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A description of the formation of composite nuclei observed in relativistic heavy-ion collisions is developed.
The description is analogous to that used in accounting for the formation of nuclei under explosive
conditions, as encountered in the expansion of an isotropic and homogeneous universe and in imploding-
exploding supermassive stars. The model studied is one in which composite nuclei are formed in the space-
time evolution of a rapidly expanding system of nucleons. Within the framework of this model, it is shown
that reaction rates may initially be fast compared to expansion time scales, that detailed balance can then be
met and a quasiequilibrium established for a short period of time and limited volume of space in this space-
time evolution. An idealized equilibrium model is then proposed which contains a sharp cutoff from
equilibrium to free expansion. In such a model the observed properties of the composite particles reflect a
“frozen in” equilibrium state. A simple discussion is then presented showing that the volume at which the
transition occurs is related to the finite size of the correlated structures in the system. A key result in the
approach developed is that properties of the composite particle cross sections can be used to obtain
information on the size of the emitting region without resorting to a Hanbury-Brown-Twiss correlation
measurement. Another important result is that cross sections for composite nuclei are characterized by
Maxwell-Boltzmann distributions in some rest system and recent data will be discussed from this viewpoint.
The thermodynamic properties of the system, such as the equation of state and the energy-temperature
relationship are investigated. The effect of continuum correlations from resonances and echoes will also be
discussed.

NUCLEAR REACTIONS Thermodynamic model of heavy-ion collisions at rela-
tivistic energies. Theory of formation of composite nuclei in space-time evolu-
tion of an expanding system of nucleons.
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I. INTRODUCTION

In heavy-ion collisions at relativistic energies,
events are observed in streamer chamber experi-
ments'™® which are quite violent or explosive.

High energy fragments are seen over most of the
forward hemisphere with velocities intermediate
between the incident projectile velocity (with su-
perimposed Fermi velocity) and the Fermi motion
of the target. Some events show multiplicities ex-
ceeding one hundred charged particles whose
transverse momenta are quite high. These events
are associated with near central collisions.*™® By
contrast, peripheral collisions show a quite dif-
ferent but more familiar cosmic-ray-like pattern.
Specifically, they show a star from target evapor-
ation which is isotropic and a narrow jet from pro-
jectile fragmentation whose longitudinal momenta
are near to the beam momenta and whose trans-
verse momenta are small.

In another series of experiments,®”” inclusive
spectra of protons, deuterons, tritons, and helium
nuclei were measured at large angles and inter-
mediate energies in the hope of investigating prop-
erties of the more central collisions. Heavier
fragments up to oxygen have also been reported.®
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The objective of such experiments is to supply in-
formation for studies of nuclear matter at temper-
atures and densities far from normal nuclei which
can occur in the more central collisions.*® The
present paper is an attempt to study some of these
features within the framework of a specific model.

For example, an accounting of the number of
composite particles, their energy and angular dis-
tributions, and the possible correlations they may
have contains such information. In an attempt to
account for some of these features, a thermody-
namic model has already been proposed and its
predictions briefly discussed.!® Here, a sequel to
this former study is developed.

The viewpoint to be taken in this endeavor is that
the description of the formation of deuterons, tri-
tons, helium nuclei, etc., can be made within a
framework that is analogous to that used in describing
the formation of the elements under explosive con-
ditions, such as are encountered in the expansion
of the universe (big bang model) and in imploding-
exploding supermassive stars.'?!* The corre-
sponding parallel picture will then be one in which
composite nuclei are formed in the space-time
evolution of a rapidly expanding system of nucleons
which is raised to a high temperature and density.
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Of course, the physical conditions in temperature
and density are so very different in the environ-
ment generated in relativistic heavy-ion collisions
that the formation of composite nuclei occurs ap-
proximately 10**~10%° times faster here than in
the other two situations. But expansion time
scales are also correspondingly much shorter so
that the descriptions for the formation of compo-
site nuclei in the three cases may be linked by
simple scale changes in an established mathe-
matical framework. However, it is shown that the
scale change in position (or density) is not com-
pensated by the scale change in time so that the
details of the reactions are quite different and that
only the structure of the description is left as the
common element.

The outline of the paper is as follows. The first
major section is devoted to a discussion of the
model. In this section the dynamical basis of the
model is developed. Expansion time scales and
reaction rates are compared and the dynamical
process behind the formation of composite par-
ticles is studied. From this information an equil-
ibrium model is proposed. The second major sec-
tion contains the predictions of this equilibrium
model in its simplest version. First, the nature
of the model is discussed and the Gibbs grand can-
onical partition function is evaluated. Secondly,
the law of mass action is used to obtain the con-
centrations of nuclei in the thermodynamic re-
gion. The observed spectrum of composite nuclei
isthendiscussed. Next, the space-time structure
of the emitting region is studied and the size of
this region is estimated. A comparison is then
made with a final state interaction model of com-
posite particle formation. The remaining sub-
sections are devoted to the other thermodynamic
variables and the virial expansion for the equa-
tion of state. The third major section is con-
cerned with nuclear resonances and continuum cor-
relations and their effect on the thermodynamic
properties of the system. A summary of the paper
is then given. Finally, the Appendix summarizes
the thermodynamic expressions with the effects of
relativity and statistics included.

1I. MODEL—-QUALITATIVE CONSIDERATIONS
AND ITS DYNAMICAL BASIS

A. Preliminary remarks

The collision of two heavy nuclei at high energies
has been pictured as follows.*®'!* In a collision of
two such nuclei, a division into three regions might
be produced which involves “participants” and
“spectators.” The participants are those nucleons
in the target and projectile which are directly in
each others’ path. This region is expected to be

heated to a high temperature and may involve,
initially, a high density.*® The spectators are
those nucleons in the target and projectile which
do not overlap. They would produce the cosmic-
ray-like jet (projectile spectators) and the target
star (target spectators). The participant region
has been called the nuclear fireball.®

Moreover, this qualitative discussion has been
taken seriously and a macroscopic model has been
developed around it.° In this model, nucleons,
mutually swept up in a clean geometrical cut, form
a combined system whose excitation energy E* and
collective center of mass motion are obtained from
simple kinematics. This inelastic energy then goes
into raising the temperature of the nucleons, re-
sulting in a quasiequilibrated fireball with a
Boltzmann distribution of velocities for the nu-
cleons. From the number of nucleons in the fire-
ball, its temperature, and its collective velocity,
the proton inclusive cross sections are determined.
The resulting predictions of the model fit the gross
features of the proton inclusion spectra surprising-
ly well. For the case of *°Ne + U at 400 MeV/xn, a
characteristic fireball with ~60 nucleons, 50 MeV
in kT, and a collective velocity of 0.27c¢ adequately
described the data.

Besides the macroscopic fireball model, micro-
scopic calculations of the proton inclusive spectra
have also been developed using several other ap-
proaches but have, to date, not been any more
successful in accounting for the data. These ap-
proaches include a wide variety of models: intra-
nuclear cascade models,*®* 7 fluid dynamical mod-
els,'® calculations using hard-sphere scattering,®
and classical many body equations of motion pro-
cedures.?%*!

With regards to the composite particle spectra,
no microscopic calculations have as yet been at-
tempted. However, the inclusive spectra of these
composite particles have been interpreted in terms
of a phenomenological model in which nucleons
with small relative momentum coalesce.” This
imposed momentum space restriction leads to cor-
relations in energy and angle between double dif-
ferential cross sections for composite particles
and powers of the corresponding proton cross sec-
tions. This correspondence is borne out by the
experimentally determined cross sections as
shown in Ref. 7. Now, in Ref. 10 an alternate mod-
el was proposed which also accounts for the cor-
relation between composite particle and proton
cross sections. It is the development of this latter
model that is now to be discussed.

B. Explosive nucleosynthesis and equilibrium thermodynamics

Here, a qualitative discussion for the founda-
tions of the model is presented. The underlying
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picture for the formation of composite nuclei to be
developed is one of an expanding collection of
strongly interacting nucleons raised to a high tem-
perature which evolves from a high density region
to a low density free expansion. Now, in the initial
stages of the expansion, when densities are high
and mean free paths are small compared to the
size of the system, collisions are then frequent,
causing scattering to all possible states. These
collisions will then have a threefold role. First,
they will produce the thermal equilibrium generating
the randomized final state from the ordered initial
state.?®'*® Secondly, they will lead to particle pro-
duction (N +N—~N +N +7) and transformation

(N +7— A) when incident incoming energies are
above particle production thresholds.® Thirdly
these interactions result in composite particle
formation and breakup (n +p=d).

Then, in the initial stages, when interactions are
important, transformations and transitions occur
between all strongly interacting constituents so
that a transient character is ascribed to each ele-
ment of the system. Only conserved quantities
will have a permanence. For example, a “deuter-
on” (or more precisely, a pair correlation) will be
a metastable vesonance in the interacting stage
which will appear at one point and then disappear
only to reappear at another point possibly in a dis-
guised form with a A replacing a nucleon.

