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Inelastic scattering is a source of much useful information about core polarization effects in nuclei near closed
shells. Although there have been many theoretical treatments of core polarization effects reported in the
literature, the results of these calculations have rarely been applied to the interpretation of inelastic scattering
data. In the present paper we review the microscopic models for the treatment of inelastic proton and electron

scattering and the microscopic models for the treatment of core polarization. Estimates are made of core
excited admixtures in the wave functions for low-lying states in "Ca, ' Ti, ' Y, ' Zr, ' 'Pb, and ' 'Bi. The
resulting wave functions are used to calculate theoretical {p,p') cross sections and {e,e') form factors for
comparison with available experimental data. "Realistic" 6 matrix interactions are used as the starting point
in both the structure and the (p, p') calculations. In the structure calculations the interaction is modified by
means of a "bootstrap" prescription to account for important long-range core correlations and in the (p, p')
calculations it is modified by the addition of an imaginary component. It is concluded that the overall features
of the experimental data can be understood from these calculations.

NUCLEAR STRUCTURE, NUCLEAR REACTIONS {p,p') and (e, e' I; nuclei near
closed shells; microscopic model for core polarization; calculated o'(0) and I (q).

I. INTRODUCTION

The concept of core polarization is quite well
known in the shell model interpretation of nuclei
in the vicinity of closed shells. In the shell model
a nuclear state is described in a restricted con-
figuration space which presumably contains the
bulk of its wave function, but not al. l its significant
components. This restricted configuration space,
commonly called the model space, usually con-
sists of a few valence particies (hotes) distributed
among a small number of shell model orbitals out-
side (inside) an inert closed shell core. The term
core polarization is generally associated with ef-
fects which are due to wave function admixtures
not in the model space. The name arises because
these admixtures most often mill consist of core-
excited configurations. Core polarization can be
taken into account by defining effective operators
in the model space which may be calculated by
means of perturbation theory.

These ideas first appeared in the literature
about 20 years ago" when it was first noted that
there were discrepancies between the predictions
of the simple shell model and the experimental val-
ues for nuclear magnetic moments, quadrupole
moments, y-transition rates, etc. Two different
models were proposed at this time. One is a hy-
brid model in which the core is treated as a liquid
drop which can be set into oscillation by interac-
tion with the extracore nucleons. ' The other is a

compl. etely microscopic model' in which the core
is considered to be an assemblage of nucleons-
any of which might be raised to higher, unoccu-
piedlevelsasa result of the two-body forces which
coupl. e them to the valence nucleons.

In recent times this microscopic model has been
pursued in considerably greater depth. The major
impetus here has been the work of Brown and col-
laborators' ' whose purpose was to gain an under-
standing of the properties of finite nuclei using
"realistic*' forces, i.e. , interactions which can
be derived directly from the free two-nucleon po-
tential. As the nucleon-nucleon interaction is
strong and singul. ar, the first step in this approach
is to truncate to a large shell model basis by ap-
plying Brueckner Hartree-Fock theory to get rid
of the short range two-nucl. eon correlations and

replace the singular interaction by a smooth well-
behaved one, namely, the bare G matrix. The
second step is to truncate to the model space and
to renormalize the bare G matrix to account for
core polarization as described in the first para-
graph above. The renormalized G matrix is the
shell model effective interaction.

Kuo and Brown" have made a systematic study
of nuclei with "0, "Ca, "Ca, Ni, "Sr, and

Pb cores using second order perturbation the-
ory in renormalizing the bare G matrix. They
find that core polarization gives rise to a strong
pairing effect which is the major feature of the
observed spectra. Although the results of these
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calculations are quite impressive, attempts' to
extend the perturbative treatment to higher orders
have not met with the same success and the final
status of core pol. arization and the effective inter-
action is still an open question. A similar situa-
tion prevails in regard to associated efforts" to
calculate nuclear magnetic moments, quadrupole
moments, and quadrupole transition rates. Low-
est order perturbation theory provides a reason-
abl. e qualitative estimate of these effects, but

there are still many ambiguities in the interpreta-
tion of the results of calculations which include
higher order contributions. Much of this work
has been reviewed recently by Barrett and Kir-
son "

The purpose of the present paper is to present
the results of calculations, similar to those of
Ref. 10, but applied to the problem of inelastic
scattering. In particular, we consider inelastic
electron scattering and inelastic proton scatter-
ing. Inelastic proton scattering at energies below
100 MeV is interesting, because the interaction
between the incident proton and the bound nucle-
ons is quite similar to the interaction between
bound nucleons, i.e. , the bare G matrix. "'" Elec-
tron scattering is primarily sensitive to proton ex-
citations in the target nucleus while proton scatter-
ing is most sensitive to neutron excitations. " By
comparing results for these two reactions a mea-
sure of both the proton and neutron components of
the nuclear wave functions is obtained. In addi-
tion, inel. astic scattering provides information
about core polarization effects in transitions re-
quiring large angular momentum transfer. Cross
sections have been measured for transitions where
there are up to 11 units of angular momentum
transferred. This is to be contrasted with low

momentum electromagnetic data which are essen-
tially restricted to dipole, quadrupole, and some
octupole phenomena.

The first attempt at treating core polarization
in inelastic proton scattering was made by Love
and Satchler. " They assume a hydrodynamical
description of the core and showed that core po-
larization can give a l.arge, even dominant, con-
tribution to the cross section. The main purpose
of the present paper is to show that the major fea-
tures of inelastic scattering from nuclei near
closed shells can be qualitatively understood in

completely microscopic calculations based on
realistic interactions. In the cal.culations, core
excited admixtures in the nuclear wave functions
are estimated using lowest order perturbation
theory and a "bootstrap" prescription which ac-
counts for long- range core correlations. Agassi
and Schaeffer" have previously made a similar
but considerably more limited study of these same

effects. We al.so note that some results obtained
with wave functions from the present paper have
previously been reported elsewhere. '7'

In the next section of this paper we give a brief
description of the theoretical treatment of inelas-
tic proton and inelastic electron scattering. We
review the theory of effective operators and de-
scribe our calculations in Sec. III. The results
of the calculations are discussed in Sec. IV and

Sec. V contains the conclusions.

II. INELASTK SCATTERING

A. Inelastic proton scattering

1. Microscopic model

In the microscopic model proton-nucleus scatter-
ing is described in terms of a projectile-target
interaction which has the form

where t;~ is a two-body force acting between the
projectile and the ith target nucleon. The two-
body force ti~ has both real and imaginary parts,
because, even in the most elaborate of reaction
calculations, only a few of the allowed channels
are treated explicitly. In principle, ti~ can be
derived directly from the free two-nucleon poten-
tial. Such a calcul. ation is not easy; however, as
it requires the treatment of the repulsive hard
cores which appear in the free two-nucleon poten-
tial, combined with an explicit treatment of the ex-
cluded reaction channels.

Although a program of this type has not been
carried out in detail, a reasonable prescription
for t;„applicable in the energy region below 100
MeV, has been developed in recent years. "" It
is based on the assumptions that the real part of
t;~ is not too different from the bound state G ma-
trix and that the effects of the excluded reaction
channels can be estimated perturbatively or
treated phenomenologically. The first assumption
has been tested in several calculations. " " At-
tempts to estimate the effect of the exct.uded reac-
tion channels have, so far, been restricted to the
case of elastic scattering. "" Satchler has pro-
posed a method" whereby the imaginary part of
t;~ for inelastic scattering calculations can be in-
ferred from the imaginary part of the phenomeno-
logical optical potential for elastic scattering.
This method has proved to be useful in several
calculations. ""'" Additional comments con-
cerning this prescription for t;~ may be found in
Ref. 13.

Another problem which is encountered in any
attempt to treat proton-nucleus scattering in a
microscopic model is the indistinguishability of
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the incident proton and the target nucleons. In

this situation the Pauli principle requires that the
wave function for the projecti, le-target system be
completely antisymmetrizedwhich in turn gives
rise to "knock-on" exchange amplitudes in the
transition matrix elements. These are nonlocal
in the projectile coordinate and they are quite
important, particularly in the case of inelastic
transitions. "'""'"Computer codes are avail-
able which allow the inclusion of these exchange
amplitudes and their properties have been studied
in some detail. "'"" In this work we include
these terms with a zero-range approximation de-
veloped previousl. y.""

2. Interaction

t";,=g;, =gl'„(r(,) +g'„(r&p)u; o, (3)

with q =P or n as i is a proton or neutron. The
expression for the radial. functions appearing in
Eq. (3) have been given elsewhere"" "and will
not be repeated here. For orientation we note that

gP =~gyl( =ega =-3ggf

with all components but g~~ being attractive.
We neglect the central interaction in odd states.

This has been included in some calculations by
fitting a regul. ar functional. form to the low energy
nucleon-nucleon I'-wave phase shifts"'" and its
effect is not l.arge. We do not include possible
spin-orbit and tensor components in t;&. The prop-
erties of these noncentral interaction components
have been discussed in detail elsewhere"" and

are only of secondary importance for most of the
transitions considered in this paper.

For t;p we foll. ow Ref, 20 and argue that the
imaginary part of the optical potential for elastic
scattering is given by

U, (r,) =&g.s. l g t;',
~ g.s.&+exchange terms. (5)

In the present calculations we assume t~~ to be
given by

(2)

where R and I denote real and imaginary, respec-
tively.

We take t;~ to be the l.ong-range part of the
Hamada-Johnston (HJ) potential"'"''" with the
closure approximation to the second order tensor
contribution. We assume a 1.05 fm separation dis-
tance and a closure energy denominator of 220
MeV. This is a local, even state central interac-
tion which can be written

p„= (N(Z) p, ,

we obtain

(8)

A. can be determined by comparing directly U& and

p~ which are available from phenomenological
analyses of elastic proton and el.ectron scattering
data. As A.» and A~ cannot be determined separ-
ately from the data, we make the ansatz that A.»
and A~ have the same radial shape and that their
strengths are in the same ratio as the volume in-
tegrals of the corresponding components of t;~,
i.e. ,

A~ = &A». (10)

For the long-range part of the HJ potential Q

= 2.58.'
In the above paragraph it has been assumed that

the imaginary part of the projectile-target interac-
tion for inelastic scattering is proportional to that
for elastic scattering. It has been argued" that
the various excluded channels contribute coherent-
ly to the imaginary part of the optical potential
for elastic scattering, but that the separate con-
tributions interfere to some degree in the case of
an inelastic excitation. This means that t, for
elastic scattering should be greater than t;, for in-
elastic scattering. With this argument in mind we
simply point out that the prescription, outl. ined
above gives, in all probability, an upper limit on

t;~ for inelastic transitions. We also mention that
the assumption that n = 2.58 in Eq. (10} is tanta-
mount to assuming that excluded channel. s which
favor neutron excitation, e.g. , (p, p') and (p, d),
are more important than those which favor proton
excitation, e.g. , (P, 2P). Although this does not
seem unreasonable, this point has not been inves-
tigated in detail and could, in fact, be wrong. For-
tunately, the results to be presented are not crit-
ically dependent on this assumption.

3. Distorted wave approximation

The differential cross section for inelastic pro-
ton scattering can be written as follows

the two terms on the right of Eq. (5) are equal and

U (r ) = 2A (r )p (r }+ 2A (r )p„(r ),
where p~ and p„are the ground state proton and

neutron density functions. With the additional
assumption that

With the assumption that

(';, =A (r;)5(r; -r, ) (q=p, n) (6)

dQ 2vk' k, 2(2J;+1) ~
where p, is the reduced mass of the projectile-tar-
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get system, k& and k; are the final and initial rela-
tive wave numbers, J,. is the initial spin of the tar-
get, T~, is the transition amplitude, and the sum
is over the initial and final projections of the pro-
jectile and target. In the distorted wave approxi-
mation the transition amplitude is given by Tf)= Xf'* F~) f V i g' F~)d'rp, (15)

The essential point of the preceding development
is that inelastic proton scattering cross sections
can be understood reasonably well in local dis-
torted wave calculations, that is

xy'* &~~ f «&x&' &I,H'&I,

+ exchange terms, (12)

where the )I's are distorted waves and Ii) and
~ f)

are the initial. and final states of the target. The
first term in this equation is the direct ampl. itude
and the second is the knock-on exchange ampli-
tude. %'ith the approximation of Refs. 12 and 24,
the exchange terms can be included by replacing
V in the first term of Eq. (12) by

(13)

where

v, ,= t;", +2it';, + t";,(k~')5(r; —r,) . (14)

For the imaginary component of V the direct and

exchange amplitudes are equal because t';~, as de-
fined in Eq. (6), is assumed to be a zero-range
interaction. This accounts for the factor of 2

multiplying t;, in Eq. (14). The exchange ampli-
tude corresponding to the real part of V is given
by the last term in Eq. (14) where t;~(kz, ') is the
Fourier transform of t&~ evaluated at the wave
number associated with the laboratory energy of
the incident proton.

