Mass measurements of the proton-rich nuclei ⁵⁰Fe and ⁵⁴Ni[†]

R. E. Tribble,* J. D. Cossairt, D. P. May, and R. A. Kenefick

Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843 (Received 6 December 1976)

The reactions ⁵⁴Fe(⁴He,⁸He)⁵⁰Fe and ⁵⁸Ni(⁴He,⁸He)⁵⁴Ni have been observed at an incident α energy of 110 MeV. The reaction Q values are found to be $Q(^{50}Fe) = -50.95 \pm 0.06$ MeV and $Q(^{54}Ni) = -50.19 \pm 0.05$ MeV. The experiments provide the first observation and subsequent mass measurement of the proton-rich nuclei ⁵⁰Fe and ⁵⁴Ni.

 $\begin{bmatrix} \text{NUCLEAR REACTIONS} & {}^{54}\text{Fe}({}^{4}\text{He}, {}^{8}\text{He}) \text{ and } {}^{54}\text{Ni}({}^{4}\text{He}, {}^{8}\text{He}). & \text{Measured reaction} \\ Q \text{ values and mass excesses of } {}^{50}\text{Fe and } {}^{54}\text{Ni}. \end{bmatrix}$

The (⁴He, ⁸He) reaction has proven to be quite useful for obtaining masses of proton-rich nuclei. To date, such mass measurements have been confined to $T_{z} = -2$ nuclei with A < 40.¹⁻⁴ We report here the first observation and consequent mass measurement of the $T_{z} = -1$ nuclei ⁵⁰Fe and ⁵⁴Ni via the ⁵⁴Fe(⁴He, ⁸He)⁵⁰Fe and ⁵⁸Ni(⁴He, ⁸He)⁵⁴Ni reactions. These masses extend our knowledge of proton-rich nuclei in the $f_{7/2}$ shell and provide direct tests of the mass formulas used to predict the proton-rich limit of β stability. These masses also allow a determination of the T = 1 Coulomb energies in both A = 50 and A = 54.

The experiments were performed with energy analyzed beams of 110-MeV α particles from the Texas A & M University 88-inch cyclotron. ⁸He spectra were obtained in the focal plane of an Enge split-pole magnetic spectrograph at a laboratory scattering angle of 5°. The focal plane detector consisted of a 10-cm single-wire gas proportional counter backed by a $5 - \text{cm} \times 1 - \text{cm} \times 600$ µm Si solid-state detector. Particle identification was performed by the three constraints (1) $(dE/dx)_{gas}$, (2) E_{Si} , and (3) time of flight relative to the cyclotron rf signal. Particle position was obtained by charge division performed by an online computer. Pile-up rejection was used in conjunction with the solid-state detector so that relatively high count rates could be achieved without significant loss of resolution. This detector system has proven to be quite sensitive for low cross section experiments (see e.g., Ref. 2), especially when the ⁸He particles are stopped in the solidstate detector. Thus 0.125 mm of Kapton foil was inserted as a degrader between the gas counter and the Si detector to ensure that the ⁸He's would stop.

The Fe and Ni targets were nominally 2-mg/cm^2 rolled foils, isotopically enriched to 96.7% ⁵⁴Fe and 99.9% ⁵⁸Ni, respectively. Actual target thicknesses were obtained by weighing and by ²⁴¹Am α energy loss measurements, which agreed to

about 10%. The α energy loss was determined both before and after the experiments in order to check for any change in the target composition due to surface contamination.

The incident beam energy was determined via the momentum matching technique⁵ by using an H_2^+ beam of the same magnetic rigidity as the incident α beam. Reaction products from ¹⁶O(p, p) ¹⁶O(g.s.) and ¹⁶O(p, d) ¹⁵O(g.s.) were observed simultaneously at a laboratory scattering angle of 20°. Thus the H₂⁺ beam was measured and correspondingly the incident α beam energy was determined to an uncertainty of 20 keV.