Now, the high temperatures (T ~50 MeV) and
densities (p~nuclear matter) involved in the inter-
action region also imply that composite particles
can be produced in a profusion of reactions whose
rates will be large since energies encountered
((E)~2kT ~"75 MeV) are above all barriers. Furth-
ermore, if these rates are comparable or shorter
than expansion time scales, then the rates of for-
mation for various reactions become equal to the
rates of their breakup (detailed balance) and a
chemical equilibrium between all constituents is
achieved. Under these circumstances, the dy-
namical build up of various nuclei quickly takes
the system to its equilibrium distributions.?* In
turn, properties of phase space distributions,
which, for example, maximize the entropy of the
distribution of products in this space, play a more
fundamental role than the details of the various
cross sections.

If a complete thermodynamic equilibrium is es-
tablished, then the average behavior of the sys-
tem is describable in terms of a few state func-
tions which will be taken as the volume of the in-
teraction region and the temperature of the sys-
tem. It is important to note that the establish-
ment of thermodynamic equilibrium in this volume
destroys the history of the system for all previous
times except for the information related to con-

served quantities. As an example, the number of
a particles will reflect a randomized state of the
system at some volume and temperature, and will
not reflect, except for nucleon number conserva-
tion, the ordered initial state. Similarly, any
exotic previous state of the system which must
evolve through a quasiequilibrium state of the sys-
tem at some later stage in the time development
of the system will also have its information lost,
except for any conserved quantities related to it.

In the results to be presented below, the volume
of the interaction region (or density of the system)
is a physical quantity that will remain in the final
expressions; this volume can therefore be ex-
tracted. Specifically, the volume reflects an ideal-
ization of the dynamic space-time evolution of the
system, representing a sharp cutoff from an inter-
acting to a noninteracting system as it expands.
The metastable vesonances in this tvansition
eventually become the stable composites. Thus, in
an equilibrium model, the observed properties will
reflect a “frozen in” equilibrium distribution of an
emitting system as it evolved through space and
time. Within the framework to be developed, in-
teractions and their ranges are then both included
in producing thermal and chemical equilibrium and
in determining the size of the volume where they
are established. As it will be shown, this ideal-
ization can lead to a complete solution to an other-
wise complicated problem of which only a piece
(the proton inclusive spectra) has been developed
numerically, apart from the macroscopic model of
Ref. 6, in rather detailed calculations.

An attempt will now be made to justify an initial
thermodynamic equilibrium by first considering
the time scales in the expansion of the system,
and then by investigating the reaction rates in the
dynamical buildup toward equilibrium. However,
no attempt will be made to study the actual dy-
namics of the initial collision of the incident and
target nuclei by any detailed microscopic calcula-
tion to see if a localized collection of nucleons is
generated. Rather, this underlying picture is as-
sumed and consequences and further justifications
around this picture are developed.

C. Dynamical considerations
1. Expansion time scales—Hubble model

In order to see if chemical equilibrium can be
achieved an estimate of the expansion time scale
of a heated system of nucleons is needed. Here,
such an estimate is developed in a free expansion
model. The model assumes that each point in the
distribution of matter is a source of an explosion
producing fragments moving radial outward as
shown in Fig. 1. Using Hubble’s relationship, that
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the speed [v| outward is proportional to the radial
distance R; from the source point

Vi=R.H , (1

a point source velocity distribution f(¥) can be
converted into a density distribution: p[R;, ¢]
=H*f([¥|=RH)=1"*f(R,/1); the t, the reciprocal of
the “Hubble” constant H, is the time from the ex-
plosion. Next, if a local Maxwellian distribution
of velocities at each point is assumed, the result-
ing density distribution is then a Gaussian:

- 3 3/2 1
p[R;,tl=(—2—n) V.p SPL-3RE/2(VtP] (@)

The V5= (3kT/m)"? is the thermal velocity obtained
by setting the mean energy equal to 3kT/2, with T
being the temperature of the nucleons. The above
result can then be used to obtain the density dis-
tribution of any initial configuration of matter by
performing a simple folded integration over the
given initial density distribution. This procedure,
when applied to an initial configuration of matter
uniformly distributed over a sphere of radius Ry,
results in

p(R.1]

0.9 1.0
R/Rg

FIG. 1. The free expansion model and its density
profile as a function of position and time for points
inside the initial uniform sphere.

olR, ¢ ]=p, (5 (erf{(R +R,)[a() 2} % erf{|R - R,|[a()]2})

+ Sran Leml-a® +RF |- expl-aO®-RF1) | o

with @(?) =3/2(V,1)? and erf an error function; the
plusisfor R <R, andthe minus for R > R,. Theresult
of Eq. (3)is shownin Fig. 1, from whichit canbe seen
that the characteristic time forthe systemtogoto 3
its original density is, as expected, R,/V;. Fortem-
perature and sizes of interest, this characteristic
timeis ~5x10-**sec. This resultis comparableto
the hydrodynamic time R/V,, where V, is the velocity
of sound, which for an ideal gas is

1/2

N

c mc
with 7:%. Thus, there is little change introduced
into the characteristic time when simple refine-
ments, such as compressibility, are incorporated.
Also, the expansion time is not a sensitive function
of the initial configuration as can easily be seen
by evaluating the characteristic time for other
reasonable initial configurations. As an example,
an initial Gaussian distribution

p[R,t=0]=p,exp[-R*/R,%(0)] unfolds as

R,%(0)
p[Ryt]zpoFE’t—)' exp[-R*/R;*()] , (5

T

where R,3(f) = [Rs%(0) + (V)2 /2, with V,* =2V,2/3.
Again the characteristic time scale is R,/ V. The
expansion time will now be compared to the reac-
tion rate time for nucleosynthesis.

2. Reactions and reaction rate time scales

As already mehtioned, the starting point of our
description of nucleosynthesis is a dense and heated
initial state of protons and neutrons which then
combine through a complex set of nuclear reactions
to form the various nuclei during the space-time
evolution of the system. The mathematical frame-
work for a description of the dynamical formation
of nuclei has alreadybeen developedininvestigation
of element formation in the expansion of an iso-
tropic and homogeneous universe'!**:13:2* apq in
imploding-exploding supermassive stars.'* By
way of illustration and for contrast, let us con-
sider the former case which might have also
evolved from an initial dense hot state. The nu-
cleosynthesis proceeds in this situation through a
complex set of two body reactions occurring at
temperatures 10°—10'° K, or kT ~0.1—1 MeV,
with the first element of the chain being a radiative



capture
n+p—-d+y. (6)

After this first electromagnetic interaction, ele-
ments are generated by a series of sequential two
body nuclear reactions of the type

3
d+d::t}i(;+n, He+n—t+p, (+d—‘He+n .
(M

Now it is important to realize that the mechanism
of deuteron production is too slow in the relativistic
heavy-ion case for the expansion time scales con-
sidered in the previous section. Specifically, for
temperatures T~0.5 %10 K (kT =50 MeV) the in-
verse reaction can proceed through a giant dipole
resonance, whose width is several MeV and whose
maximum cross section is ~1 mb at an energy ~12
MeV, but the resulting reaction rate of ~10°/sec ¢
is still too slow to produce any deuterons during
the expansion time scale of ~5x107%® gec obtained
in the previous section. Thus, the first step must
then be a three body reaction

p+n+N =d+N , (8)

where the nucleon N acts as a catalyzer carrying
away the excess energy and momentum to allow

the fusion. By comparison, the three body process
is not important for deuterium production in an ex-
panding universe where element synthesis occurs
when densities are very much lower. In the rela-
tivistic heavy-ion case, however, synthesis oc-
curs precisely when densities are near those of
nuclear matter so that multinucleon collisions are
important. Therefore the dynamical reaction
mechanisms for nucleosynthesis are different due
to the scale change in the coordinate not being
compensated by the scale change in time. In fact,
a whole profusion of reactions, besides the sequen-
tial two body ones of Eq. (7), are all important with
examples as follow:

n+p+N—-d+N ,

d+n+p—~d+d , (9)
p+n+p+n—-d+d

for deuterons;

n+n+p+N—-{t+N ,
n+d +N—t+N , (10)
d+d-=t+p

for tritons; for *He, change all protons into neu-

trons and all neutrons into protons in Eq. (10),
and for a particles

17 EXPLOSIVE NUCLEOSYNTHESIS, EQUILIBRIUM... 1055

n+n+p+p+N-a+N ,

d+n+p+N-a+N ,
d+d+N—-a+N , (1
d+t—-a+n ,

The dynamical expressions governing the forma-
tion of various nuclei for the above reactions can
be obtained from a coupled set of first order dif-
ferential equations which have the same formal
structure as those used in Refs. 11 and 13. For
example, deuterium formation through the reac-
tion of Eq. (8) is given by

apq _ ; Pyg ]
dt [p’p"(p,pn>cq Pa

XpN<U(N+d-n+p+N)Urcl> ’ (12)

where p,, p,, Py, and p, are the proton, neutron,
nucleon, and deuteron density, respectively. The
(P4 /PyPrYeq is the equilibrium ratio of deuterons to
protons and neutrons and is a function of tempera-
ture only. This ratio, which is derived in Sec.
IIIB, is given by the following equation:

(ﬂ—> =(A 3)"—1“3/2 3 (Z,N) (13)
P,P,, g T ?‘ int )

with A =2. Here, the Ay is the thermal de Broglie
wavelength given by

h

M GamkT g

The 3 [Z,N] is the internal partition function of
the composite

i (Z,N) = (Z (25, +De % /”) e!Bol/AT | (15)
j

with the sum in Eq. (15) running over the ground
and excited states of the composite and E; being
the energy measured from the ground state energy
E, For deuterons 2s,+1=3 and |E,|=2.2 MeV.