To understand this approximation it is sufficient
to consider the scattering of a free nucleon from
another nucleon bound in a fixed potential. well.
On the average the bound nucleon is at rest with
respect to the incident nucleon. In order for the
incident nucleon to knock out the bound nucleon
and be captured in the potential well it is necessary
that it impart all its momentum to the bound nu-
cleon. This is a very high energy argument in that
we ignore the spread of momentum components in
the wave function for the bound nucleon as well as
the effect of the binding potential; however, in
practice it is found to work quite well" even for
energies below 100 MeV.

Noting that t;~ and t;~(k~') have essentially the
same sign, we see that the direct and exchange
contributions in Eq. (14) are in phase. This is
a direct consequence of the fact that the interac-
tion being considered has only even state compo-
nents. Exchange amplitudes for odd state interac-
tions are out of phase with the direct ampl. i-
tudes. ' ' ' ' Thj.s is a contributing factor in
allowing us to neglect the odd state components
of the projectile-target interaction.

where V is a pseudopotential, derived from a
real. istic interaction, which incorporates the
major features of knock-on exchange. The rela-
tive strengths of the components of V are very
nearly the same as the relative strengths of the
components of the real part of V which have been
given in Eq. (4). As we are interested in treating
nuclear wave functions which contain many com-
ponents, the reduction of the calcul. ations to the
form of Eq. (15) is important. In this situation
an exact treatment of Eq. (12) can be very expen-
sive or, in some cases, impossible to carry out.

The evaluation of the integral in Eq. (15) is
straightforward. " The procedure is to expand V
in multipoles which correspond to definite orbital,
spin, and total angular momentum transfer (LSJ)
This expansion is given by

V = Q v~,~(r~;r, )(-l) ' '"& T „(P)T„(i),

T„= Q (LSM A
~ JM~) i Yi.~o y .

Inserting Eq. (16) into Eq. (15), performing the
integration over the target coordinates and projec-
tile spin coordinates, and carrying out the summa-
tions in Eq. (11), we obtain immediately the final
expression for the differential cross section:

AT p kf 2Jy+1
PQ 2mb' k; 2J;+1 ~~~

~ -L
LN'

P $J AI. )tt''*(r, )F (r~) Y~„(rp))tI'(r, )d'r~,

L = (2L+ I)~&' (18)

%e have ignored the effect of spin-orbit coupling
in the optical potential in writing Eq. (18) although
we do include it in the calculations. It gives rise
to interference between amplitudes of the same J
with different L and S." In practice this interfer-
ence is found to be weak.

All information pertaining to the projectile-tar-
get interaction and the details of nuclear structure

(q=p, n) (16)

where v~~(r~; r;) is the Lth muitipole coefficient
in the Legendre expansion of v~(r;~) and T„ is
the "spin- angle" tensor
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are contained in the radial form factors, F (r~),
which appear in Eq. (18). The nuclear structure
information is confined to the radial nuclear tran-
sition densities which are defined by

&'. '(r)=(f I, ' & ((i !) (q=&, 1,
i

(19)

where (IIII) is a reduced matrix element" and the
sum on i runs over target protons or neutrons as
q=P or n. The radial form factors are obtained
by averaging V over the transition densities, i.e. ,

With the approximations employed here, inelas-
tic proton scattering is simply a one-body oper-
ator with respect to the target. This is quite evi-
dent from Eqs. (18)-(20). The selection rules for
the reaction are contained in Eq. (19). These are:

by a point charge Z, g is a recoil factor, & is
the scattering angle, and q is the magnitude of
the momentum transfer F. L, (q) and Fr(q) are the
longitudinal and transverse form factors, respec-
tively. As a result of the difference in the angu-
lar dependence of the two terms in Eq. (23), it is
possible to determine both F~(q) and Fr(q) from
the experimental data. Since we will consider
only cases where F&(q) is dominant or where
Fz(q) has been separated from Fr(q), the follow-
ing discussion will be confined to the l,ongitudinal
form factor. Details concerning the transverse
form factor may be found in Ref. 31.

We assume here a Born approximation treatment
with a local wave number correction to account
for Coulomb distortion. " This approach has been
shown to be adequate, even for heavy nuclei, pro-
vided we do not require information inside the nu-
clear surface. " With these assumptions the lon-
gitudinal form factor is given by

J= h(Jq J;J), S= h(~ ~ S), 4= r&(JSL),

d,m = (-I) ~

(21)

(22)

IFc (q) I' = —, g j &(eqr )p, h (r)r'n'r4)i 2Jy+1 ~ J' . 2

0

(24)

B. Inelastic electron scattering

The differential cross section for inelastic elec-
tron scattering is given by"

Z2 "[IF.(q) I2+-.'(I +2 tan'le) IF,(q) I'J,
dA

(23)

where Z'v„ is the Mott cross section which de-
scribes the scattering of a high energy electron

There is some violation of the parity selection
rule, Eq. (22), when exchange is treated exact-
ly."'""Although it is possible to include the
amplitudes which violate Eq. (22) is an approxi-
mate way, "we ignore them here as they contri-
bute l.ittle to the differential cross sections.

We distinguish between normal parity [A(( = (-1) I

and abnormal parity amplitudes [hr =(-1) "j. In

the former case the allowed values of L, SJ are
JOJ and J1J and the reaction can proceed through
the strong spin independent components of the pro-
jectile-target interaction. Neutron excitations
wi1. 1. be most important here as U~=sv~~. In the
latter case the allowed values of L,SJ are J+11J
and the reaction can proceed only through the
weaker spin dependent parts of the projectile-tar-
get interaction. We wil. l see in Sec. III that the
effect of core polarization is to enhance the S =0
transition densities while retarding the 8 =1 tran-
sition densities. For most of the transitions which
wil. l be considered in Sec. IV, a single 8 =0 ampli-
tude will make the dominant contribution to the
cross section.

In this equation j &(&(qr) is a spherical Bessel func-
tion and the factor K appearing in its argument de-
fines the local wave number. It is given by"'"

K = I- v, (0)/E, (25)

where Vc(0) is the Coulomb potential at the center
of the target and F. is the energy of the incident
electron. In addition p, h(r) is th.e radial charge
transition density which is obtained by averaging
the proton charge distribution" over the nuclear
proton transition density defined in Eq. (19). The
averaging integral is

(26)

where p~(r;r') is the Jth multipole coefficient in

the I egendre expansion of the proton charge dis-
tribution. The longitudinal form factor determined
by inelastic electron scattering provides a mea-
sure of the S = 0 proton transition density, in con-
trast to inelastic proton scattering which, when a
normal parity amplitude is dominant, is more
sensitive to the S =0 neutron transition density.

In closing this section we note that the 1.ongitud-
inal electron scattering form factor, in the region
of small q, is simply related to the reduced tran-
sition probabilities determined in y-decay mea-
surements. To see this we replace the spherical
Bessel function in Eq. (24) by the leading term in

its power series which is val. id for small argu-
ment and note that the averaging integral Eq (28)
conserves the J'th moment of F, (r)," i.e. ,
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We obtain

(2I)
are introduced. In the above equation, d denotes
the model space and the remaining space is re-
ferred to as the excluded space. Introducing the
notation

(28)

(29)

IFi(q)l' =
zQ p [(2 I)~~J2

B(B+t)
4rr (~q)2~

where B(EJt) is the reduced transition probability

B(EJt) = F,' (r)r "dr2~~+1 "
so~

and noting that

PHD = /HOP =0,
QI =I@=0, P+Q=1,

(37}

III. THEORY OF EFFECTIVE OPERATORS

The theory of effective operators is quite
well known and has been discussed in many
places. ' """We briefly review it here, follow-
ing closely a discussion due to Harvey and
Khanna, '4 in order to provide background for the
calculations to be presented.

A. Formal theory

l. &ffective Hamiltonian

The nucl, ear Hamiltonian is generally written

K =Ho+G, (30)

where H, is an independent particle Hamiltonian

Ho= QT;+ QU( (31)

which has both kinetic and potential energy parts
and

(32}

is the residual interaction. We assume that the
difficulties associated with the hard core in the
free two-nucleon potential have already been dealt
with, so that g;; is the bare G matrix interaction.
It is usual to express the eigenfunction of H in
terms of the complete set of states belonging to
Ho,

(33)

le)= g~;I4;&, H. I4 )=e;14;&. (34)
i

Since the set of basis states (lQ)} is in general in-
finite in dimension, it is necessary to truncate to
a finite basis in order to perform a practical cal-
culation.

To affect this truncation the projection operators

it is straightforward to show that

Hls, &=(H. +G) IC,&=El&,&,

G =G+G — G,E-Ho

0
(4O')

2. iVormalization of eigenfunctions

The normalization of l~~) and l$) has not yet
been specified. In accord with convention we nor-
malize ill~) to unity so that

(g, lHIO. ) = E. (41)

where the problem of diagonalizing H in an infinite
basis has been replaced by the problem of diagonal-
izing an effective Hamiltonian H in a finite basis.
C is the shell model effective interaction.

Equations (38)-(40) are completely equivalent
to Eqs. (33)-(34}for those eigenstates of H which
have some overlap with the model space. Equa-
tion (38) gives the exact eigenvalues as well as
the exact model space projection of the wave func-
tions for these states. The components of the wave
functions in the excluded space are given by Eq.
(40). The claim made in the first of the two pre-
ceding sentences may seem surprising, since the
number of eigenstates of H which have nonvanish-
ing overlap with the model space surely exceeds
the dimensionality of the model space. The solu-
tion to this problem comes in noting that G (hence
H) depends upon the exact eigenvalue, so that Eq.
(38) is not the usual eigenvalue problem. In prac-
tical calculations the energy denominator appear-
ing in the expression for G is fixed in some aver-
age way. This Limits the approach to the treat-
ment of a few eigenstates of H which presumably
have a large overlap with the model space.

iid
(35)

The norm of l j) is then given by

~E = 4 I 4) = (ky 14'I ) + (Col gq)

Using Eq. (40) it immediately follows that

(42}
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We also note that Eq. (51) can be rewritten as

(43)
i,j d

(53)

Kith this normalization convention the admixtures
of the true wave function in the model space and

excluded space are

1 n'-1
Ap'= —, and Ag'=

n n

respectively. If we w rite

(45)
d

then the amplitude of I@,) (jEd) in the true wave
function is

A, =a, /n (jed). (46)

In addition, we find that the admixture of I@,)
( jKd) in the true wave function is

B. Schematic mode1 and discussion

It is clear from the above development that a com-
plete discussion of the nuclear problem requires only
a knowledge of the matrix elements (P, IG Ig, ),
(p; Ilv'lp;), and (p& IFIQ, ) with (i, jEd). Actual
calculation of these matrix elements is not a
trivial matter, unfortunately, and even though
this prob1. em has received a great deal of atten-
tion it has yet to be completely solved. " Two
estimates of the matrix elements of & are made
in this work.