 α elastic scattering from either the ⁵⁴Fe or ⁵⁸Ni targer provided an initial focal plane calibration. The ⁸He magnetic rigidity was higher than that for elastic α particles, thus requiring a 4% magnetic field shift. As an additional calibration, spectra from ⁵⁴Fe(⁴He, ⁶He)⁵²Fe and ⁵⁸Ni(⁴He, ⁶He)⁵⁶Ni were obtained simultaneously with the ⁸He spectra. Although the ⁶He energy corresponded to an excitation of ~ 8 MeV in ⁵²Fe and ⁵⁶Ni, the spectra did show definite structure. In a separate experiment [but performed under the same conditions as the original (⁴He, ⁸He) reactions] the structures, which could likely consist of multiple peak excitations, were calibrated against the ¹²C $({}^{4}\text{He}, {}^{6}\text{He})^{10}\text{C(g.s.)}$ and ${}^{24}\text{Mg}({}^{4}\text{He}, {}^{6}\text{He})^{22}\text{Mg}$ ($E_{x} = 1.25$, 3.31 MeV) reactions. During this calibration, the spectrograph angle was checked by observing ${}^{12}C({}^{4}He, {}^{4}He'){}^{12}C (E_{x} = 4.44 \text{ MeV}) \text{ and } p({}^{4}He, {}^{4}He)p$ simultaneously from a Formvar target. The angle determination removed the calibration uncertainty due to different kinematic shifts for the ⁶He's from the light (A=12) and heavy (A=54, 58) mass targets. Calibrated ⁶He spectra from ⁵⁴Fe and ⁵⁸Ni are shown in Fig. 1.

From previous (⁴He, ⁸He) measurements, the cross sections to ⁵⁰Fe and ⁵⁴Ni were expected to be quite low. Therefore, the experiments were optimized to obtain enough events to be identi-

16

FIG. 1. ⁶He spectra obtained at the ⁸He magnetic field.

fiable as a peak in a 48-h experiment. Beam currents on target were typically 1.5 μ A, with < 5% pulse pile-up rejection losses. The spectrograph was operated with a 2.3-msr solid angle corresponding to an integration from 3.5° to 6.5° in θ . The target thicknesses were chosen to provide sensitivities to peak cross sections < $\frac{1}{4}$ nb/sr.

The resulting ⁸He spectra are shown in Fig. 2. We assume that the peaks in the two spectra are due to the ⁵⁴Fe and ⁵⁸Ni (⁴He, ⁸He) reactions. Background due to light contaminants such as ¹²C and ¹⁶O can be eliminated because their ground state Q values are more negative than the ⁵⁴Fe and ⁵⁸Ni Q values. Other Fe and Ni isotopes could produce background, however. In the Fe spectrum there are such background events that we attribute to the 3.3% of other Fe isotopes. It is unlikely that the peaks are background since they would represent large (15-20 nb/sr) cross sections to discrete states in the continuum.

FIG. 2. ⁸He spectra as a function of Q value.

Laboratory cross sections for the ⁵⁰Fe and ⁵⁴Ni ground states, averaged over the spectrograph solid angle, are $\sim \frac{1}{2}$ nb/sr at $\theta_{lab} = 5^{\circ}$, with up to 50% uncertainties due to statistics, beam integration, and vertical efficiency in the spectrograph focal plane.

Beam energy, focal plane calibration, scattering angle, and target thicknesses determined the Q-value scales shown in Fig. 2. The resulting Q values and mass excesses (all in MeV) are $Q(^{50}Fe) = -50.95 \pm 0.06$, $M(^{50}Fe) = -34.48 \pm 0.06$ and $Q(^{54}Ni) = -50.19 \pm 0.05, M(^{54}Ni) = -39.21 \pm 0.05$, with the mass results based on a ⁸He mass excess of 31.601±0.013 MeV.⁶ Mass uncertainties are dominated by centroid statistical uncertainty in both cases, although background in the ⁵⁰Fe spectrum contributes an additional uncertainty in that mass determination. The centroid uncertainties, including background, are 35-keV ⁵⁴Ni and 50-keV ⁵⁰Fe. The other significant uncertainties are the ⁸He mass-13 keV, and the focal plane calibration -18 keV. Uncertainties associated with target thickness, beam energy, and scattering angle are

TABLE I. Properties of ⁵⁰Fe and ⁵⁴Ni. All entries are in MeV.