The (N +d - n +p +N) appearing in Eq. (12) is the
breakup cross section of deuterium and v,y is the
relative velocity of an N,d pair. The product ov,
is to be averaged over the distribution of relative
velocities of thispair. Whenthermal equilibrium has
been achieved [which has been assumed in Eq.
(12)], the nucleons and deuterons each have a
Boltzmann distribution. Noting that the product of
two such distributions can again be written as a
Boltzmann distribution of relative motion for a
particle of reduced mass u=mm,/(m, +m,) and a
Boltzmann distribution for a particle of total mass
M=m,+m,, the average (0v ;) is easily obtained
in the nonrelativistic limit as
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/2 /2
OV, )= (%)1 (———le>3 ’ Eo(E)e 2/*T4E . (16)
0

A point to note is that E e ®/*T peaks at E=kT and
has a mean at 2kT, so that the breakup cross sec-
tion contributes over a broad energy range from
the threshold energy up to several times k7.

The above simplified illustration can next be
generalized to define a dynamical approach to nu-
cleosynthesis in an expanding system which can be
summarized as follows. First, write a set of re-
actions that build nuclei of the type given by Eqgs.
(9)-(11). Secondly, solve a set of coupled first or-
der differential equations of the form of Eq. (12)
in an expanding system with some model for p(?)
and T(f). Thirdly, when the rates of reactions,
governed for instance by py(0(N +d—=n+p +N)v,)
for Eq. (8), are large compared with 5(¢)/p(t) take
the instantaneous equilibrium distributions given
by Eq. (13) for the densities. The dynamic solu-
tion is then the equilibrium thermodynamic solu-
tion. In equilibrium dp[Z,N]/dt=0 and the rates
of production of a given specie become equal to
the rates of absorption so that detail balance is
achieved. The dependence of p[Z,N] on the de-
tails of the cross section then vanishes and the
concentrations are state functions determined by
phase space factors alone. Nevertheless, break-
up cross sections will have a hidden role in estab-
lishing the equilibration time scale.

Since breakup cross sections have not been mea-
sured over the broad energies needed to evaluate
Eq. (16) and in many cases have only been deter-
mined at a few energies, if at all, it is quite dif-
ficult to give an accurate evaluation of the integral
in Eq. (16) and to establish the equilibration times.
For the case of the deuteron, measurements of
p+d-n+p+p give 100 mb at 77 MeV and p +d
-~ p +d is 50 mb at this energy.?” Measurements
have also been reported®® for d +d=n+n+p +p,
d+d-d+n+p, d+d—-p+t, and d +d—-d +d for en-
ergies 20-50 MeV. The sum of the first two cross
sections is 410 mb, the third, 40 mb, and the
fourth, 540 mb. There is also one other measure-
ment that we know of for p+d—-p +p +n at an en-
ergy of 14 MeV for which the cross section is 196
mb. A very approximate evaluation of (0v) can
then be obtained by taking a mean cross section
for breakup of 100 mb from which it follows that
the product py(ov)=A=~2.5x10%%/sec at normal den-
sity. The reciprocal of A determines the time the
system takes to reach equilibrium in the deuteron
concentration. This time is much shorter than the
expansion time of the previous section.

In fact, and fortunately so, a mean breakup cross
section (averaged over the distribution of relative
energies) of only 10 mb is sufficient to achieve

equilibrium at normal density. Moreover, at rela-
tive energies greater than a few times the binding
energies of light nuclei, the total fragmentation
cross sections of light nuclei should not be very
different from the geometrical values 7R?, which
is much larger than 10 mb=1 fm?. Another point
to note is that light nuclei have small thresholds
for complete fragmentation so that very little of
the contribution in the integral of Eq.(16) is lost
due to threshold effects. Also, penetration fac-
tors, so important in nucleosynthesis in stars,
are unimportant here owing to the very high tem-
peratures introduced by the collision. Thus, des-
pite the lack of detailed cross section measure-
ments, there is still good indication that a com-
plete thermodynamic equilibrium can be estab-
lished.

D. Condition for a quasiequilibrium

Before proceeding to a quantitative discussion of
a thermodynamic model it is interesting to de-
velop a condition to determine whether or not a
quasiequilibrium is achieved. This can be obtained
by first noting that the reaction rates which govern
the approach to equilibrium are determined by
quantities such as

A=pylobu)ve) , amn

where o(bu) are breakup cross sections. Now, if

X is greater than p/p, then concentrations will have
reached their equilibrium values. On the other
hand, if A is less than p/p, nuclei will not have
been built to their equilibrium concentrations. Let-
ting ¢,,, be the time it takes the density to drop to

5 its original value, the following equation is ob-
tained

V2o 1Yy
LpP b, R

(18)

b
p
The Vr is the thermal velocity and R the radius of
the system. Since p varies like R73, A will event-
ually cross p/p if it is initially greater than it be-
cause p/p varies with a smaller negative power of
R. As an example, an adiabatic expansion of an
ideal gas has R*T*2?=K, so that V;~1/R and p/p
~R"%, Thus, a primitive condition for a “freeze
out” at some equilibrium concentration is

R
pf(ob.,v) W =1. (19)

Defining a nucleon induced mean thermal breakup
cross section by (Oy,v) =Ty, Vr(8my/3Tuy 4)'/* Eq.
(19) can be written as

1
= == 2
Pr Ebu(w/#ﬂ.,i)l R (20
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where the inessential 8/37 is neglected; Ly 4,

=m my/imy +m,). The result of Eq. (20) is just the
statement that the mean free path for absorption

is equal to the size of the system. It is also inter-
esting to note that Eq. (20) can be developed even
further when it is realized that the sum of all
inelastic cross sections at high temperatures for
a given light nucleus is the total geometrical cross
section:

u};mi o(N +A)=1(R 4+R,) . 1)
channel

Then, p, is related to the finite size of the compo-
site nucleus for a light nucleus where threshold
effects do not play an important role in any of the
fragmentation channels and, specifically, in the
evaluation of Eq. (16). When these circumstances
are met, the following relationship is obtained:

1/2 \~1
p,(A) = [n(RA+R,)ZR (w—é) ] . (@2
my

Equation (22) implies that in the space-time evo-
lution of the system, a metastable resonance be-
comes a stable composite nucleus in a transition
region when the density of the system is related
to the finite size of the composite.

III. PREDICTION OF AN EQUILIBRIUM
MODEL-SIMPLEST VERSION

A. Simplified view and its Gibbs grand canonical
partition function

Starting with the assumption that the average be-
havior of a system of nucleons, nuclei, and par-
ticles produced in a central collision of two heavy
ions at relativistic energies might approximate a
thermodynamic system in equilibrium, the hope is
that the simple and elegant mathematical frame-
work of equilibrium thermodynamics can lead to
some useful insights into the collision. With this
qualification in mind, we will proceed on two levels
of complexity, the simplest level being defined by
a model with the following constraints:

(1) Impose the condition that the interactions have
produced a thermal equilibrium.

(2) Impose the condition that the interactions pro-
duce composite nuclei in their bound states with all
species in chemical equilibrium.

(3) Neglect the structure in the continuum due to
the unbound states.

(4) Otherwise treat particles as noninteracting
ideal gases.

Here, particle production will not be considered.

The results can easily be extended to include pro-
duction, but Refs. 4 and 29 already discuss a sys-
tem of nucleons and pions in equilibrium. Furth-

ermore, the effects of relativity and statistics will
also be neglected. Their effects on the compaosite
particle spectrum are small for the densities, tem-
peratures, and energies that are investigated here.
In Appendix A, the thermodynamic results includ-
ing relativity and statistics are summarized for
completeness.

Now, the above model leads to a simple and com-
plete solution to the average behavior of a system
of nucleons and nuclei in a box of volume V and
temperature T. This solution can be obtained from
statistical mechanics using the Gibbs grand canoni-
cal partition function. For a system of noninterac-
ting ideal gases of different species, this partition
function is given by

£, T, {ush=m (2; e“s”s’"a,vs) : (23)

where p; is the chemical potential of specie S and
3w, is the canonical partition function for N par-
ticles of a particular specie. In turn, the canoni-
cal partition function with N noninteracting par-
ticles is

3(S)Ns
31vs = N'L—s! (24)
with 8% the one body partition function given by
the product of the internal partition function 3,,
for that specie and the ratio of the volume V of the
thermodynamic box to the thermal volume defined
in terms of the thermal de Broglie wavelength

Ap(s):

|4 (s)

(s) _
= 3, .
3 /\?_(s) int

(25)
The internal partition function 33 is given by Eq.
(15) and the A;%(s) by Eq. (14) with m ~ M.