For the first estimate we use lowest order per-
turbation theory. In lowest order C, N', and ~
are approximated by

A, = p A;a, ; (jed),

where

(47) G=G+G,
( )

G,Q

N 1,

(54)

(55)

a„=(4,I CI4, ) (i~d, jtEd) (48) V' = V'+ g G + G
&j -H0 ~;-H, (56)

is the amplitude of the excluded space configura-
tion I 4&&) in the model space configuration I p&&

3. Effective transition operators

The transition matrix element of a one-body op-
erator, O'=Li„ taken between two eigenstates of

lg') and lg~&, is given by

(49)

The factor (n;nz) ' is necessary because the wave
functions of H have not been norma1. ized to unity.
Just as it is possible to replace the eigenvalue
problem for 0 in an infinite basis by an eigenval. -
ue problem for an effective Hamiltonian in a finite
model space, (7')~; can be expressed in terms of
the matrix element of an effective, &, taken be-
tween model space wave functions. The proof is
short and serves to define the effective transition
operator. %'e write

(v')~ =n, 'n~ '4 I(f'+Q)&(J'+Q)lg') (50)

Then we replace I4Ie& on the right by its expression
in terms of lg~&, Eq. (40), to obtain

(4')f;=n, 'n~ '(g~ I & lp~), (51}

where

F= g+q C+C V'+G 1 C.
0 0

(52)

where E has been suitably defined in terms of the
eigenvalues of H0. This approximation gives a
coupling between the model space and the excluded
space, but neglects entirely any configuration in-
teraction in the excluded space. The latter is evi-
dent from the free propagators which appear in

Eqs. (54) and (56}.
The low-lying spectra of nuclei which are two

particles (2p) or two holes (2h) away from closed
shells are reproduced quite well in calculations
employing Eq. (54).' ' The matrix elements of
6G = C —G are strong and attractive in cases of
the interaction energy of two identical nucleons
coupled to zero total angular momentum with the
main contribution coming from 3p-1h or 3h-1p
states of energy 2k'. This is the pairing effect
mentioned in the Introduction of this paper. Cal-
culations which use Eqs. (55) and (56) (see Ref.
10) provide at best a qualitative estimate of tran-
sition matrix elements in nuclei np or nh away
from closed shel. ls. The main contribution to 6&
= F —I comes from (n+1)p-1h or (n+1)h-lp in-
termediate states of energy 2S~ and 1~& for posi-
tive and negative parity transitions, respectively.
Matrix elements of 69 generally have the right
sign and are of the correct order of magnitude,
although they are typically underestimated. A

specific difficulty occurs in effective charge cal-
culations where it is found that polarization
charges for valence protons are smaller than for
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6G = —g gz, k„(r;\k„(r, ) Yg„(r;) Yz,„("r,),
i(j
Lu

dU(r -ft„)
(57)

where the sum on i and j runs only over the val-
ence nucl. cons, U„ is the potential which binds the
valence nucleon to the core, R, is the radius pa-
rameter in this potential, and

valence neutrons which is in contradiction to ex-
periment.

Lowest order perturbation theory implies a
rather direct relationship between the renormal-
ization of 6 and f' in the case of states arising
from two like nucleons in a (j') configuration,
i.e (2j+1) states with J' =0', 2', . . . , (2j-1)'.
Specifically, pairing occurs as a result of coher-
ent contributions from the coupling between the
valence nucleons and core excitations of different
multipolarity. On the other hand, transitions
starting from the 0' state and ending on one of the
higher spin states J&' depend only on the coupling
between the valence nucleons and core excitations
of multipolarity Jz. Inelastic scattering affords
an excellent opportunity to study the above rela-
tion, since it is the only source of experimental
data which gives information on the direct excita-
tion of the higher spin states of these configura-
tions.

To see the above schematically, we make use
of the hydrodynamical description of the core and
cl.osure which allows us to write analytic expres-
sions for the effective operators in the model
space. Considering only coupling between the
val. ence nucleons and normal parity core excita-
tions we find' "

state potential U„.
Strictly Eq. (57) and Eq. (59) for &G and 5 V

should contain some spin dependence. This comes
from coupling between the valence nucleons and
abnormal parity core excitations" and has been
neglected primarily as a matter of convenience.
It turns out that these spin dependent terms do
not contribute to transitions between states of a
(j') configuration as is shown in the Appendix.
They do make a small contribution to the pairing
energy, but we intend to compare Eq. (57) with
appropriate two-body matrix elements rather than
the experimental two-body spectra so their neglect
causes no problem.

As examples, we consider the nuclei "Ti and
"Zr both of which have two valence protons. The
results of the lowest order microscopic calcula-
tions"' for the low-lying spectra of these nuclei
are compared with experiment in Fig. 1. Results
obtained with (G+5G) and without (G) the inclu-
sion of core polarization are both shown. In the
calculation for "Ti a full f-P shell. model space
has been assumed for the two valence protons. '
The resulting wave functions for the lowest 0', 2',
4', and 6' states are, however, almost pure
(If,&,

') wave functions. In the calculation for "Zr
the model space for the two valence protons in-
cluded both the (Ig9&, ') and (2P», ') configurations. "
This explains the appearance of two 0' states in
results for this nucleus.

The theoretical results with core polarization
(G+5G) are in good agreement with experiment in
both cases. The pairing effect is quite evident.
The multipole decomposition of the pairing matrix
elements appearing in these calculations has been
given in Refs. 8 and 36. Using Eq. (57) we obtain
the following results for the pairing energy,

8L (58)
E, (j ) (60)

gives the effective strength of the coupling to 2-
pole core excitations. CL is the effective core
stiffness parameter for 2 -pole excitations. In a
physical nucleus, there are, of course, more than
one core excitation of each multipolarity. The re-
duction of the effect of these core excitations to a
single coupling constant is where closure enters
this model. In a similar manner, we find the core
polarization correction to the projectil. e-target
interaction for the (P, P') reaction to be given

15,35

(59)

where k(r~) is defined in the same way as k„ex-
cept that the optical potential U replaces the bound

where (k„) denotes the radial expectation of k„(r)
and the sum on J runs over even values only. As-
suming (k„)=50 MeV and comparing Eq. (60) with
the matrix elements of Refs. 8 and 36, we obtain
the values of 6)& and C& listed in Table I. From
the table, we see that the core of "Ti is some-
what softer than that of ' Zr and that J= 2 core
excitations give the dominant contribution to the
pairing energy in both cases. The values of 0~
decrease steadily with increasing multipolarity;
however, the core coupling is by no means neglig-
ible even for the highest core multipoles.

%'1th the values of 8& determined above, it is
straightforward to estimate the corresponding
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FIG. 1. Spectra of 5 Ti and @Zr showing pairing effect due to core polarization.

effect of core polarization in inelastic proton scat-
tering. One simply constructs the valence radial
form factor according to the prescription of Sec.
II A and adds to it the core correction

&I' '(~,) = r,~&s&(2/-&) &j Ily'~ II j&&~.&4&(&&) (6&)

which follows directly from Eq. (59). Cross sec-
tions have been calculated for the excitation of
the 2' and 4' levels in ' Ti and the 2', 4', 6',
and 8' states in "Zr in this manner. The "Ti
calculations were made for incident proton ener-
gies of 17.5 and 40 MeV to al.low comparison with
the experimental data of Refs. 3V and 38. The ~Zr
calculations were made for an incident proton en-
ergy of 18.8 MeV for comparison with the experi-
mental data of Ref. 39. The optical parameters
used in the calculations are tabulated in Table XII.
The results are compared with the data in Figs.
2 and 3. The quantity &~ shown with each cross
section is the enhancement factor for core polar-
ization. This is defined by

where o and o„are the theoretical integrated cross
sections with and without the inclusion of core po-
larization. The introduction of this enhancement
factor is analogous to the use of effective charges

TABLE I. Core coupling constants determined from
bound state pairing matrix elements.

Nuclide
EJ'y) a

(Mev)
8g

(Me V-')
Cg

(Mev)

"Zr

ffz/2
ffp/2 2

ffz/2 4

ff~/2

fgs/~
fgs/2
fgs/2 4

fgs/2 6

fg~/2 8

2p(/2 0

-0.033
-0.753
-0.460
—0.233

-0.020
—0.578
-0.359
-0.218
-0.122
-0.210

1.78x 10+
3.18x 10+
2.20x f0 3

1.55x 10 3

1.01x f 0-4

2.38x10 '
1.58x 10-'
1.14x 10 3

9.00 x 10 4

1.22xfO 3

5610
314
455
645

9920
420
633
877

1110
820

Values for Ti are from Ref. 8 and values for Zr
are from Ref. 36.

in describing electric y transitions.
The theoretical results shown in Figs. 2 and 3

are in good qualitative agreement with experiment
with the possible exception of the result for the
8' excitation in "Zr. It is suspected that multi-
ple excitation might be important for this transi-
tion at this energy. " We also note from the values
of &~ that core polarization leads to an increase in
the valence cross section by at least an order of
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I I I with experiment which tends to indicate that the

effects of core polarization can be factorized, as
lowest order perturbation theory implies, at least
when the number of valence nucleons is small. A
more recent (e, e') study of "V has provided evi-
dence which contradicts this conclusion to some
degree. "

To improve on first order estimates of 6& it is
necessary to include the effect of configuration in-
teraction in the excluded space, which requires
higher order perturbation theory. Formally these
effects can be seen by rewriting Eqs. (39), (43),
and (52) in the explicit representation:
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I I I I h. I IO I I

40 80 I 20 0 40
8c ~ (deg)

80 l 20
' C=G+G Q

E-Ho -G (63)

FIG. 2. Theoretical (P,P') differential cross sections
obtained with schematic model for the first 2+ and 4+

states in +Ti with E& =17.5 and 40.0 MeV. Results with

(D) and without (D+C) core po1arization are shown. V'=q+q' G+G

(64)
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FIG. 3. Theoretical (p, p') differential cross sections
obtained with schematic model for first 2+, 4+, 6+, and
8+ states in +Zr with E& =18.8 MeV.

magnitude in each case. %e conclude that there
is a striking consistency in the effect of core po-
larization on the low-lying energy spectra of these
nuclei and on the (p, p') cross sections for the ex-
citation of these low-lying states.

The above results were previously reported else-
where, "in less detail than given here, by tmo of
the present authors. The parameters for "Ti
from Table I were subsequently used in the calcu-
lation of theoretical (p, p') cross sections for low-
lying excitations in "V." This nucleus has three
valence protons and the dominant configuration
for the low-lying states is (1f,&,'). The theoreti-
cal results were found to be in good agreement

E Ho G E Ho G
(65)

These relations are similar in structure to the
lowest order perturbative expressions in that the
coupling between the model space and the excluded
space is given by G interactions alone IV interac-
tions appear on the right hand side in Eqs. (39),
(43), and (52)]; however, the propagators in Eqs.
(63)-(65) project onto eigenstates of H in the ex-
cluded space instead of eigenstates of H, as is
true in the case of the lowest order perturbative
expressions. The spectrum of H differs from that
of Ho due to the effect of Q interactions in the ex-
cluded space and this in turn affects the results
for C, N, and +.

Equations (63)-(65) cannot be evaluated exactly
because it is impossible to diagonalize H in the ex-
cluded space which is still infinite; however, it is
possible to evaluate these relations approximately
by making suitable truncations in the excluded
space. The effects of configuration interaction in
the space of p-h excitations of the core is mell
established from the Tamm-Dancoff approximation
(TDA) and random-phase approximation (RPA) cal-
culations of Gillet and collaborators, "i.e. , it
gives rise to low-lying normal parity vibrational
states mhich are nearly isoscalar in character and

pushes the isovector core excitations up in energy.
Transitions provide many clear examples that
these, or related and possibly more complicated,
effects are important. For example, it has al-
ready been mentioned that experiment indicates
that valence neutrons and protons have approxi-
mately equal polarization charges. This implies
that the dominant coupling occurs with isoscalar
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core excitations. Results obtained for inelastic
proton scattering and y transitions using the hy-
drodynamieal core model"'" provide another
example of this same effect. Here, at l,east for
transitions of low multipolarity, the coupling con-
stants 6)J deduced from fits to inelastic proton
scattering cross sections using Eq. (59) are found

to be nearly equal to those required to reproduce
the effective charge, " i.e. ,

lowed by Horie and Arima' in their earl. y calcula-
tions. Owing to the uncertainty in the perturbative
treatment of these higher order effects" and faced
with the need of including some estimate of the ef-
fect of core correlations, we have crudely followed
this approach for our second estimate of the ma-
trix elements of ~. Specifically, we have repeated
the first order calculations using the renormalized
core coupling interaction

(66)
G'=G —Q &~A„(r;)k„(r,}Kg„(r;}Y,"„(r,)Pf, (6"I)

where e, =1 or 0 for q=p or n, Z, is the core
charge, 8, its radius, and the radial expectations
() are taken with respect to the radial wave func-
tions of the valence nucleons. The 6J in Eq. (59)
and Eq. (66) are only equal in the limit of coupling
to isoscalar core excitations. " [Note that our
schematic discussion of the relationship between
the pairing effect and the enhancement of (P, P')
cross sections required no reference to the iso-
spin nature of the coupling between the core and
the valence protons. ] A third and perhaps even
more striking example of the importance of con-
figuration interaction in the exet. uded space is
seen in nuclei around '"Pb where there are clear-
eut cases of coupling between valence nucleons
and low-lying vibrational states of the core."'"

