonviscous flow, the poten-
tial energy of deformation at neck rupture is low-
ered by two-body viscosity and modified one-body
dissipation because of the more elongated shapes,
whereas it is raised by the original one-body dis-
sipation because of the more compact shape.

Unfortunately, the properties of the system at
the point of neck rupture are not measured experi-
mentally. To be able to compare with an experi-
mental result, we present in Table III the calcu-
lated translational kinetic energy of the fission
fragments at infinity. %'ith the exception of the
result for the original one-body dissipation, these
results are calculated by approximating the mo-
tion of the fission fragments after neck rupture in
terms of spheroids, as discussed in Refs. 31 and
35. For the original one-body dissipation, where
the shape change after neck rupture is small, the
final kinetic energy is calculated as the sum of
the translational kinetic energy, Coulomb interac-
tion energy, and nuclear interaction energy at
neck rupture. The result for a nonviscous descent
is 11% larger than the experimental value. The
results for two-body viscosity and modified one-
body dissipation agree with the experimental value
to within its uncertainty. Each of these results
has been calculated with a coefficient that was ad-
justed to reproduce optimally fission-fragment
kinetic energies for the fission of nuclei through-
out the Periodic Table. The result for the origi-
nal one-body dissipation, which has been calcula-
ted without the introduction of any adjustable pa-
rameters, is 5% larger than the experimental val-
ue.

VI. SUMMARY AND CONCLUSIONS

Subject to the limitations of axial symmetry and
the omission of the spin-orbit interaction, the
time-dependent mean-field approximation has been
successfully applied to the fission of '~U. The
resulting fission dynamics has all the expected
qualitative features and, given the uncertainty in
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the effective gap, is not inconsistent with the ob-
served most probable fission-fragment kinetic en-
ergies or ternary & events. Furthermore, there
exists a conceptually clear program in which, in
principle, the initial adiabatic TDHF wave function
provides an ensemble of initial conditions from
which all fission observables may be unambiguous-
ly calculated microscopically without any free pa-
rameters.

Comparison of the constrained HF energy-of-de-
formation surface with macroscopic-microscopic
calculations demonstrates satisfactory agreement
of the two approaches once the existence of two
distinct fission valleys is recognized and taken into
account. Although the presence of two fission val-
leys is possibly an artifice of the omission of the
spin orbit force, this present work suggests that
a careful search should be made to determine if
such an effect ever occurs in realistic situations.

Several different macroscopic descriptions of
dissipation have been compared with TDHF.
A Priori, one would expect one-body dissipation
to correspond most closely to the microscopic
dissipation in TDHF. Thus, at first, it appears
quite surprising that the original one-body dissipa-
tion formulation yields shapes, fission times, and
scission parameters in Fig. 6 and Table II which
differ so dramatiCally from those obtained in
TDHF. Upon investigation, it is evident that the
gross discrepancies arise primarily from the non-
Galilean invariance of the original theory, and the
modified one-body dissipation theory is in sub-
stantial agreement with TDHF. One surprising,
and rather disappointing result is that appropriate
strengths of two-body viscosity and one-body dis-
sipation yield such similar results. Thus, the fis-
sion observables considered to date are incapable
of distinguishing between two drastically different

physical dissipation mechanisms.
Several significant challenges for the future

arise from this work. One obvious task is to re-
move the symmetry restrictions in TDHF and to
include the spin-orbit interaction. Short of this,
at least some theoretical estimate of the effective
gap is required. In addition, a conceptually clear,
theoretically sound connection is required between
the time-dependent mean-field theory and macro-
scopic approximations. Clearly, the evolution of
hundreds of single-particle wave functions in-
volves far too much specific information. What
is required is a clear separation of shell effects
and a smooth, underlying continuum dynamics,
as in the Strutinsky approach to the static problem,
and a closed set of equations relating a small num-
ber of continuum variables, such as the nucleon
density and current distribution. Thus, the vener
able problem of nuclear fission continues to pose
significant theoretical challenges.
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