The connection of thermodynamics to statistical
mechanics can next be introduced through the
thermodynamic potential :

Q=—kTIn&(V,T,{up . (26)

All thermodynamic properties then follow from .

B. Law of mass action, Boltzmann distributions

The first quantity of interest is the average num-
ber of a particular specie in the thermodynamic
volume. This number is obtained from the partial
derivative of the thermodynamic potential with re-
spect to the chemical potential:

Qe V
- t

is/RT
6 eHs/®T | 2mn

When the thermal and chemical interaction condi-
tions are imposed on the system an interesting re-
sult is obtained. First, imposing the condition of
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chemical equilibrium, which is just the statement

Bz n=ZK,+NU, , (28)
the law of mass action immediately follows:
e ()4 A a2 0]
Nol1,0N,0,1]" "\ v 24 ’
(29)

The Ay is the thermal wavelength of the proton.
When Eq. (29) is converted to a density distribu-
tion, Eq. (13) follows. The above result can also
be derived by the Darwin-Fowler method or meth-
od of steepest descent; this result is also the nu-
clear analog of the Saha equation for ionization.

Letting Z and N be the total number of protons
and neutrons in the system, including those con-
tained in composite nuclei, the following auxiliary
conditions must be satisfied:

> NJZ,NZ=Z, D .NJZ NIN=FK . (30)

A solution to Eqs. (29) and (30) is shown in Fig. 2
for the case kT =40 MeV, Z =30, N-=30.

Secondly, imposing the condition of thermal
equilibrium, which is just the statement that mo-
mentum distributions are Maxwell-Boltzmann, the
momentum space density of a composite is
~Eg/RT

d°N,Z,N] e

d3P, =No(Z,N) (2TM 4R T)3? " (31)
The P, is the total momentum of the composite and
Ey is its total kinetic energy Ex=P,2/2M,. The
phase space distribution of Eq. (31) can be cast
into a Lorentz invariant form when Eq. (31) is
multiplied by E, since d*P/E is a Lorentz invari-
ant phase space element. The E, here, now in-
cludes the rest mass.

The above results show that a thermodynamic
model gives rise to an isotropic distribution of
fragments. Contrarily, the observed cross sec-
tions in the laboratory are forward peaked and,
thus, apparently nonthermal in this system. The
asymmetry is due to the persistence of the longi-
tudinal momentum of the initial incident state re-
quired by overall momentum conservation. In or-
der to avoid a major failure of the model on the
most trivial of grounds, one has to allow for non-
turbulent collective motion coexistent with local
thermal equilibrium.*® Then, in some rest sys-
tem in which this collective motion has been sep-
arated off, distributions will again be isotropic.
The results of Eq. (31) apply to this rest system
if it exists.

The Lorentz transformation of the distribution of
Eq. (31) from this rest system to the laboratory
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FIG. 2. The number of p, d, ¢, He3 and He as a
function of the thermodynamic volume. The evaluation
is for T (=40 MeV and Z =30, N=30. For 60 nucleons
normal nuclear matter occupies a volume of 400 fm3.
The decrease in the number of nuclei with increasing
volume follows from Le Chatelier’s principle in ther-
modynamics. This principle enables qualitative conclu~
sions to be drawn about the direction in which the equili-
brium of a system is shifted when changes are made in
the external conditions. Specifically, an increase in the
volume at constant temperature results in the lowering
of the total and partial pressures of the system. From
Le Chatelier’s principle, the equilibrium of the system
will tend to move in such a direction as to oppose this
change. This is accomplished by increasing the number
of degrees of freedom in the system which will happen
when composite structures are broken up into their
constituents.

system gives rise to a forward peaking of the dis-
tribution. If, for example, this rest system moves
with velocity 3 with respect to the lab, then from
the Lorentz invariance of Ed3N/d3p = E'd®N/d®p’,
the phase space distributions in the laboratory are

d°NJ[Z,N]_E' e BRIAT
ol —_—
a’Pp, g N2 N G- (42

The primed quantities refer to the rest system and
the unprimed quantities to the lab system. The en-
ergy E’ can be written in terms of the laboratory
energy E through the relationship E’
=y(E-BP,o0s6,), where y=1/(1-3%"% and 6, is
the angle between E and B. The Ef=Ey-BP,cosb;
+3M 4B in the nonrelativistic limit.



C. Observed spectrum of nuclei and protons

As shown and discussed in Ref. 6, the proton in-
clusive cross sections can be accounted for by
emission from a thermally equilibrated source
(the fireball) moving with a velocity 8 ~0.27 and
having a temperature 2T ~50 MeV for 2°Ne + U at
400 MeV/n. The model fits the data best above
80 MeV/n with some disagreement appearing be-
low this energy. In this lower energy range the
proton data can be fitted with a smaller tempera-
ture of 40 MeV and a lower velocity of 3=0.15 or
B=0.175 as shown in Fig. 3. However, the higher
energy parts of the spectra no longer agree with
the thermal spectra for the lower temperature and
velocity. On the other hand, for the composite nu-
clei d, *He, and “He, the higher temperature and
velocity fails to fit the inclusive cross sections,
but the lower temperature of 40 MeV and lower
velocity of 0.15 accounts for the general trends of
the cross sections as also seen in Fig. 3.

Inclusive cross section measurements of heavier
fragments which include Li, B, C, N, O, and F,
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in the energy range 15-60 MeV/n and angular
range 35°-85° for 2°Ne + U at 400 MeV/n and Ar on
Au at 500 MeV/n have also been reported.® These
cross sections have been fitted with Maxwellians
with a temperature of T =52 MeV with an emitting
source moving at 8=0.076 for 2°Ne +U, and with
kT =65 MeV and 8=0.085 for Ar+ Au. A similar
set of measurements on Li, Be,”"*'!° B, C, N, and
O at slightly lower energies, in general, than
those of Ref. 8, but in a broader angular range can
also be accounted for by Maxwellians with temper-
atures kT ~27 MeV and 8 =0.06 for *°Ne + U at 400
MeV/n.?

From the above results the following observa-
tions are in order. While the proton inclusive
cross sections below 100 MeV and the deuteron,
triton (not shown), and helium inclusive cross sec-
tions are adequately accounted for by a single tem-
perature and velocity for the emitting source, the
proton data above 100 MeV and the heavier compo-
site particle data cannot be accounted for by these
temperatures and velocities. The discrepancy with
the proton data at higher energies and forward

20Ne + U 400 MeV/nucl.
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FIG. 3. Double differential cross section fits for protons, deuterons, and helium nuclei. The fit to the proton data
for 2T =50 MeV and 8=0.27 is from Ref. 6. The normalization in the predicted deuteron, triton, and a-particle cross
sections is left arbitrary since the magnitudes are determined by the thermodynamic volume.
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angles may be due to pre-equilibrium processes

or may be accounted for by assuming that the spec-
trum is the product of various sources each with a
different temperature and velocity. A third pos-
sibility is to assume a different mechanism at dif-
ferent impact parameters.’> For the heavier frag-
ments of Li to F, the disagreement between the
parameters obtained from the different sets of
data is a puzzle. A suggested explanation of the
lower temperature and velocity obtained from the
data of Ref. 5 is through a complete target explo-
sion in the most central collisions in which the
total available inelastic energy is shared among

all the nucleons of the target and projectile.® On
the other hand, the high temperature and low vel-
ocity obtained in Ref. 8 are not apparently ex-
plained by this mechanism and a nonthermal source
has been proposed.®

D. Space-time structure of the emitting region without
Hanbury-Brown and Twiss correlation measurements

The space-time evolution of the interacting sys-
tem of nucleons and nuclei is further investigated
here. For this purpose two-particle and multipar-
ticle inclusive experiments are a valuable tool owing
totheir more exclusive nature. For example, awell
known procedure for obtaining the size of an emit-
ting region is due to Hanbury-Brown and Twiss®!
who obtained the size of a star (@ Canis Majoris A)
by observing photon-photon correlations with an
intensity interferometer. An extension of this
technique has also been developed for high energy
physics studies®'®® and the procedure has recently
been used to determine the size of the hadronic re-
gion through 7-m correlation measurements.?
Similarly, proton-proton correlation measure-
ments have been proposed as a method for studying
the space-time history of highly excited nuclei*®
and exploding nuclei.*"%°

All of the above methods are two-particle in-
clusive methods and rely on determining correla-
tions induced by the Bose-Einstein or Fermi-
Dirac nature of these particles. Here, we propose
a simpler method which utilizes an advantage of
high energy heavy-ion collisions in that a signifi-
cant fraction of deuterons, tritons, and helium
nuciei, along with protons and pions, is observed.