Including only the effect of configuration interac-
tion in the core by means of the TDA or RPA ap-
proximations seems to provide the best estimate
of transition matrix elements insofar as agree-
ment with experiment is concerned. ' These cal-
culations are equivalent to assuming a particle-
vibrational model and preserve the factorizability
of core polarization effects. Similar calculations
for G result in an overestimation of the pairing
energy. ""One would like to find a suitable ap-
proximation for evaluating Eqs. (63)-(65) which

would improve the lowest order estimates of the
transition matrix elements and at the same time
preserve the lowest order results of Kuo and
Brown for the effective interaction. So far this
has not been accomplished. " In fact, the most
complete treatment of the effect of configuration
interaction in the excluded space which has been
made to date" leads to results for G which are
not much different than those for G and results
for V' which are similar to those obtained using
first order perturbation theory.

Harvey and Khanna have suggested" that a possible
way of bootstrapping the effect one of configuration
interaction in the excluded space might be to use
Eq. (43) and Eq. (52) approximating G by a two-
body interaction G' which fits the two-bod';: spec-
tra. They point out that this procedure was fol-

where P+ projects onto triplet isospin states and

the 8J are fixed from the pairing matrix elements
of Refs. 8 and 36 in the manner described above.
This interaction is somewhat incomplete in that it
does not contain any spin dependence and is miss-
ing some small renormalization terms which act
in isospin singl. et states. It does, however, con-
tain the major components required to fit the two-
body spectra. In See. IV, it mill be seen that the
results obtained using this interaction are similar
to those obtained using the "bare" G and treating
core correlations in the TDA approximation. ""

C. Explicit expressions for matrix elements of V

In this section we construct the explicit expres-
sion for the reduced matrix element of ~ between
two model space states. This is obtained directly
from the expressions for the amplitudes of the ex-
cluded space configurations in the model space
configurations and the reduced matrix elements
for f' between two model space states and between
a model space state and an excluded space state.
We consider only one-body operators which trans-
form like the spin-angle tensor defined in Eq. (17)
and throughout this section the use of 6 is intended
to imply either G or G'.

We define the model space states by

(68)

where Zt ~ „(n) creates an np or nh state with
1 1 I

quantum numbers ny Jy My by operating on the
closed shell state ~C&. J, and M, denote the total
angular momentum and projection while e, repre-
sents all other quantum numbers required to com-
pletely specify the state.

In first order only (n+1)p-lh[(n+1}h-Ip] and

np(nh) intermediate states can contribute to the
renormalization of 9. We include only the former
with the remark that the latter are best included
in the model space whenever they are important.
The (n+1)p-1h[(n+1)h-Ip] excluded space states
are defined by
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lys&= la.(s)J., (ph)J. ;J.M, &

= g &J,J,M, M, IJ,M, &Zt, (she', (ph)IC&,

(69)

where

Atq „(ph) = g (jj„m~ -m„ IJ,M, &(-1) & hata„

(70)

creates a p-h pair with angular momentum J, and
projection M, . In writing Eq. (69) it has been as-
sumed that p and h are distinct from any of the
particle or hole states contained in Zt+~, „,(s),
i.e. , we neglect the Pauli principle in intermedi-
ate states. The error introduced by making this
simplification should not be serious because we
consider only cases where n is relatively small.

The amplitude of the excluded space with energy
&+& „ in the model space state with energy &,&,
is easily found to be

a(a,J„(ph)J,; J, la,J,)=5«(-1) 2 &jJ2J, 'g s,'( aJ„a,J,;j j &)a,& (jj„,j jr)/(e ~ -e+~ ),
&ay

(71)

where

8,"(,a „Ja, ,J;j j„)=j J, '&a, (s)J, IIAt, (ay)lla, (N)J, &

is a spectroscopic amplitude which depends only on the structure of the valence configurations, and

ilia J'
a':(j,j j j,)= Q (-»'"'" ':- . .

I
&j,j.J'Ig„ lj„j,J').

apse

(V2)

is the Jth multipole coefficient of the coupling in-
teraction. The indices q and q' which appear in
Eq. (V2) and (73) specify the charge state of the
valence particles (j j&) and the core excitation
(j~ j„), respectively. This in turn determines
which component of g is effective in the polariz-
ing process. The subscript a on the two-body
matrix element in Eq. (V3) indicates that the ma-
trix element is antisymmetrized but not normal-
ized. The values of S,' for the transitions of in-
terest in this work are given in the Appendix. It
is the separation of the amplitude of Eq. (66) into
a geometrical factor S,' and a dynamical factor
a«'~ which gives rise to the factorizability of core
polarization effects in lowest order. Additional
factorization of ~,;. into valence and core parts
is the essential feature built into all phenomeno-
logical models for effective operators. """"

%e also note the following symmetry relations
for S& and + ":
8"(a J a J;j~j„)=(-I)'& '2 "~ '~J j J 'j

~a (aa J2i alJli jy ja) i

a.", (j j,j.j )=( I)". '~'" "j„j-,j. 'j, -

&,", (a, ap a)aa~

(74)

(75)

a(a,J2(ph) J,i JglaiJx)

= (-1) ' ' J aJx a(ai Jii (ph) J~i Ja las J2)

(76)

As an example of the usefulness of these relations,
we observe that they may be used to show that

in cases when there is only one active orbit in the
states a,J, and a,J» i.e. , j~=j ~=j.

The reduced matrix element of a one-body op-
erator W taken between a model space and an
excluded space state is

lips&=5, ~5~g4~ j,J '&j, lit. 'Ilj„&, (77)

where the superscripts LSJ have been added to 1'
since we consider operators which transform like
the spin-angle tensor of Eq. (17). The subscript
q appearing on t in this equation is a charge in-
dex. It is needed because, in general, t will
not be the same for a proton p-h pair and a neu-
tron p-h pair. The main point to notice about the
result is that the p-h pair is produced solely by
the action of 9, with the valence nucleons serving
merely as spectators. The result for the reversed
matrix element &Q„ll 5 lips& will not be given
since it easily derived from the following conjuga-
tion relation for operators of the spin-angle type'.

&JIIT' IIJ, &
=(-1)'"'"' '», J. '&J. IIT IIJ.).

(78)

The reduced matrix element of V' between two
model space states is simply

&a.( )J, ll~"'Ila, (.», &

= p s,'(a,J„a,J,;j j,)&j lit, llj, &.
JaJ y

(79)
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Use of the above results for the matrix elements
of V' and G and the associated symmetry and con-
jugation relations in Eq. (56) leads directly to the
expression for the reduced matrix element of the

renormalized transition operator taken between
two model space states. This is the essential re-
lation for the calculations of this work. The re-
sult is

= P s, (as&, , s;s;&j,,& , (& I(It(I&,,& ~ I' + s)ss(( „s jj„,&, , (ss&

a p h

a a'

where +ph acts to the right and means to interchange jp and j„, and

(jpjh, J j y} = ( I} Jp jh J (y '(JpJh J Jy}&J„IIJ"Ilj,& (81)

In Eq. (80} the first term on the left is the normal
valence contribution and the second term is the
core polarization contribution. Using Eq. (75) and

Eq. (78} in Eq. (81) we also note that
JI'phJ" „(J,Jh, J jy)

=(-1} ' '~ 'yj j y'Fss, (jpj, „,j yj~}. (82)

of the operator, A, , as well as the coupling

in the case of an electric y transition.
In the case of a zero-range interaction the direct

and exchange parts of two-body matrix elements
are identical and the multipole coefficient of Eq.
(73) can be factorized, i.e.,

D. Enhancement and retardation of transition operators

g„,(1,2) = (g,', +g'„. (y, (y, }5(r,-r,}. (83}

%e pursue this here as it allows us to derive a
general rule concerning the phase of the contribu-
tion from core polarization. Calculations using
typical finite- range interactions produce results
consistent with this rule.

The derivation requires further specification of
the form of the one-body operator of interest. Vfe
consider only one-body operators which can be
written

gLSJ gLSJ pLSJp LSJgLSJ
a Ja a (84)

where TLs J is the spin-angle tensor defined in
Eq. (17) and f, contains the radial dependence

The expression for the reduced matrix element
&given in the preceding section can be reduced
further by specializing to the case of a zero-range
coupling interaction, i.e. ,

t(», , t (, & f.,( &=s.( &, ( &s, (~&s*Sr,
0

(86)

where the u(r) denote single particle radial wave
functions. The factorization of a J, further
implies that

P»~. (j pJh j.j„)=+,. (j pJy„j.j,) (87)

which is easily demonstrated using Eq. (78) and

Eq, (85) in Eq. (82). Using Eq. (84), (85), and

(86) in Eq. (80) we obtain the desired result for the
matrix element of ~ in the case of a zero-range
coupling interaction. This is

(8 5)

The reduced matrix elements in Eq. (85) contain
only integrations over spin and angular coordi-
nates and I is a radial overlap integral

((yy(yy)~J II
7'" 'll (y((p()J(&

where

= g s;((y'yes o((~(;J j,) &j IIT"'Iljy&&fy."'&~yP'. "+g &j.llT"'ll j y&Hy, ~'(c(&r) s (88)
9a Jy

LsS l

2

Jf ~'(o, r)= —+,2(&) @2 &2 g'„'&jpllT"'ll j&&&jpllT"'ll j(,&f(ipf. fhfy)(Jy', "&»p',"
fpl h

ap

(89)

and
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(90)

e(ph} =&p — h, Q = ef (91)

(f.LS J) PLSZ

(gcf.LS Z) Q PLS Zg S

a'

(92)

The phase rule of interest applies only to a
single pair of active valence orbitals, i.e., fixed
j j&q. The phase relation between different terms
in the sum over j~j&q is a function of the model
space configurations and not of core polarization.
Restricting consideration to a fixed set of values
for j„jzq we have only to consider the sum over
I.' and S' in Eq. (88). Owing to parity and angular
momentum selection rules, there are only two
allowed sets of values of L'S' for given LSJ. It
is sufficient to note that one set is L'S'= LS and
the other is L'S'+ LS.

For the first set, L'S'=LS, we note that the

sign of each term in the sum over jp
and j„ in

Eq. (89) is given by

—Qg„.(h, . )pI(l l l„l )P,

where it has been assumed that e'(ph) &Q'. We
then argue that the important terms in the sum
over j& and j„are those where

up(r)u„(r) = u„(r)u~(r) .
This is sufficient to guarantee that for these im-
portant terms

I (lpl„lh ly) &0,

(I LSi) (I LSZ)

Considering only the contribution from the term
HJ ~ to the renormalization of the matrix element
of W, we conclude that the relative signs of the
valence and core contribution are given by

(}V'Ls1 ~ 8f '
LLs(r )TL's z(f)hip ~ a Ng

J.'S '

(93)

where the sum on i runs only over the valence
nucleons and q = p or n, as i designates a proton
or a neutron. The radial factors in Eq. (93) are
given by

Finally we argue that the contribution from the
term H~. s with L'S'4 LS can, in fact, be neglect-
ed, because the various terms comprising this
quantity have random phases.

Using Eq. (92) it is a simple matter to compute
the relative sign of the valence contribution and
the core polarization contribution for a given one-
body operator. For inelastic proton scattering we
have P, = V„ from Eq. (14). Using the fact that
V„-g~, and the relationship between the compo-
nents of gp, given in Eq. (4), it immediately fol-
lows that the valence and core contribution are in
phase for S=O amplitudes and out of phase for
S=1 amplitudes, i.e., the S=O amplitude are
enhanced while the $=1 amplitudes are retarded.