Nuclide	Expt.	Mass ex Garvey and Kelson ^a	ccess Coulomb energy ^b	S _{1p}	S2p	Coulomb energy	
⁵⁰ Fe	-34.48 ± 0.06	-34.50	-34.472 ± 0.013	4.16	6.24	8.93 ± 0.06	
⁵⁴ Ni	-39.21 ± 0.05	-39.27	-39.296 ± 0.013	3.85	5.46	9.58 ± 0.05	

^aReference 7.

^bReference 8.

small since either the ⁵⁴Fe(⁴He, ⁶He)⁵²Fe or ⁵⁸Ni (⁴He, ⁶He)⁵⁶Ni reactions are used to calibrate the focal plane. The spectra in Fig. 2 indicate possible excited states in both nuclei, but an apparent excited state in ⁵⁴Ni is cut off by the edge of the detector active region. In ⁵⁰Fe we definitely observe an excited state at $E_x = 0.81\pm0.08$ MeV ($Q = -51.00\pm0.06$ MeV).

The new masses are compared with the symmetric Garvey-Kelson mass predictions⁷ and a recent Coulomb energy prediction⁸ in Table I. In both cases the predictions are nearly the same and are in good agreement with the experimental results. Also included in the table are the T = 1 Coulomb energies. These new results are based on T = 1 assignments for the ground states of the $T_g = 0$ nuclei ⁵⁰Mn and ⁵⁴Co.⁹ Finally, the separa-

- [†]Supported in part by the National Science Foundation. *Alfred P. Sloan Fellow.
- ¹R. G. H. Robertson, S. Martin, W. R. Falk, D. Ingham, and A. Djaloeis, Phys. Rev. Lett. <u>32</u>, 1207 (1974).
- ²R. E. Tribble, R. A. Kenefick, and \overline{R} . L. Spross, Phys. Rev. C 13, 50 (1976).
- ³R. E. Tribble, J. D. Cossairt, and R. A. Kenefick, Phys. Lett. 61B, 353 (1976).
- ⁴R. E. Tribble, J. D. Cossairt, and R. A. Kenefick (unpublished).
- ⁵G. F. Trentelman and E. Kashy, Nucl. Instrum. Methods 82, 304 (1970).
- ⁶R. Kouzes and W. H. Moore, Phys. Rev. C 12, 1511

tion energies for 1 and 2 proton decays are included in the table to show that both nuclei are particle stable.

The new masses allow for reasonable estimates of the β decay properties of ⁵⁰Fe and ⁵⁴Ni. The end point energies for the positron decays are $E_0({}^{50}\text{Fe}) = 7.12 \pm 0.06$ MeV and $E_0({}^{54}\text{Ni}) = 7.77 \pm 0.05$ MeV. These energies are somewhat greater than the proton separation energies in ⁵⁰Mn (4.53 MeV) and ⁵⁴Co (4.36 MeV) and hence both ⁵⁰Fe and ⁵⁴Ni could be delayed proton emitters. However, such decays would not be competitive with the fast superallowed 0⁺ \rightarrow 0⁺ β transition. Assuming 100% branching ratios for the superallowed decays, and also an *ft* of 3090 sec,⁹ the predicted halflives would be $t_{1/2}({}^{50}\text{Fe}) = 200$ ms and $t_{1/2}({}^{54}\text{Ni})$ = 140 ms.

(1975); J. W. Jäneke, F. D. Becchetti, L. Chua, and A. Vander Molen, *ibid*. 11, 2114 (1975); J. Cerny,

- N. A. Jelley, D. L. Hendrie, C. F. Maguire, J. Mahoney, D. K. Scott, and R. B. Weisenmiller, *ibid*. <u>10</u>, 2654 (1974).
- ⁷D. Mueller, E. Kashy, W. Benenson, and H. Nann, Phys. Rev. C <u>12</u>, 51 (1975); E. Kashy, private communication.
- ⁸R. Sherr, private communication (unpublished).
- ⁹J. C. Hardy, G. C. Ball, J. S. Geiger, R. L. Graham, J. A. Macdonald, and H. Schmeing, Phys. Rev. Lett. 33, 320 (1974).