The essential point to note is that an inclusive
cross section measurement of a composite particle
made up of A nucleons is really an A-particle in-
clusive measurement of a highly correlated system
bound together by the nuclear force in a particular
space, spin, and isospin state. As an illustration,
an inclusive cross section measurement of a deu-
teron is a two-particle inclusive measurement of
a space symmetric, spin 1, and isospin O state of

an n-p system bound together into a stable compo-
site. In the thermodynamic picture discussed in
Sec. III B, the history of this detected event can

be traced back to the thermodynamic interaction
regionwhereit was an n-p correlated metastable
resonance which became the stable composite in
the dynamic space-time evolution of the system as
it passed from the interacting to the noninteracting
stage. Thus, deuterium and the other composite
nuclei contain, within this framework, idealized
snapshots of the space-time history of the emitting
region.

To explore this space-time history quantitative-
ly, use is made of Eqs. (29) and (31). By defining
the momentum per nucleon ﬁ, =P, /A, the kinetic
energy per nucleon €, = E;/A, and noting that a
Boltzmann factor in total energy is the Ath power
of the Boltzmann factor in energy per nucleon, the
following equation can be easily derived'®

3
M =A381m [Z,NJ (

h3l A-1
7, )

v

Nol1,0 d3P,

From this equation it follows that the A-particle
nucleus inclusive spectrum is the Ath power of the
single-particle proton inclusive spectrum. In
turn, this result leads to correlations in energy
and angle between double differential cross sec-
tions of composite particles and powers of the cor-
responding proton cross sections.!® Such corre-
lations in energy and angle have already been ob-
served experimentally’ and the results have been
interpreted in terms of a coalescence model.” It
is therefore worthwhile to briefly state the es-
sential results of this model.

In this latter model, nucleons with relative mo-
mentum within a sphere of radius P, of each other
coalesce and this imposed momentum space re-
striction leads to the following equation’:

<d31s7[Z,NJ> _ (N +N,,>” (EmyPR) 4!
d3P, +Z ZIN!

3x7 A
x(—d ;ﬁg’m> . (34)

The d°N[Z,N]/d?P, is the number of nuclei per
event per unit element of phase space. The y
=(1+P,%/m,*)*/* and the (Z,,N,) is the target pro-
ton, neutron number and (Z,,N,) is the projectile
proton, neutron number. Before proceeding any
further, it is meaningful to explicitly show two
factors in the above relationship which are im-
plicit in P,. The first is just a spin alignment fac-
tor and consists in multiplying the right hand side
of Eq. (34) by (2s +1)/24 for the light nuclei which
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TABLE I. Values for the coalescence parameters and the thermodynamic region for Ne+ U
at 400 MeV/n. The py is the density of nuclear matter.

Composite P, (MeV/c) Py (MeV/c) V (fm®) s/ Py R (fm)
d 129 71 1340 1 6.84
{ 129 94 842 2 5.86
*He 129 94 842 2 5.86
‘He 142 122 500 2 4.92

have no excited states. The second factor arises
from the fact that the composite particle is at a
momentum P=AP,, so that d*P=A3%3P,. This
second effect can be incorporated by leaving the
left hand side as is and by multiplying the right
hand side of Eq. (34) by A®. Then, defining a new
P, by

(P =a0 25 By (35)

the form of Eq. (34) is unchanged but the trivial
spin alignment and phase space position of the
composite particle are explicitly removed from
P,.

Since no explicit reference is made in the coal-
escence model to the spatial evolution of the cascade
nucleons, the interesting relationship of Eq. (34)
obtained from it offers no information about the
space-time history of the system. On the other
hand, an explicit reference is made in an equil-
ibrium model to an interaction volume where
thermodynamic equilibrium exists so that ex-
pressions derived from it will explicitly contain
the volume as shown in Eq. (33). Now, the formal
correspondence between Eq. (33) and Eqgs. (34) and
(35) can be exploited to obtain the values of V from
the values of P, of Ref. 7. In Table I a summary
of the results is given. The table also contains
the results for the freeze out density.'®

The information about the size of the emitting
system contained in the composite particle in-
clusive cross sections refers only to the total vol-
ume and not to its linear dimensions. In order to
obtain information about the longitudinal and
transverse dimensions, a more detailed Hanbury-
Brown-Twiss two-particle inclusive experiment
has to be done which explores the two-particle
phase space distribution away from the single
line representing the deuteron. However, a mean
linear dimension can be defined by

LRS-V (36)

and the composite particle data can be used to ob-
tain a linear dimension for the size of the emitting
region. Only in a conspiracy of a very elongated

ellipse will the extracted R be far from the true
linear dimensions in the longitudinal and trans-
verse directions. With this reservation noted, the
mean linear dimensions are given in Table L

The results quoted in this table show that the
size of the emitting region varies from ~5 to ~7
fm depending on the nucleus. While this might at
first be thought of as an undesirable feature in a
thermodynamic model, since it would be best to
have a single set of equilibrium conditions to ex-
plain all the data, it does show that a particles
may be emitted at an earlier stage in the evolution
than / and 3He, which are then followed by deu-
terons. In fact, the results of Sec. IID suggest
precisely this behavior owing to the finite size of
the composite particles. Moreover, objections to
a thermodynamic approach which gives different
volumes when dealing with point particles, may
not apply to a thermodynamic description of a col-
lection of composite structures with finite sizes.

Finally, it should be emphasized that Planck’s
constant 2 appears in the phase space distribution
of Eq. (33) and in the chemical equilibrium ex-
pression of Eq. (29). Thus, unlike the coalescence
model result of Eq. (34), the solution developed
here for the phase space distribution of composite
particles has a quasiclassical nature. The origin
of Planck’s constant in the above expressions
arises from the fact that in a chemical transform-
ation the number of degrees of freedom is changed;
in turn, this change leads to a dependence of the
thermodynamic properties of the system on the
fundamental volume in phase space from which the
number of dynamical states making up the thermo-
dynamic state is to be calculated. Alternately, the
first and second laws of classical thermodynamics
leave the law of mass action of Eq. (29) unspecified
owing to the appearance of undetermined entropy
constants resulting from the lack of a well defined
unit of action in classical descriptions. Only by
introducing the nonclassical third law of thermo-
dynamics or Nernst’s theorem is this ambiguity
removed from classical thermodynamics. But im-
posing the constraint of the third law must also
introduce Planck’s constant into the description of
the phase space distribution of products.
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E. Comparison with the Butler-Pearson model
for deuteron formation

This subsection is devoted to a brief discussion
of the Butler-Pearson model®® for deuteron pro-
duction in high energy proton collisions with nu-
clei. The two step formation mechanism proposed
in their model involves: (i) the two body interac-
tion between pairs of cascade protons and neutrons
and, (ii) the collective mean field of the rest of the
nucleus which acts as the third body necessary for
energy and/or momentum conservation. Using
second order time dependent perturbation theory,
Butler and Pearson developed the following ap-
proximate expression for the probability of forma-
tion of deuterons with wave number K [Eq. (21)
of Ref. 35]:

n®-2 (5 (] imotpaRr . @0

This probability, the #(K) of the above equation,
is thus related to the square of the cascade nu-
cleon distribution, the P(3K), at one-half the deu-
teron momentum. The model therefore predicts a
power law form of the coalescence’ and thermo-
dynamic models.!® In fact, the coalescence model
is just a generalization of a simplified version of
the Butler-Pearson model originally due to
Schwarzschild and Zupancic® in which the coeffi-
cient in front of [P(3K)P is essentially replaced by
+mP;. It is now useful to pursue this coefficient
further.

First, C®=vy/2m, where y is determined by the
deuteron binding energy E,=#?y*/m. The V, and
R, appearing in Eq. (37) are the depth V, and ra-
dius R, of the optical potential. Secondly, the
IR, =I(Ryy) is a rather complicated two dimen-
sional integral [Eq. (22) of Ref. 35]:

0 .00 4
1(R07)=f n'dn[G(n)F]0 §2d§[(§2+02)2 +
o

(& +an +a*) -

a+(g+3m)?

__1< 4 |
ne \(@+a? (§2+%n"’+a2)> "

Here, the G(n) is the Fourier transform of the op-
tical potential with n the momentum transfer times
R, n=KOR, Thea=YR,and {=k;R,, with k; the
internal relative wave number of the two nucleons
that eventually comprise the deuteron. In Ref. 35,
the above integral is done numerically. Here, it
is to be noted that the ¢ integral can be done anal-
ytically:

IR) =R = [ 1dn[GMEFIM,1Re=a),  (39)

with
3m  8n 4. n 4 7N
I = = —— - — 1L - 1 L .
(M,YRy=a) % 1 tan”™ 2+ ntan %
(40)
For N1« 2a,
3= 7t
IM,yRy=a)~ —=7 555 - 41
y Y, 5% 27 ')’sRos (41)

The limitn « 2ais not sounreasonable sinceq = k9 is
~R,"'~0.15 fm™ for a heavy nucleus, while 2a/R,
~2y~0.46 fm™! for the deuteron. Therefore, this
I(n,vR,) limit, while not giving the exact depen-
dence of n(f(.) on y and R,, will give its qualitative
characteristic dependence. From the above re-
sults, the dependence of n(K) on E,~7? is 1/ES
and this behavior has its basic origin in the energy
denominator of the second order perturbation de-
velopment. The decrease of n(K) with increasing

a®+(¢-3m)?