For longitudinal electron scattering and electric
y transitions S=O and P, ~ =e, =0 or 1, as q =P
or n. Since g~, is attractive, we conclude that the
valence and core contributions are in phase for
this case. For magnetic y transitions S=1 and
p~s ~ = p, which is positive or negative as q = p or
n. Using Eq. (4) we find that the valence and core
contributions are out of phase. These results
demonstrate that there is a close correspondence
between the effects of core polarization in inelastic
proton scattering and in electromagnetic inter-
actions.

It is possible to go one step beyond Eqs. (88)-(91)
and write a closed coordinate space expression
for 51~. This is

~ 2

8t '(«)= —Q,. h) @. g'. &I'pllT"'III')&ipllT"'Ilia)g'„'P', "&I',")u, up(r, )u, (r,).
'p'a

a'

An operator of this form has been used to fit the
magnetic moments in the Pb region. " The force
strengths g, were treated as adjustable param-
eters in obtaining the fit. This approach could be
extended to other one-body operators.

IV. RESULTS

In this section we present the results of our cal-
culations for selected transitions in ~Ca, Ti,' Y, Zr, ' Pb, and ' Bi. The nuclides ' Fi and

"Zr have already been discussed in connection
with the schematic model in Sec. III B. They have
two valence protons outside of ~Ca and ~Sr cores,
respectively. "Ca has two valence neutrons out-
side a 40Ca core; 89Y has one valence proton out-
side a "Sr core; ' 'Pb has one valence neutron
hole in a '~Pb core; while ' Bi has a single va-
lence proton outside a '"Pb core. The transitions
we have considered are summarized in Table II.
The initial and final model space wave function
assumed in each case are specified in the table.
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TABLE II. Summary of transitions considered in this work. Initial and final model space
wave functions are given in each case.

Target Q' (MeV)

4'Ca{2m)

50Ti(2P)

"v(tp)

"Zr(2p)

207pb (iN~i )

2O9»

0+

0

1
2

0+

j,
2

I (if& i3'&o&

I(if&(2')0&

l&pi(k

o sl(2p()33&o&
+ o.sl(tg„, '&o&

l3pg]2 '&

lth3(3&

2+

4+

6+

2'
4+

+

2'
4+

6+

8+

5 &

2
3 &

2

2

2
g+
2

) (~fg(2') 2&

I (if,i,'&4&

I &if~ )3'& s&

I &if& i3'&2&

l(v;~, '&4&

l (if'(3') s&

ligated

(&ge(2 )5
(&g9]p )4&

(igs]2 )@
(fags)22P i] 2»&

12f3(3 '&

SP3n '&

1 313 /2

~fin '&

l2f7]2&

l«i3id

-1.52
-2.76
-3.i 9

-i.56
-2.68
-3.20

-0.91

-2.is
-3.08
-3.45
-3.60
-2.32

-0.57
-0.89
-1.63
-2.33

-0.90
—i.6f

The number and type of valence nucleons is indicated in parentheses.
This column lists experimental Q value which is not to be confused with theoretical Q

value defined in Eq. (9i).

A. Parameters of the calculations

For the first order estimates of 6f' we have
used the long-range part of the Kallio-Kolltveit
(KK) potential" for G. This is an 8-wave inter-
action which gives matrix elements which are in
rough agreement with those obtained with the more
realistic HJ interaction. ' The S-wave form of
the KK force greatly simplifies the calculation
of two-body matrix elements. This feature has
made this interaction popular in the past" and it
is also the main reason why it has been chosen
here. The differences between the KK and HJ
interaction are well within the accuracy of the
models being used in this work, so there is no
real inconsistency in using the KK force for t

in calculating the bound state matrix elements and
using the HJ interaction for t,~ in calculating the

(p, p') cross sections.
For ' Ti and 9 Zr, in the calculations of 5V using

the renormalized coupling interaction defined in
Eq. (67), we have used the values of Bf =1/C f
given in Table I. The ' Zr parameters were also
used in the calculations for 89Y. For ~ca we have
used C~0=6020 MeV, C~=355 MeV, C~=578 MeV,
and C~6 = 1050 MeV and in the Pb region we have
used C~0=3790 MeV, C~=1040 MeV, C, =1580
MeV, C, = 2450 MeV, and C, = 3650 MeV. These

last two sets of values have been determined fxom
matrix elements given in Ref. 8 in the same man-
ner that was used to determine the values given
in Table I. It is interesting to note the large in-
crease in the stiffness of the core in passing from
the Ca region to the Pb region.

We do not actually evaluate the radial integrals
(h„) which arise in the calculation of the matrix
elements of O'. Instead we assume that

(h,)„(h„)34 = 2500f (n,n„n,n, ) MeV',

where n(= 1,2, . .. , ~) denotes the principle quan-
tum number which characterizes the shape of the
radial wave functions. The factor

f(n n, n n ) ( 1) l nl-n3l+ l n2 m4i (0 75)ny+n3+ n3+n4M
1 3P 2 4

has the value unity when n, =n, =n, =n4 = 1, i.e.,
when all of the radial wave functions have good
overlap with h„(r), and is appropriately smaller
and properly phased when there are shape dif-
ferences between the radial wave functions and
h „(r).

Harmonic oscillator radial wave functions have
been used throughout in the calculations. The
oscillator well parameter a = (M&u/it)'" fm ' has
been fixed according to"

e =4m-'/' Mev.
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0 is(/2' 1.50
2 1 ip3/2 245
3 1

ipse/g

260
4 2 1ds/g' 3.40
5 2 2s)/g 3.50
6 2 1ds/2' 3.65
7 3 1f?/2 4 14
8 3 2ps/2 4 42
9 3 if'/2 4.49

10 3 2p, /2 4.57
11 4 igg/2' 4.85
12 4 2ds/2' 5 27
13 4 ig? /2' 5.30
14 4 3si/2' 550
15 4 2d3/2' 5.52
16 5 ihi )/2 558
17 5 2f?/2 608
18 5 ihg/2 6 13
19 6 ii)3/2' 6.26
20 5 3p3/2 6.41

21 5 2fs/2
22 5 3p)/2
23 6 2gg/2+

24 6 i i) ) /2+

25 7 ij»/
26 6 3ds/2+
27 6 2g?/ p+

28 6 '4s
&
/2'

29 6 3dg/2+

30 7 2hff/p
31 8 ik )?/p'
32 7 ig)3/
33 7 3f?/g"
34 7 2hg/2
35 9 il gg/2

36 8 2g(g/2'
37 7 4pi/2
38 7 3f5/2
39 8 ik (5/2'
40 7 4p(/2

6.43
6.56
6.85
6.91
7.03
7.27
7.30
7.50
7.52
7.65
7.66
7.78
8.11
8.20
8.25
8.36
8.44
8.46
8 ~ 56
8 59

¹2(n—1)+l is the major shell quantum number.
Egggg/flic) Ã ~ 0I05j(j+ 1 ) + 0+05 ( 1 p) l(l + '1 ) + 1 +5375

where Scu determines the major shell separation:
p, = 0.00, N = 0, 1,2; p = 0.35, N = 3; p, = 0.45, jU' = 4, 5, 6;
and @=0.40, X=7.

The energy denominators used in the calculations
were taken for the most part from the zero de-
formation axis of the Nilsson scheme. ' In some
cases they were taken from experiment. The
Nilsson energies for the first 40 single particle
states are given in Table III as a function of 8&.
In the table each single particle state has been
assigned an identification number as a matter of
convenience.

The range of intermediate states used in esti-

TABLE III. Single particle energies for spherical
potential as determined by Niisson.

8„»/Sco No. N' nip' E„»/5~

mating 6V' for the various transitions being con-
sidered is summarized in Table IV. All possible
(n+ l)p-lh [(n+1)h-lp] states which can be ob-
tained by raising a core nucleon from one of the
single particle states designated as a hole level to
one of the single particle states designated as a
particle level have been included in the calcula-
tions of 5V. Inspection of the table will show that
we have "approximately" followed the rule of in-
cluding all (n+ 1)p-lh [(n+ 1)h- lp] intermediate
states with energies up to 2A& for positive parity
transitions and 1k' for negative parity transitions.

Experimental single particle energies have been
used for the 18m positive parity core excitations
which enter the calculations of 6V' for transitions
in ' Ti and 'Zr. The energies of these particular
core excitations are relatively small and the Nils-
son scheme cannot be expected to be reliable in
these cases. Specifically, we use experimental
energy splittings for the 2p„,-lf„, ', 2p», -lf„, ',
and lf„,-lf7„' neutron excitations in ' Ti, the

2P, (2-2P~)2 ', 2P, ( -lf, ~ ', and 2p»2-1f7/2 ' proton
excitations in "Zr, and the 2d„,-lg„, ', 3s„,-
1g9/g 249/2 lg@,, ', and 1g,» - lgo/,

' neutron
excitations in 'OZr. The experimental energy
splittings are, respectively, 4.80, 6.82, and
8.75 MeV, ' 3.5, 4.0, and 5.5 MeV, "'~ and 4.50,
5.53, 6.50, and 7.17 MeV" "which are typically
larger than the values which would be deduced from
Table III. For the calculations in the Pb region
we chose to use experimental energy values in
all cases where they were available, namely,
proton levels Nos. 11-22 and 24 and neutron
levels Nos. , 16-29 and 32." The Nilsson ener-
gies were used for the other levels with some
slight modifications. These were to increase the
Nil. sson energies for proton orbitals Nos. 23, 25,
and above by 2.41 MeV, so that level No. 23 would
not fall below level No. 24, and to make the neutron

TABLE IV. Particle and hole levels used to form intermediate states in the perturbative
calculations of 6T.

Target
Transitions

(Jg)

Hole levels
Protons Neutrons

No. No.

Particle levels
Protons Neutrons

No. No.

42(

soTi
SQ
90Zr
"Zr
20?pb

2 0?pb

209Bi

209Bi

2+ 4+ 6+

2', 4', 6
g+

2+ 4+ 6+ 8+

5
3 5
2 12 s2
Q+
2

2

2

2—6
2-6
7-9
4-9
7-9
7-16
11-16

7-16
11-16

2-6
2-7
7-11
4-11
7-11
11-22

16-22

11-22

16-22

7-15
7-15
10-23
10-23
10-23
17-35

17-30

17-35

17-30

7-15
8-15
12-23
12-23
12-23
23-35

23-34

23-35

23-34
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levels Nos. 30 and 31 degenerate with level No. 32
instead of below it as the Nilsson scheme suggests.

B. Wave functions

It is useful to examine the most important core
admixtures in the various model space configura-
tions being treated. Gering to space limitations
we consider only two typical examp'les here.
More complete information can be obtained from
the authors by request.

Tables V and VI contain the amplitudes of the
most important l (j')J, (ph)J;0) core admixtures
in the l (j')0') model space configurations for
' Ti (j = lf, &, } and '"Zr (J = lg„,). These tables
contain all the information needed to describe the

l ( j')0') -
l (j')J') transitions in these nuclei,

since the amplitudes of the l ( j'}0,(ph) J;J) core
admixtures in the

l ( j')J ') are easily obtained
from the given amplitudes by means of Eq. (78}.

It is apparent from the tables that the number
of core admixtures that make important contribu-
tions are not large in comparison to the tota, l num-

ber of allowed admixtures. There are two factors
which limit the number of configurations which
make important contributions. The first is the
requirement of good overlap between the radial
wave functions for the p-h pair and the active
valence particles, e.g., see the discussion in
Sec. IIID. The second is that

l (j'}J,(ph)J;0) ad-
mixtures where the p and h orbits are coplanar
are heavily favored. This condition, which ma.y
be stated

lip~I„l =J,
is a property of the reduced matrix elements

(j~ll T~'~I j&) which enter in the calculation of the
Jth multipole coefficient of the coupling interac-
tion, e.g. , see Eq. (85) for the multipole coeffi-
cient in the zero-range limit. The same
l(j'}J,(pE)J, 0) admixtures which mix strongly
with the

l
(j')0') configurations also produce the

largest matrix elements of V' because the latter,
Eq. (77), are also proportional to (j~l[ T~~[( j„).
These points are summarized explicitly in the
zero-range expression for the matrix elements of

TABLE V. Core admixtures in ground state of Ti.

ph
e{ph)
{MeV)

4(if~i2 }J.(ph}J' ol(tfiy~ }o)'
Protons Neutrons

J=4 J'=6 J'= 2 J-4

igs(2- ids/2
'

igz(2-«s/2

if5/2- 1P&/2

2P, /, -if, /2
'

ifS/2- ifz(2

igs/2-2~&/2

igz(2-2s ) (2

igs(2-ids(2 '

1gz/2- 1ds/2

if5/2- ip3/2

P1/2 fz/2

ifz/2-1P3» '

ifz/2 1P1/2

17.7

20.9

4.8

8.8

14.3

19.3

12.7

20.5

22.5

6.8

18.0

16.4

-0.06
-0.22
-0.05
-0.17
-0.04
-0.08

0.01
0.04
0.02
0.03

-0.04
-D. i 1

-0.02
-0.08
-0.03
-0.07

-0.03
-0.07

0.02
0.04

-0.04
-0.09

0.02
0.05
0.03
0.04

-0.01
-0.01
-0.03
-0.06

-0.01
-0.03

-0.04
-0.09

0.02
0.05

-0.19
-0.26
-0.14
-0.19

0.30
0.38

-0.11
-0.16

0.04
0.06
0.05
0.06

-0.10
-0.13
-O.07
-0.09

0.15
0.15

-0.14
-0.17
-0.10
-0.11

0.06
0.07

-0.07
-0.09

0.05
0.07
0.07
0.08

-0.12
-0.14

-0.05
-0.06

-0.16
-0.16

-0.09
-0.12

0.06
0.08

~The first entry for a given ph and J' is the amplitude obtained using first order perturbation
theory and the second entry is the amplitude obtained using the renormalized coupling inter-
action.
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TABLE VI. Core admixtures in (1gs/2 ) configuration in Zr.

ph
e(ph)
(MeV) J=2

+(~&gg/2 ~~. ~Ph&' Dl&4'9/2 &0)

Protons Neutrons
J=4 J=6 J=S J=2 J=4 J=6 J=8

1&«/2-ifZ/2 ' 12.5

2fZ/2-2p3/ 15.0

ii„l, ig, /,
-' 13.0

i~s/2-ifs/2 ' 14 5

igZ/2- 1d3/2
1 15.0

-0.06
-0.22
-0.05
-0.17
-0.05
-0.12
-0.01
-0.11

-0.02
-0.08
-0.03
-0.08
-0.03
-0.05
-0.01
-0.04

-0.01
-0.04
-0.02
-0.04

-0.00
-0.00

-0.17
-0.25
-0.13
-0.19
-0.12
-0.15
-0.04
-0.09
-0.16
-0.24

-0.19
-0.13
-0.07
-0.10
-0.06
-Q.Q7

-0.02
-0.04
-0 ~ 10
-0.11

-0.06
-0.08
-0.04
-0.05

-0.06
-0.05

-0.03
-0.04

-0.04
-0.Oi

2ds/2- igs/2 4 5

ik 11/2- if5/2 9.5

iaaf

1/2-2p3/2
' 10.5

igZ/2- id5/2 17.0

igZ/2-2S1/2 16.0

0.01
0.02

-0.04
-0.08
-0.04
-0.08

0.02
0.03
0.02
0.03

-O.04
-0.07
-0.01
-0.03

0.02
0.01

-0.03
-0.07

0.21
0.31

0.03
0.04

0.12
0.13

-0.06
-0.07
-0.11
-0.13

0.04
0.05
0.06
0.07

0.07
0.05

-0.07
-0.09
-0.05
-0.06

0.06
0.07

-0.OS

-0.10

ig'z/2-1 gs/2
'

1&s/2-ifZ/2 '

1&s/2-2P3/2
'

17.5

15.5

iif3/2 id5/2 26.0

i&s/2-2P1/2 14.0

0.00
0.03

0.02
0.04

0.01 0.00
0.00 -0.01

0.02
0.04

Q.Q2 0.02
0.04 0.04
0.01 0.02
0.03 0.04

—0.07
-0.12

0.03
0.04

0.04
0.06

-0.06
-0.08
-0.10
-0.13

0.04
0.05
0.03
Q.04

0.02
0.02

—Q. 10
-0.12

0.Q4

0.05
0.05
0.06

0.01
0.00

-O. 12
-0.12

Q. 04
0.06

ih11l 2-2p1/ 2

2d3/2-igs/2 '

9.0

6.5

1113/2 3/2 24.0

0.01
0.01

0.01 0.01
0.02 0.01

-0.05
-0.07

0.03
0.03

-0.08
—0.09
-0.08
-0.09

0.02
0.02

O.02
0.02

P1/2- P3/2 3.5 -0.10
-0.37

2P 1/2 if5/2

igs/2- 1d5/2

2P1/2- ifZ/2
'

igs/2-2si/2-1

igs/2-id3/2 '

4.0

13.5

5.5

12.5

11.5

0, 10
0.24

-0.04
-0.14

-O.Qi
-Q.Q2

-0.06
-0.12
-0.03
-0.04
—0.03
-0.06

-O.OI

0.02

-0.03
-0.05

~The first entry for a given ph and J is the amplitude obtained using first order perturbation
theory and the second entry is the amplitude obtained using the renormalized coupling inter-
action.
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f, Eqs. (88)-(91), where it is seen that dominant
terms are proportional to

We also note that the amplitudes for some of
the positive parity 1A~ excitations are quite large,
particularly in the calculations where G' has been
used. Our estimate of these large admixtures is
undoubtedly unreliable and it would appear neces-
sary to include the second order terms in estimat-
ing 5W to improve this situation. Additional in-
dications that the second order terms may be
important in some cases will be seen in the next
section.

Agassi and Schaeffer" have previously reported
the results of a. first order estimate of the effect
of core polarization in the excitation of 2' states
in various nuclei. The 0' - 2' transition in "Zr
is the only point of overlap between the calcula-
tions of Ref. 16 and the present work. Agassi and
Schaeffer obtained a particularly small core po-
larization effect in this case while we obtain a
large effect as will be seen in the next section.
From their published amplitudes we find that the
core coupling interaction they have used is quite
similar to the KK force used in the present work;
however, we note that they have used a much
smaller excluded space than we have (all 2kur
excitations} and thus they have missed several
important core admixtures.

C. Radial transition densities and radial form factors

sities have shapes which are very similar to the
complete proton and neutron transition densities.
This is a typical feature of the transition densi-
ties obtained for most of the transitions considered
in this work. It was anticipated in the overlap
argument used in the discussion of the enhance-
ment and retardation effects due to core polariza-
tion given in Sec. III 0. The results for the SP„,
-2f„, transition in 'o'Pb is a case where the dif-
ferences in shape between the valence transition
densities and the complete proton and neutron
transition densities are the largest. Even here
the differences are not too great in the important
surface region.

The radial form factors obtained by averaging
the real part of V over the transition densities of
Fig, 4 are shown in Fig. 5. The distributions in
Fig. 5 are quite similar to those shown in Fig. 4,
except that the neutron functions are increased in
size relative to the proton functions. This occurs
because V~=SV~~. The main point is that the
projectile-target interaction acts much like an
overall scaling factor for the transition densities.
Because of the finite range of this interaction the
averaging does tend to smear out the transition
densities slightly. This has the effect of reducing,
to some degree, the importance of any shape dif-
ferences between the various transition density
functions.

The above discussion suggests that the results
for the (e, e') and (p, p') reactions can be quali-

Before examining the (e, e'} form factors and

(p, p') differential cross sections which are the
final results of this paper, it is useful to discuss
the radial transition densities and radial form
factors which provide the link between the wave
functions described in the preceding section and
these final results. The radial transition den-
sities and the radial form factors were defined
in Sec. II. These functions are the matrix ele-
ments of the one-body operators for which we are
calculating the renormalization due to core po-
larization.

The ISJ= 202 transition densities for 0' —2'
transitions in ' Ti and Zr, the lh9„- 2f, &, tran-
sition in '~Bi, and the 3p„,-2f„, transition in
'~Pb are shown in Fig. 4. The valence transition
densities as well as the complete proton and
neutron transition densities [ D+( C)pand D+ C(n)j
obtained with core polarization included are shown
in each case. %'e have shown the results obtained
using the renormalized core coupling interaction,
although for our purposes here the first order re-
sults would have served equally well. . For the
first three transitions the valence transition den-

5
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~ -t

22
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5
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Quadrupole transition densities
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u
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FIG. 4. Transition densities for I- =2 transitions in
Ti Zr, Pb, and + Bi.
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8-
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6-
5-
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-"" 2I
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Quadrupole form factors—--- 0
0+C (p)———D+ c(n}

I

Ti ( 0'—2')
/

/

Zr (0 2')

~ /

i

/
/

»/
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/

/

/

0~
j I'
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FIG. 5. Form factors obtained from transition den-
sities of Fig. 4.

g FLSI(2,)2.
f» FALSI (&)&L+2d+ & (95)

f FALSI(+)&L+2d&
4 g F SI( L)&L»2d&

Py
(963

which measure the contribution to the nuclear
transition densities from core polarization rela-
tive to the valence transition density. %e then
assume that the effect of core polarization on the

tatively understood by comparing the relative mag-
nitudes of a single moment of the various transi-
tion density functions, most logically the lowest
moment, and by introducing appropriate scaling
factors which axe characteristic of these reac-
tions. For (P, P') the scaling factors are the rel-
ative strengths of the various components of the
projectile-target interaction and for (e, e') the
scaling factors are the nucleon charges, i.e.,
e~ = 1 and e„=0. A comparison of this type is
useful, because it allows the general features of
the results to be displayed in a transparent and

compact form The (.P, P') differential cross sec-
tions and (e, e') form factors do show some sen-
sitivity to higher moments of the transition den-
sities, "so any fine details in the results can only
be seen by calculating these quantities as pre-
scribed in Sec. II. These final results will be
shown in the next section, after we make this
rough compa, rison.

To make this comparison in cases where there
are valence protons, we divide the complete proton
transition density into valence and core parts and
introduce the parameters

(p, p') cross sections can be adequately charac-
terized by the enhancement factor which was intro-
duced in Eq. (62). In terms of X2LsI and XLsI this
factor is approximately given by

~Ls J'(p) 1+qI sJ' + o ) LsI (97)

where ns = V~/V222. In a similar fashion we intro-
duce the effective charge

JP
y + gJOJ

eff (96)

to characterize the effect of core polarization on
the (e, e') form factors. The effective charge has
precise meaning for inelastic electron scattering
in the low q limit, corresponding to y decay, be-
cause only the lowest moment of the proton tran-
sition densities come into consideration here.
This was pointed out at the end of Sec. IIB. In
cases where there are valence neutrons the def-
initions of XLsJ a d ~„"' a.re modified:

J'» FALSI( ) L+2d~
2 Jca y, L 2I (~)» L + 2LI2, t

0 nt/

(99)

(100)

and

sLsI(s} I+ ~ -I) LsI +~LsI
Jn gJ0Je«f

(101)

(102)

SSLs'(q) =1+n02(q)XsI+ o's(q)X', sI,
eI» + () JOI ~glOI)

where

MLS J MLS J +MLS J MLS J MLS J MLS J
0 P n t 1 P n

ns(q) = 2(V,', + V„')/V,'„
LSs (q) = 2(V22 —V2„)/V22.

(102)

(104)

(105)

(106}

Equations analogous to those just given have
previously been used by Atkinson and Madsen
to compute enhancement factors for normal parity
transitions in (p, p') scattering from known effec-
tive charges. They assumed isoscalar coupling
and so took X~J =A.J' . Using these relations in
this manner is quite similar to the application of
the schematic model made by Love and Satchler. "
These relations might also be used as the basis
for a phenomenological study of the available ex-
perimental data. Schaeffer" has used scaling

As it is sometimes convenient t'o talk in terms of
the isoscalar and isovector contributions to e2 (q)
and eIff, it is also useful to give Eqs. (97}, (96},
(101}, and (102) in terms of these quantities.
These expressions are



CORK POLARIZATION IN INELASTIC SCATTERING 859

factors, similar to the A~~ ~ introduced here, in a
study of some experimental (P,P') and y-decay
for collective excitations in various nuclei. The
purpose of this study was to gain information about
the relationship between the proton and neutron
transition densities for transition of this type. In
the present work we obtain ~~~~~ and g~~~ directly
from the calculations and this scheme is only being
used to summax ize our results.