:| . (38)

E, is understandable in a final state interaction
model since the greater the binding energy of the
deuteron, the further away are the initial cascade
nucleons from energy and momentum conservation
with the final deuteron state and the less likely is
the formation probability. With regards to the R,
dependence of Eqs. (37) and (41), an increase in
R, results in a reduction of the momentum trans-
fer from the mean field, since gR,~1, and, in
turn, a reduction in the formation probability.

By contrast, an equilibrium approach gives an
opposite dependence on binding energy due to an
increase in the internal partition function with in-
creasing binding energy. However, the dependence
on the traditional Boltzmann factor in binding en-
ergy is greatly reduced by the high temperatures
involved. On the other hand, the qualitative vol-
ume dependence of both models is the same but
for different reasons. In a thermodynamic model,
the density of states increases with increasing V,
so that the entropy of the system will increase
when composite structures are converted into their
constituents when the volume of the thermodynamic
region is increased. In a final state interaction
model, the momentum transfer necessary for the
coalescence decreases with increasing volume.

Finally, the Butler-Pearson model seems ap-
propriate for proton collisions which produce only
a small perturbation on the target system so that
an optical potential or mean field is still a mean-
ingful concept. In high energy heavy-ion collisions,

r
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which produce explosive events, the target is not
so simply perturbed and the exclusion principle,
so important in establishing a mean field, no long-
er plays such a fundamental role in the dynamics
of the collision between nucleons. Therefore, in
explosive central collisions a completely different
framework for the description of such events is
necessary.

F. Other thermodynamic variables: Law of partial pressures,
entropy, and equipartition of energy

Some of the other thermodynamic quantities of
interest are the pressure P, entropy S, and energy
E which are now considered. The equation of state
follows from

19 <}
P=-|— =kT—Ing , (42)
<a V> T (ug) 3V
where Q is the thermodynamic potential and £ the
Gibbs canonical partition function of Sec. Il A.

Performing the above operation, the law of par-
tial pressures follows:

PV= D N&T. (43)
s
Similarly the entropy follows from S
= -(BQ/BT)V,{‘JS} .
_ gV 4
S Z kNIn N_‘m‘*sxrs(s)“Nsk . (44)

The g, (s) is the spin degeneracy factor for specie
S. Equation (44) is just the Sackur-Tetrode law
for a system composed of different species. The
constraint imposed by Eq. (28), which leads to
connections between the different species through
the law of mass action, is such as to make the en-
tropy a maximum since the equilibrium thermo-
dynamic state is just the state of maximum en-
tropy. In fact, Eq. (29) can be derived from S
given by Eq. (44), by requiring S to be a maxi-
mum.

The total mean energy E can be obtained from a
Legendre transformation E 5§ +ST +2, us N

E= }; INRT =3PV . (45)

The result of this equation is just the statement of
equipartition of energy, with each degree of free-
dom having mean energy equal to 27T/2.

The expressions of Eqs. (43)—(45) show that the
system formally looks like ideal gas of noninter-
acting particles. However, interactions are in-
cluded in these expressions as shall now be shown.

G. Equation of state and the virial expression

The equation of state of Eq. (43) is just the ideal
gas result for each specie. Since the actual gas is

nonideal, the equation of state should obey the
virial expansion

[1 +%-B(T)+<%)ZC(T)] , (46)

_ART
1%

where B(T), C(T),... are the second, third,...
virial coefficients. The A =Z +N is the total nu-
cleon number of the system. It might seem at
first thought that a contradiction has arisen since
each specie contributes as an ideal gas, but the
gas is nonideal. However, the resolution of this
apparent paradox is quite simple once it is real-
ized that collisions are responsible for the forma-
tion of composite structures and for the depart-
ures from an ideal gas law. In fact, the chemical
equilibrium imposes certain restrictions on the
number of different species so that the theory of
chemical equilibrium is ultimately related to the
virial expansion.

As an illustration of this result, consider a gas
of neutrons, protons, and metastable n-p pair cor-
relations—“deuterons.” Letting N,=N,[1,0], N,
=N,[0,1], and N,=N[1,1], and specializing to the
situation N,=N,, the law of partial pressures can
be written as

P

N N N A N,

AR N 2Yd ==k ——."-) s 417
PVkT+VkT+VkTVT< y (47
where A =N, +N, +2N,. Comparing this result with
that of the virial expression, the second virial
coefficient can be seen to be

N,
B(I)=-2F V. (48)

The ratio (N, /A®)V is obtained from the law of
mass action:
3/2
(—%}{f—"NF V= ZT Ag?8, (@) . (49)

The above results are easily generalized to the
higher coefficients in the virial expansion, with
C(T) being due to triple correlations plus binary
correlations between pairs plus nucleons, etc. In
fact, in the simplest version of the model being
discussed in this section, the third and fourth
virial coefficients are

c(n = -2&13;’—1\" Ve,
(50)
D(T) = -3% Ve

The numbers of @, *He, ¢, and d’s are obtainable
from the law of mass action, Eq. (29), coupled
with the constraint condition of Eq. (30). The re-
sults of such an evaluation have already been il-
lustrated in Fig. 2.
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It is also a useful exercise to rewrite the equa-
tion of state as

i _Na_ g Naye#Ny ALQ.)
PV—AkT(l Fi-2 3 :

(51)

An evaluation of the number of d, ¢, *He, and ‘He
nuclei results in an approximate 30-40% reduc-
tion in the pressure, for densities in the vicinity
of one-third nuclear matter, due to the attractive
correlations responsible for the bound states.

From the equation of state, the energy density
immediately follows using

e(p)===3P. (52)

The estimate used to obtain the reduction in pres-
sure due to the attractive correlations, can also
be used to obtain the increase in temperature for
a fixed excitation energy in the system. Namely,
the reduction in the degrees of freedom due to the
attractive correlations raises the temperature by
30-40%.

Finally from the energy-temperature relation-
ship, the specific heat can be calculated. The im-
portance of the specific heat, C,=(8E/dT),, is
that it relates to the change in the slopes of the in-
clusive spectra resulting from a change in the in-
cident energy of the beam. Now, at reasonably
high temperatures, the temperature dependences
of the Boltzmann factors in the internal partition
functions are not as important as the temperature
dependences of the thermal de Broglie wavelengths.
This observation then leads to the following equa-
tion for the specific heat:

C,=3Ak[1-3%pB(T) - 20°C(T)- +p°D(T)++ -] ,
(53)

where p=1i/ V. Since the nuclear force is basical-
ly attractive in the energy range considered here,
C,>3Ak/2 and AE/C,T=AT/T <(AT)yea/T. The
change in temperature of the system is less than
that of an ideal gas, with the difference going into
breaking the attractive correlations below particle
production thresholds. Above these thresholds,
energy goes into making new degrees of freedom.

In fact, the temperature may be limited if the num-

ber of degrees of freedom increases exponential-
ly.30

IV. NUCLEAR RESONANCES, CONTINUUM
CORRELATIONS, AND THE THERMODYNAMIC
PROPERTIES OF THE SYSTEM

A. Resonance and echoes

In Sec. II of this investigation, a simplified mod-
el was developed in which the structure in the con-

tinuum due to the unbound nuclear states was neg-
lected. Now an attempt will be made to incorporate
into the thermodynamic description the scatterings
of nucleons and nuclei which produce this struc-
ture. The technique to be employed has been de-
veloped by Beth and Uhlenbeck®” in their discus-
sion of the second virial coefficient and has since
been used by Belenky*® and Hagedorn®® in particle
physics in an effort to include the strong interac-
tions which produce the particle resonances into
the Fermi statistical model.®°

To incorporate this refinement into the thermo-
dynamic model the effect of such collisions on the
continuum level density must be evaluated. For
binary collisions, the change in level density due
to the structure in the continuum can be related
to changes in the phase shift due to the interac-
tion. Specifically, the wave function of a pair is
asymptotically changed by their mutual interac-
tion to sin[kr — (7 + 6,()]. Imposing the boundary
condition that the wave function vanish at »=R,
leads to the condition

ER - In+6,(k) =n;7 . (54)

The number of states per unit 2 is then changed
through the binary interaction by

dn_ 1 d5,)
de ~ m dk ’ (55)

If the interaction produces a narrow resonance
compared with T in a particular ! (or J) state,
then the internal partition function of the pair ac-
quires a contribution

(2, + e~ Bl 12T (56)

where E, is the energy and J, the angular momen-
tum of the resonance. Repulsive components of
the force also affect the level density and internal
partition function. For example, for a hard sphere
gas tand, = j,(kay)/n,(ka,), where a, is the hard
sphere radius, and

a6, _ -1
dk ~ kPalji(kay) +n2(ka,)]

Thus, both attractive and repulsive components in-
fluence the level density. An attractive resonance
produces a unit change in Adn;/dk across a reso-
nance for which the phase shift changes by 7, and
thus corresponds to an additional state. On the
other hand, an echo of a resonance,?’ for which the
phase shift decreases by 7, results in a negative
unit change in A(dn,/dk) corresponding to the loss
of a state. From Levinson’s theorem,* 6,(0)

— 6,(»)=N,;7, where N, is the number of bound
states; then fA(dn,/dk)dk changes by —N; over the
whole continuum, so that echoes of resonances
cancel the resonances and bound states in the level

(567
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density. Of course the continuum internal parti-
tion function is weighted by the Boltzmann factor:

Y @I+DERT+1) [ dOus

-E/RT
5 7 JE e dE

Zin =

(58)

and a complete cancellation does not occur owing
to the differences in location in the continuum of
the echoes and resonances and to the fact that
echoes cannot be very narrow since the rate of
descent of the phase shift is subject to Wigner’s
limit*? 46,/dk = -R.

Before proceeding to an evaluation of the effect
of resonances in equilibrium thermodynamics it is
worthwhile here to mention that resonances also
affect a dynamical nonequilibrium model for com-
posite particle formation. Specifically, they act
as stepping stones for the formation of nuclei, with
a well known example being the formation of *C in
red giant stars through the triple @ process which
proceeds via an ®Be resonance to an excited level
il’l 12C'43

B. Correction to the nuclear gas of nucleons

Once the behavior of the phase shifts is known,
the results of the previous section allow an eval-
uation of the partition function. The most thorough-
ly investigated situation is that of the nucleon-nu-

3
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FIG. 4. Nucleon-nucleon phase shift parameters as a
function of energy from Ref. 44.

cleon interaction where a detailed phase shift anal-
ysis has been done. Figure 4 illustrates the de-
pendence of these phase shifts on energy.** The
results of Eq. (58) then allow an evaluation of the
contribution of the continuum interaction to the in-
ternal partition function. In Table II, a summary
of the results of an evaluation of Eq. (58) is given
for the case kT =40 MeV.

The following conclusions can be drawn from the
results of Table II. First, the /=0, $=0, T=1 in-
teraction contributes it as much to Zj, as the (=0,
S=0, T=0 bound state whose internal partition
function is ~2S +1=3. The large reduction of the
virtual state is accounted for by the spin degeneracy
factor and by the empirical result that the phase
shift only goes to 60° and then declines. Secondly,
the sum of the p-state contributions in the T=1
state is small because of the Serber nature of the
force. Thirdly, the T =0 phase shift contribution
is dominated by the decline of the /=0, S=1 phase
shift—the “echo” of the deuteron bound state. The
results of the above evaluation also allow an esti-
mate of the number of proton-proton attractive
pair correlations to the number of neutron-proton
attractive pair correlations:

Ny ('S) 1

N,05) "§° (59)

Thus, the attractive component of the nucleon-nu-
cleon interaction predominately makes n-p pair
correlations rather than p-p pair correlations.

C. Corrections to the nuclear gas of nucleons plus nuclei

The effect of the excited unbound states of the
heavier composites (f,*He, “He, °*He, °Li,...) can
also be included by use again of Eq. (58). The
resonant states of these nuclei have natural life-
times that are, in many cases, ~107%! sec. This
natural lifetime is long compared to the lifetime
of the emitting thermodynamic region ~5x107>
sec. Therefore, these excited nuclei will leave
the equilibrium region intact and naturally decay
afterwards, mostly by particle emission, into
light nuclei. This natural decay then leads to final

TABLE II. Contributions to the internal partition
function.

T=1 T=0

Phase shift Zin Phase shift Zit
1S, +0.2 35, -1.66
3p, +0.4 ip, -0.12
3P, —0.12 D, —~0.15
3p, +0.14 D, +0.23
ip, +0.05 ®D, +0.05
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rearrangements in the spectrum of emitted frag-
ments long after the strong interactions have
ceased between the different components of the
system.

Before proceeding with a more quantitative dis-
cussion, one note of precaution should be stated.
This concern arises from the results of Sec. IID
and the remarks made in the last paragraph of
Sec. IIID. Since the composite nuclei are finite
size structures interacting in a region of space
whose dimension is increasing due to the expan-
sion, the point at which the system stops interact-
ing for a particular correlated configuration of
nucleons is related to the finite dimensions of this
structure; these remarks are quantitatively ex-
pressed in the relationship of Eq. (22). Now, for
a loosely correlated structure, the system will be
interacting even at a late stage of the expansion
when the density is low so that its concentration
is greatly reduced and the possibility of it being

TABLE III. Levels and their contribution to the in-
ternal partition function. Level (4) of He is included
on the basis of chirge symmetry even though there is
no clear indication for it. The deuteron results are ob-
tained from Sec. IVC.

Nucleus Level Exc. energy Spin Decay modes Zj,

d 1 0(—2.2) 1*  gs. 3.15
2 ~2.2 0" pun 0.2

t 0(-8.48) 17 gs. 2.47

3He 0(=7.72) I gs. 2.43

‘He 1 0(—28) 0*  g.s. 2.01

2 20.1 0 p 1.22

3 21.1 0" p,m 1.19

4 22.1 2" 5.81

5 25.5 0*  d,p.n 1.05

6 26.4 2= p,n 5.25

7 27.4 1 p,n,v 3.16

8 29.5 0t pym,y 0.95

9 30.5 (?0) p,n,d 0.90

10 31.0 1~ p,n.d 2.78

SHe 1 0(+0.89) T o 3.91

2 4 £ na 1.81

3 16.76 ¥ y,n,d,t,e 2.62

@) 18 3 1.24

5 19.2 3 n,d,t,a 2.36

SLi 1 0(+1.87) 3 pa 3.80

2 4 L pa 1.72

3 16.66 2 v,p,d,’He,a 2.55

4 18 3 v,p,d,%He,a 1.21

5 20 3+ p,d,*He,a 231

T T T T
Model including resonances
— — — Bound states only e

3.0

2.0

Number
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3
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FIG. 5. The number of various species in the ther-
modynamic volume as a function of this volume. The
evaluation is for 2Ty=40 MeV and Z=30, N=30. The
solid line includes the resonances listed in Table III,
while the dotted line is an evaluation including only
bound states.

in thermal equilibrium might also be questioned.
Such structures might then best be left out of the
state sums or partition function.*®

To proceed on a more quantitative basis, an
evaluation of Eq. (58) is necessary. Since detailed
phase shift analyses are not available for the scat-
tering of nucleons and light nuclei off other light
nuclei, only a somewhat approximate procedure
can be developed. Moreover, the contribution of
resonant states is subject to the reservations of
the last paragraph. Nevertheless, it is of some
interest to see what effect the continuum has with-
in some approximate scheme. Here, the procedure
taken is to include the observed low lying reso-
nances that have been reported in Refs. 46—48.
Table III lists these observed levels and the in-
ternal partition function for each level assuming
that each resonance came from a phase shift which
changed by 7. A temperature of #T =40 MeV was
used.

The results of Eqs. (29) and (30) can then be
used to arrive at the new distributions of nuclear
species in the gas. Figure 5 illustrates the re-
sults of the evaluation with these resonances in-
cluded; also shown are the results of the simpli-
fied model of Sec. III which does not include the
contribution of any of these resonances. The fol-
lowing features of the figure should be noted. The
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number of “bound” « particles, tritons, and He
is reduced from the simplified model; but, after
natural decay of the excited states, the final num-
ber of ¢, *He, and *He somewhat exceeds the re-
sults of the simplified model. However, the two
results are within ~20% of each other.

In a model with resonances included, the mo-
mentum space density of a nuclear composite has
contributions from its bound states and from the
decay of resonant states of heavier nuclei. As a
concrete example, the momentum space density
of a particles has its primary bound state con-
tribution given by

d®Ny(*He) N (*He)A %e™ % /*T
a@aP, (2mm, kT)*"?

(60)

and its secondary contribution from resonant states
A in ®He and °Li given by (neglecting small recoil
corrections)

d°Ng(*He) _ ) I'\(*He,n) d°N,\(°He)
dF, X Ty r P,
I',(*He, p) d*N (L)
J 61
¥ ; T,, d&P," (61
The
d°Ny\(PHe)  Ny(PHe)A Y2~ #scn/*T (62)
a#p, 21m, kTV"? ’

with a similar result for ’Li. The A,=# and the
I'\(*He,n)/T r is the branching ratio for the state
A to decay into *He +n. The NM[Z,N] are deter-
mined by a procedure already described in the
text.

The momentum space density of « particles will
be the sum of Eqs. (60) and (61). The following
feature of the latter contribution is worth noting.
Since equipartition of energy is assumed to hold,
each excitation of the system has 327/2 mean en-
ergy. Heavier nuclei then have mean speeds that
are slower than the lighter ones they naturally de-
cay into so that the resonant state contribution af-
fects the lower energy region of the inclusive
spectrum.