Table VII contains the results we have obtained
using first oxder perturbation theory for all of
the allowed S=O transition densities which occur
in the cases being considered. The parameters,

, A,o~, and A., are shown in each case
with the corresponding values of e~ and e,ff
computed according to Eqs. (97), (98), (101), and

(102) or the equivalent relations Eqs. (103)-(106).
In these computations we have used go =2.75
which is satisfactory for our choice of V as was
discussed in Sec. IIA 2. Corresponding to this
value for n„we have no(P) =1.88, no(P) =-0.88,
+00(n) = 0.68, and ao'(n) = -0.32 in the isospin nota-
tion.

Also shown in Table VII are values of e~ and

e,«which have been estimated from the available
experimental data. The experimental values of
&~~0~ ha, ve been obtained by taking the square roots
of the ratios of the experimental and theoretical
valence integrated cross sections. Only the real
part of V has been used in calculating the theoret-
icaL valence cross sections as we wish to keep
separate the effect of the imaginary part of V

TABLE VII. Parameters for S =0 transition densities from first order calculations.

Transition Theory
Target Jf (JOJ) A& A A, A.

& e~&f

Experiment
~J'0 J'

8t3rg 6P

4'Ca

89'

2 (202) 0.68 0.23
(4o4) o,4s o. iv

e' (eoe} o.22 o.os

2' (202) 0.22 0.88
(4o4) o.ie o.vo

6' (606) 0.07 0.43

(505) O. 28 0.74

0.91 0.45 0.68 1.47
0.65 0.31 0.48 i.34
0.30 0.14 0.22 1.16

1.10 -0.66 1.22 3.65
0.86 -0.54 1.16 3.09
0.50 -0.36 1.07 2.25

1.02 -0.46 1.28 3.32

f.v+O. f '

1.7 ~ 0.2"
1.4 + 0.1

2 03c
2 12c

5 34
4 86

9CZr 2' (202) 0.31 f .22
4+ (404) 0.23 0.97
6' (606) 0.12 0.74
8' (808) 0.08 0.45
5- (SOS) O 28 O v4

Pb g (202) O. 62 0.38

(202) O.58 0.36

(VOV) O.39 O.32

p (404) 0.6 1 0.39

i.s3 -o.91
1.20 -0.74
0.86 -0.62
0 ~ 53 -0.37
1.02 —0.46

1.31 4.92
1.23 3.90
1.12 3.16
1.08 2.54
1.28 3.32

2.8+ 0.4'
2, 1 + 0.3

~ ~ ~

1.4+O. i ~

6.45"
S.39"
4 94&

6,35"
4.55

0.7 f 0.07 0.39 1 .46

1 00 0 22 0 61 1 61

3.OV
'

2.63 '

1.00 0.24 0.62 1.60 0.93 + 0.01 " 2.50

0.94 0.22 0.58 1.57 0.75 + 0.02" 1.91

209Bi (202}
(404)
(606)
(808)

(303)
(sos)
(vov)
(9O9)

(if Of 1)

1 ~ 63 -0.87
1.55 -0.89
1.42 -0.90
1,18 -0.82

0.38 1 .25 1.38
0.33 1.22 1.33
0.26 1.16 1.26
0.18 1.00 1.18

0.38 1.32 1.38
0.24 1.10 1.24
0.14 0.81 1.14
0.08 0.53 1.08
0.01 0.37 1.01

4.82
4.68
4.44
3.93

2.3+ 0.6

5.01 5.3 + 0.7 24.0
4.27 ~ ~ ~ ~ ~ I

3.38
2.54
2.03

See text for comments on the manner in
which the numbers listed in these columns
have been obtained.

See Refs. 54 and 55.
'See Ref. 56.

See Refs. 54 and 57-59.
See Refs. 44 and 45.
See Refs. 54 and 58.

ISee Refs. 58-61.

See
See
See

"See
'See
See

'See
See

Refs. 18, 39, and 46.
Ref. 58.
Refs. 62 and 63.
Ref. 64 ~

Refs. 42 and 65.
Refs. 66 and 67 ~

Refs. 66-68.
Ref. 17.
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which will be discussed later. The experimental
data were taken from the references indicated in
the table and the experimental integrated cross
sections have been determined by normalizing
the results of distorted-wave Born approximation
collective model calculations69 to the experimental
differential cross sections. For transitions where
data are available at more than one incident proton
energy, the experimental ~~

~ shown are average
values. In all but a few instances the experimental
&~~0~ were found to be nearly energy independent.
The optical model parameters used in calculating
the collective model cross sections and the theo-
retical valence cross sections have been taken
from the same references where the experimental
data were found. Most of these parameter sets
have been included in Table XII. For 2p, /2 1&9(z
transition in ~Y and the 1&9&,- 2f„, transition in
'~Bi it was not possible to determine the experi-
mental e~' because more than one LSJ transfer
is observed to contribute to the experimental cross

section in these cases.
The references containing the data which were

used to determine the experimental values of e,ff
are also shown in Table VII. Generally there was
more than one piece of data available for each
determination. For transitions where electron
scattering data were available two methods were
used to extract the experimental effective charge.
One of these methods was to determine e„, from
the values of B(EJN) obtained from transition den-
sities which were fitted to the experimental form
factors. The second method was to normalize the
peak value of theoretical valence form factors to
the peak value of the experimental form factors.
It has been suggested'~ that the second method is
somewhat more reliable than the first. The sen-
sitivity of the experimental effective charges to
the theoretical radial wave functions was also
checked. In most cases the changes in the effec-
tive charge due to reasonable changes in the ra-
dial wave functions were well within the variations

TABLE VIII. Parameters for 8 =0 transition densities obtained using renormalized coupling
interaction.

Transition
Target J~ (J 0J)

Theory
yIOJ' y J'0 J yJ'OZ yJOJ' e J'

~ JO J'n 0 1 elf

Experiment ~

e J' ~J'0 J
eff P

"Ca 2' (202) 0 ~ 98 0.83
4' (404) 0 6 f 041
6' (606) 0.25 0.14

1.81 0.15
f .02 0.20
0.39 0.11

0.98 2.18 1.7 + 0.1

0.61 1.62
0.25 1 .23

2.03
2.12

88'

(202) 0 8 f f.36
4' (404) 0.40 0.90
6' (606) O. 18 0.49

(505) 0.35 0.79

2.17 -0,55
1.30 -0,50
0.67 -0.31

1.81 5.61 1.7 + 0.2
1.40 3.95 1.4 + 0.1

118 253

1.14 -0.44 f .35 3.52

5.34
4.86

80Z 2'
4+

6

5

(202) f .30 2.07
(404) 0.66 1.37
(606) 0.33 0.89
(808) O. 16 0.49
(505) 0.35 0.79

3.37 -0.77
2.06 -0.71
1.25 -0.56
0.76 -0.33
1.14 -0.44

2.30 7.95 2.8 + 0.4 6.45
1.69 5.43 2. 1 + 0.3 5.39
1.33 3.78 4.94
1.16 2.51 6.35
1.35 3.52 1.4 + 0.f 4.55

207Pb

3w

2

(202) 0.85 1.10 1.95 -0.25 0.85 2.41 0.93 + 0.01 2.50

(202) 0.87 1.20 2.07 -0.33 0.87 2.51 0.75+0.02 1.91
f3+
2 (707) 0.41 0.59 1.00 -0.18 0.41 1.74

(404) 078 082 1 60 -004 078 2 10

3.07

2.63

208Bi
(202)
(404)
(606)
(808)
(303)
(505)
(707)
(909)

(11011)

0.87 1.63 2.50 -0.76
0.80 1.65 2.45 -0.85
0.60 1.39 1.99 -0.79
0.36 1.06 1.42 -0.70
O. 14 f .42 1.56 -1.28
0.14 1.05 1.19 -0.91
012 068 080 -056
0.05 0.49 0.54 -0.44
0.02 0.35 0.37 -0.33

f.87 6.35 2.3 +0.6
1 SO 634
1.60 5.42 ~ ~ .
1.36 4.28 ~

1. .14 5.05 5.3 + 0.7
114 403
1 12 2 99 ~ ~ ~

i.05 2.39 . ~ '
i.02 1.98 ~

See text for comments on the manner in which the numbers listed in these columns have
been obtained. References for experimental values have been given in Table VII.
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noted in the experimental data. An exception to
this is the lh„, —2f», transition in "'Bi where
harmonic oscillator radial wave functions and
finite well wave functions ' produced values for
8 «which differed by nearly a factor of 2. The
experimental values for e,«shown in Table VD
are averages of the values determined from the
various sets of experimental data according to the
methods described above. The uncertainties shown
are average deviations which are mainly due to
fluctuations in the experimental data.

Table VIII contains a summary of the results we
have obtained for the S= 0 transition densities in
the calculations using the renormalized core cou-
pling interaction of Eq. (67). The format of this
table is identical to that of Table VII.

The results obtained for the S= 1 transition den-
sities using first order perturbation theory are
shown in Table IX. In calculating the theoretical
values of ~~'J, it was assumed that n, =-0.20
which corresponds to n', (p) =0.40, n', (p) =0.60,
n', (n) = -2.00, and a', (n) = -2.00. These are again
satisfactory for our choice of V. No experimental
values for &~'J are shown because S=1 amplitudes
were not found to be dominant in any of the tran-
sitions which we have considered. The results
for the S =1 transition densities obtained using G'
for the core coupling interaction do not differ
greatly from the first order results; therefore,
they have not been shown. The differences are
small because we have assumed that O' - G is
spin independent. Even if the appropriate spin
dependence had been included in O' -G, the re-
sults would not have been effected greatly. The
main thing to notice in Table IX is the retardation
of the S=1 amplitudes compared to the enhance-
ment of the S=0 amplitudes apparent from Tables
VII and VIII.

From Table VII we see that the first order cal-
culations predict important core polarization cor-
rections for the S =0 amplitudes, even for the
highest multipoles considered. In all cases, how-
ever, the correction falls somewhat short of ex-
periment. The most notable feature of these cal-
culations is that they predict a large isovector
component in the S =0 transition densities. This
is not borne out experimentally for the transition
where both electromagnetic and proton scattering
data are available. This may be seen by comparing
the theoretical and experimental results for the
polarization charge (6e,« =X~~'~) and the corre-
sponding factor for proton scattering
(6m~~™=a~' —1). For the cases where there are
valence protons the first order calculations give a
better estimate of 6&~ than they do of Oe,«while
the reverse is true for the transition involving
valence neutrons.

From Table VIII we see that the main effect of
interactions in the excluded space, as determined
by our calculations using G' as the core coupling
interaction, is to increase the isoscalar compo-
nents of the S=O transition densities relative to
the isovector components which in turn brings
improved agreement with experiment. The mag-
nitude of this effect decreases with increasing

TABLE IX. Parameters for S= 1 transition densities
obtained from first order calculations.

Target J& (LIJ} gLIJ gL,IJ yLIJ' ~LIJ
0 f &p

89y

207Pb

209B.