A generalization of the results of Eqs. (60) and
(61) to all possible resonant deexcitations implies
a multicomponent structure to the spectrum aris-
ing from the difference in the exponential Boltz-
mann behavior of the primary and secondary com-
ponents. Noting that the exponential behavior of
the secondary part can be rewritten as A €,/kT
=A €,/kT*, with T*=A,T/A,, it then follows that
the slope in a log plot of the momentum space den-
sity is steeper for the secondary contribution than
for the primary. The A, is the nucleon number of
the primary nucleus and A the corresponding
number for the secondary. Moreover, since the

secondary contribution affects the lower energy
part of the spectrum, the curvature of the spec-
trum in log plots would be upward from such ef-
fects.

Because.of the approximate nature of the eval-
uations presented and the reservations already
mentioned about including resonances of loosely
bound structures in a thermodynamic description,
the results of this section are only meant to be
schematic.

V. SUMMARY AND CONCLUSIONS

This investigation concerned itself with the
question of the formation of composite particles
seen in relativistic heavy-ion collisions. The de-
scription developed is analogous to that used in
describing the formation of nuclei in the expansion
of an isotropic and homogeneous universe and in
exploding supermassive stars. The model proposed
is then one in which composite structures are
formed through a complex set of reactions in the
space-time evolution of a rapidly expanding sys-
tem.

The dynamical process for the formation of nu-
clei in relativistic heavy-ion collisions is studied
and compared with those encountered in a big bang
model of nucleosynthesis. It is shown that the
scale change in the time coordinate between the
two pictures is not compensated by the correspond-
ing scale change in the position coordinate or den-
sity so that the details of the nature of the reactions
are quite different in the two cases. Moreover,
within the framework of the model presented, it is
found that reaction rates may initially be fast com-
pared with expansion time scales. If so, a thermo-
dynamic equilibrium will be established for a brief
period of time in the space-time expansion of the
system. Then, as a working idealization, we have
replaced the complicated space-time evolution of
the system with a much simpler one in which the
system expands through a set of quasiequilibrium
states until a volume or density is reached after
which collisions cease. A simple argument is then
presented showing that this volume or density for
light nuclei may be related to the finite size of the
correlated structures of the interacting system
which eventually become the stable composite nu-
clei in the transition to the noninteracting stage.

Next, starting with the assumption that the aver-
age behavior of the system of nucleons and nuclei
produced in a central collision of two relativistic
heavy ions closely approximates a thermodynamic
system in equilibrium, the simple and elegant
mathematical framework of equilibrium thermo-
dynamics is then used to investigate these col-
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lisions. A simplified model is first proposed for
which the Gibbs grand canonical partition function
is easily evaluated. In this model, interactions
are included by imposing the constraints of ther-
mal and chemical equilibrium between nucleons
and nuclei in their bound states. The ranges of
the interactions are also accounted for by the size
of the thermodynamic volume where equilibrium is
established. In this equilibrium model, the ob-
served properties of the composite particles re-
flect a “frozen in” equilibrium distribution of the
system.

The predictions of the model are then presented.
An important result found is that the space-time
evolution of the system can be obtained from the
composite particle inclusive cross sections. This
information is provided by an advantage of high
energy heavy-ion collisions in that a significant
fraction of deuterons, tritons, and helium nuclei,
along with protons and pions, are seen. The size
of the emitting region is then obtained without re-
sorting to any Hanbury-Brown-Twiss correlation
measurement, as is necessary in p-p collisions.

Another important prediction of the model is that
composite particle cross sections should be char-
acterized by Maxwell-Boltzmann distributions in
some rest system. Recent data support this con-
clusion for light fragments of 4, {, *He, and “He.
Heavier fragments from Li to F can also be de-
scribed in terms of such distributions but there
appear to be disagreements between various ex-
tracted parameters and the interpretation and im-
plications of them.

The effect of attractive correlations, responsible
for composite structures, on the equation of state
and on the energy-temperature relationship are
presented. Also discussed in some detail are the
effects of the unbound nuclear states on the prop-
erties of the system and its spectrum of particles.
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APPENDIX A

1. Thermodynamic expressions with relativity and statistics

The basic thermodynamic properties of a sys-
tem, including the effects of relativity and sta-
tistics, are summarized here. The grand cano-
nical partition function for particles obeying Bose-

Einstein statistics (pions, deuterons, a particles)
is

1
QBE=TT,- -l‘_—Z—e_—Be—l , (Al)

and for particles obeying Fermi-Dirac statistics
(protons, neutrons, tritions,*He) is

{p=T;(1+Z e~ Bei) | (A2)

The i runs over all quantum states. The Z= ee“,
where p is the chemical potential and B=1/kT.
The energy €; = (P;?C?* +M?C*)"2. From ¢ all ther-
modynamic properties follow.

The mean number of particles in state 7 is given
by the well known expressions

1
exp[(€; — u)/RT]+1

wir= (A3)

with the plus sign for Fermi-Dirac statistics and
the minus sign for Bose-Einstein statistics. The
number of states in an element of phase space is

3
a Dphase-space™ V;ilgp‘ (2S5 +1) . (A4)

The density can then be written as

N 2S8+1 \
V" 2 M?CkT
i+l .2
2 Bk, (u ) | (45)
n

with the minus sign now for Fermi-Dirac particles
and the plus sign for Bose-Einstein particles. The
K is a modified Bessel function. The equation of
state follows from PV=~kT In® and is therefore

_25+1 2 2
PV= 55 VMPC(kT)
n+1 2
x Z: (——-22 en (W ETK, (n ————]Z; ) . (AB)

Similarly, the mean energy E is derived from
-31n¢ /3B and is

_ 25+l o
E= 5 VMC*T

n+1
X Z (——-—;)" e"(WRT (3K + 1K) . (A7)
n

The E, here, includes the rest mass energy

N Mc?., The Bessel functions have the same argu-
ment as in Eq. (A6). Finally, the entropy S fol-
lows from S=(E+PV- uN)/T. The sum over n
gives the corrections due to statistics, and the
presence of Bessel functions in the expressions
are a result of the relativistic energy-momentum
relationship. While the above relationships are
exact, they are only useful when the degree of de-
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generacy is low (high temperature, low density)
so that the sums appearing in Eqs. (A5)—(A7) con-
verge quickly. Various limiting cases are of in-
terest and will now be summarized.

2. Nonrelativistic but with statistics

The nonrelativistic limit of the above equations
is obtained in the approximation &=nMc?/kT ~ .
In this limit the Bessel function has the following
asymptotic expansion:

N l 1/2 _r
K, (§) <2£) e

y-1 (y=-1)(v-9) .
><<1+ 8z + 3T(BEF +

SE

where ¥ =4/°. In this limit, the thermodynamic
properties for a Fermi-Dirac gas are as follows.
For the density:

N 1
v =(25+1) Ar Jarz s (A9)
where
n Z"
f3/2= Z (-1 lna/z , (A10)

with Z=e8%, 1=y~ Mc®and \,*=h3/(21MET)*/2,
For the mean energy:

|4
E=(25+1) 3.3 %kas/z +NMc? , (A11)
T
with
ner 2"
fop= 22 (=D ‘;ﬁz‘ . (A12)

n

The equation of state is simply related to the en-
ergy:

PV=%(E-NMc?). (A13)
The corresponding results for Bose-Einstein par-

ticles are obtainable from Eqs. (A9), (A10), and
(A13) when the f,, is replaced by g, where

Em= E ;Z;. . (A14)

3. Nonrelativistic and with expansion in nondegeneracy
When the f,, and g, are expanded in terms of Z,

the lowest order corrections due to statistics fol-
low. Specifically, for Fermi-Dirac particles

N (25 +1) VA VA
Working to order Z%, the above equation can be

solved for Z in terms of p:
_ PAS 1 <P/\r3 )2
2= 95411373 \25+1) (A16)
The first order correction to the equation of state
is then

P 1 pAs
kT - (1*5'5/—2 2311"')’ (A1D)

with the plus sign for Fermi-Dirac particles which
“repel” each other and increase the pressure and
the minus sign for Bose-Einstein particles which
“attract” each other and lower the pressure. For
the densities and temperatures of interest p~% nu-
clear matter and 27T ~ 50 MeV, the second term is
~3% of the first for spin 3 fermions, ~6% of the
leading term for spin 0 bosons, and 2% for spin 1
bosons. The corrections to the energy follow from
Egs. (A13) and (A17) and are thus also small.
However, doubling the density and reducing the
temperature by 2 would multiply these percent-
ages by a factor of 5.6.

4. Ultrarelativistic limit with statistics

The thermodynamic properties in the ultrarela-
tivistic limit with the effects of statistics included
are easily derived from the following limit of the
Bessel functions:

Kr/(g)"illluv) ’ g"o ) (A18)
633

where I'(v) = (v = 1). Specifically, the density fol-
lows from

2S +1 R ‘n(u/kT)
p= —ﬂ-z—(;—c)_s (RT)? Z (F)"+t 57‘- s (A19)
n
while the energy is

n+1
E:G%V(kTV‘ Z (L:,‘ WD (A20)
The pressure is simply related to the energy density
by P=E/3V. The above equations reduce to well
known results when p =0. For massive particles,
the ultrarelativistic limit has not been reached and
may never be reached if the temperature is limit-
ed at kT ~160 MeV.3°
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