(314)
{514)
(515)

(515)

p (212)
(213)
(413)
(0«)
(211)
(212)
(516)
(716)
(717)

p {213)
(413)
(414)

(011)'
(211)
(212}
(213)
{413)
(414)
(415)
(615)
(616)
(617)
(817)
(818)
(112)
(312)
(313)
(314)
(5«)
(515)
(516)
(716)
{717)
{718)
(918)
(919)

(9110)
(11110)
(11 111)

-0.45 O. 08 -0.37 -0.53 0.53
-0 28 0 05 -0 23 -0 33 071
-0 ~ 25 0.05 -0.20 -0.30 0.74

-0.25 0.05 -O.20 -0.30 0.74

0.05 -0.41 —O.36
0.03 -0.32 -0.29
0.04 -0.27 -0.23
0.05 -0.20 -0.15
0.09 -0.44 -0.35
0.06 -0.39 -0.33
0.05 -0.45 -0.40
0.02 -0.11 -0.09
0.03 -0.29 -0.26
O.06 -0.42 -0.36
0.08 -0.34 -0.26
0.06 -0.38 -0.32

0.46 0.34
0.35 0.53
0.31 0.53
0.25 0.55
0.53 0.11
0.45 0.31
0.50 0.30
0.13 Q.79
0.32 0.56
0.48 0.28
Q.42 0.26
0.44 0.32

-0.28
-0.38
-0.40
-0.23
-0.32
-0.38
-0.16
-0.25
-0.33
-0.09
-0.17
-0.33
-0.22
-0.30
-0.29
-0.21
-0.22
-0.23
-0.13
-0.13
-0.16
-0.04
-0.07

0.13
0.00

-0.04

0.06
0.09
0.11
0.09
0.10
0.11
0.09
0.09
0.11
0.08
0.09
0.10
0.09
0.11
0.11
0.09
0.10
0.09
0.08
0.08
0.06
0.06
0.05
0.03
0.04
0.03

-0.22
-0.29
-0.29
-0.14
-0.22
-0.27
-0.07
-0.16
-0.22
-0.01
-0.08
-0.23
-O. 13
-0.19
—0.18
-0.22
-0.12
-0.14
-0.05
-0.05
-0.10

0.02
-0.02
-0.10

0.04
-0.01

-0.34 0.71
-0.47 0.61
-0.51 0.58
-0.32 0.76
-0.42 0.66
-0.49 0.60
-0.25 0.82
-0.34 0.73
-0.44 0.65
-0.17 0.90
-0.26 0.84
-0.43 0.65
-0.31 0.77
-0.41 0.68
-0.40 0.69
-0.30 0.88
-0.32 0.77
-0.32 0.75
-0.21 0.86
-0.21 0.86
-0,22 0.83
-O.01 0.94
-O. 12 0.92

0.16 0.87
-0.04 0.99
-0.07 0.95

~The valence transition is strictly forbidden in this case
so X "cannot be defined. Core polarization does not
break this selection rule to any great extent.
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TABLE X. Comparison of the results of this work (PW) for some quadrupole transitions
with results obtained previously by Siegal and Zamick (SZ).

PW(GKK)
Core Transition A,20

SZ(G~) '
y202 y202

0

I w(G') '
p

202 g202
0 i

SZ(TDA) b

g202 y202
0 i

Ca if7/2- if7/2 0 91 +0 45 0 80 +0 38 1 81 +0 15 1 86 +0 30

PW denotes present work. Glo refers to first order calculations and G' refers to calcula-
tions with renormalized coupling interaction.

"SZ denotes Siegal and Zamick (Ref. 10). TDA refers to the treatment of excluded space
interactions in the TDA approximation.

multipolarity. In Table X we compare the results
of our first order calculations and our calculation
using G' with the first order and TDA results of
Siegal and Zamick" for LSJ= 202 and the lf„,- lf„2 neutron transition assuming a 40Ca core.
We conclude that our result obtained using 6' is
consistent with the estimate of excluded space
interactions using the TDA. It was not possible to
make a similar comparison for any of the higher
multipoles we have considered; however, the de-
crease in the importance of excluded space inter-
actions with increasing multipolarity, predicted
by our calculations with G', is consistent with the
results of TDA and RPA calculations~ for closed
shell cores which indicate that the collectivity of
core excitations decrease with increasing multi-
polarity.

Although the results obtained with G' are a def-
inite improvement over the first order results for
5~, some important discrepancies still appear in
Table XI. One is that the theoretical values of

fall off somewhat faster with increasing mul-
tipole than do the experimental values. In the
next section it will be seen that this discrepancy
is removed when the imaginary part of V is
introduced.

Another discrepancy is the relatively poor values
obtained for the effective charge in the case of the

0' - 2' transitions in "Ca and Zr while the theo-
retical e,«' for the 0'- 2' transition in "Ti ap-
pears to be adequate. The B(E2) for the 6' - 4'
transitions in 'Ca and ' Ti and the 8'- 6' tran-
sition in ~DZr have been determined experimental-
ly."'" The experimental values of e,«' for these
transitions are compared with the theoretical re-
sults we have obtained using 6 and C' in Table XI.
We note that our model for core polarization pre-
dicts that e,ff for the transitions between the two
upper states of a (j') configuration should be the
same as for the 0' -2' transition. This is borne
out by the data only in the case of Ti. For "Ca
our theoretical result for e,«' is in quite good
agreement with the experimental value for the
6' - 4' transition which is only about half the value
required for the 0'- 2' transition. Experimentally
the situation is about the same for Zr. We con-
clude that it is necessary to include second order
terms in estimating 5V in order to resolve these
discrepancies. This is consistent with the sug-
gestion of others" "that 4p-2h admixtures are
important in Ca and Zr.

The final discrepancy we note is that the calcu-
lations fail to reproduce the large values of e,ff'
and cp303 required to explain the 1he/2- 1$3/2 trm-
sition in Bi. It is well known" that there are
important contributions to this transition from

TABLE XI. Effective charges for some quadrupole transitions not considered in Tables
II, VII, and VIII.

Nuclide Transition
Theory

elf (GKK) e@g2(G')
Experiment

2e

42( a
"Ti
sOZr
208pb +p
'"Pb+n

208pb + -i

6+ 4'
6' 4'
8+ 6+

ihs/2 its/2
M5/2 2$ i /2

2gs/2 2gs/2
«is/2 «is/2

0.68
1.22
1.31
1.35
0.37
0.36
0.81

0.98
1.81
2.30
2.27
0.55
1.04
1.22

0.8 + 0.1

1.8 + 0.3
2.1 +0.1
1.5+ 0.1'

(0.42 + 0.01)
(o.84+ o.o7) '
(0.96+ 0.04) '

~See Ref. 72.
"See Ref. 59.

See Ref. 64.
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admixtures of low-lying particle-vibration states
in the single particie states, i.e., ~ Ih„,x 3;—, )
and ~li»„x 3;—,), where 3 is the first excited
state of the '~Pb core. It would be possible to
reproduce this effect by introducing a spin-inde-
pendent J =3 component in C'; however, since we
have no independent way of fixing the strength of
this component a more reasonable approach would
be to introduce these admixtures explicitly. This
has been done elsewhere" and a reasonable de-
scription of the (p, p') cross sections for this tran-
sition has been obtained. In these calculations it
was necessary to include both the contribution
from these low-lying pa.rticle-vibration admix-
tures and the contribution due to admixtures of
states formed from higher-lying 3 core excita-
tions. The results shown in Tables VII and VIII
for the 1&9/2 1$~/z transition are representative
of the latter contribution only.

A previous estimate of the (p, p') cross section
for the lh„,- 2f», transition in '09Bi has also
been made. " The first order wave functions of
this work were used in this calculation. The cal-
culations predicted important contributions to the
cross section from all allowed J'OJ amplitudes.
This result was found to be consistent with the
experimental data. An estimate of the modifica-

tion of the first order results due to the addition
of contributions from low-lying particle-vibration
admixtures was also made. Specifically, contri-
butions from the particle-vibration states formed
from the first 2', 4', 6', and 8'excitations of the
'~Pb core were introduced. Kith these contribu-
tions, the first order ~~

' were increased to
&202 6 g4 p 6 56 q80f) 5 ] q and gMS

These values are in good agreement with the re-
sults we have obtained using G' as the core cou-
pling interaction. This is another indication that
the effect of core correlations ean be reproduced
by using a rather simple effective interaction in
calculating W.

F2 effective charges are known" for several
transitions in the Pb region where there are no
inelastic scattering data available. As an addi-
tional check on the consistency of our calcula-
tions we have calculated these effective charges.
The results have been included in Table XI. The
agreement between theory and experiment is quite
good, with the possible exception of the result
for the 1A9/, -1h», proton transition.

D. Cross sections and form factors

In this section we compare our theoretical (P, P')
cross sections and (e, e') form factors directly

TABLE XII. Optical parameters used in the present calculations.

E V r() a S' WD r() a,' Vs rs as
System ~ (Me V) {MeV) (fm) (fm) (Me V) (Me V) (fm) (fm) (Me V) (fm) {fm)

42Ca+p b

50T ~

p c

Tl+p
88Y+p e

89Y+p f

89Y+p c

90zr+p h

"Zr+p'
207Pb p

i

22.9 46.9 1.18 0.700 1 30
17.5 48.3 1.24 0.600 0.00
40.0 44.9 1.16 0.750 7 82
18.9 52.6 1.20 0.700 0 ~ 00
24.5 46.6 1.23 0.627 0.00
61.2 39.5 1.20 0.693 5.12
18.8 52.0 1.20 0.700 0.00
61.2 39.5 1.20 0.693 5.12
20.2 53.0 1.25 0.650 0.00

6.80
10.68
1.14
9.80

10.9
2.54
9.25
2.54

10.0

1.30 0,600 6 00
1.26 0.520 10.00
1,37 0.630 6.04
1.25 0.650 5.70
1.28 0.536 7.00
1.40 0.534 6.92
1.25 0.650 6.20
1.40 0.534 6.92
1.25 0.760 6.00

1.05 0.700
1.24 0.600
1.06 0.738
1.20 0.700
1.23 0.627
1.00 0.861
1.20 0.700
1.00 0.861
1.20 0.470

We write the optical potential

U- V(1+e )- jS(1+e )- +4iW~~(1+e )- +(h/m~c) Vs (1+e s)-

where

&/3 r- roA r- r, Ai/s i/3
S= j X +Sa a as

and to
bsee

See
~see
'See
'See
~see

See
'See

which is added the Coulomb potential of a uniformly charged sphere of radius 1.25A
Ref. 56.
Ref. 75.
Ref. 45.
Ref. 76.
Ref. 77.
Ref. 78.
Ref. 46.
Ref. 65.
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TABLE XIII. Parameters for ground state proton
distributions.

Nuclide
~o

(fm+}
C

(fm) (fm)

42(

50Ti b

88@c

80Zr c

20?Pb d

0.069
0.073
0.073
0.074
0.063

3.83
3.92
4.80
4.85
6.63

0.595
0.553
0.568
0.568
0.527

It is assumed that the density distribution is given
by pl, (r) = po(i + exp[(r —c)la)) ~.

See Ref. 54.
'See Ref. 79.

See Ref. 80.

only the real part of V. The shape of the experi-
mental differential cross sections favor the for-
mer. We also note that the effect of the imaginary
part of V increases with increasing multipole.

The theoretical (e, e') form factor for the exci-
tation of the first 2' state in 4'Ca is compared with
the data of Ref. 65 in Fig. V. In the calculation we
have used the transition density of Table VIII.
There is no valence form factor in this case, be-
cause the assumed model space consists only of
neutron configurations. The theoretical result
falls short of the data by about a factor of 3 as
was pointed out previously. This deficiency in
the theoretical wave functions does not show up
in (p, p') results because neutron excitations are
dominant there.

with experiment. The discussion will be brief
since many of the important points have already
been covered above. The optical model parame-
ters used in the D%'A calculations are summarized
in Table XII. The ground state proton density
parameters used in estimating the imaginary part
of V are summarized in Table XIII.

4~Ca

The theoretical (p, p') cross sections for the ex-
citation of the first 2+ and 4' states in ~Ca are
compared with the 22.9 MeV experimental data of
Ref. 56 in Fig. 6. The dotted curves D(HJ) are
the results obtained using only the real part of
V and the valence wave functions of Table II. The
solid [D+ C(HJ) j and dashed [D+ C(HJ) + Im]
curves are the results obtained with the transition
densities of Table VIII using only the real part
of V and both the real and imaginary parts of V,
respectively. We do not show the results obtained
with the transition densities of Table VII, because
the differences between the calculations using 6
and C' have been adequately discussed in the pre-
ceding section. The values of e~ shown in the
figure are the square roots of the ratios of the
D+C(HJ) and D(HJ) integrated cross sections.
They differ somewhat from the values based on
Eq. (101) and Eq. (103) which were given in Table
VIII as expected. The value of e, provides a mea-
sure of the importance of the imaginary part of V,
i.e., e,' is the ratio of the D+ C(HJ+ Im) and
D+ C(HJ) integrated cross sections.

The agreement between experiment and the the-
oretical results with core polarization included is
quite reasonable. We see clearly that the effect
of core polarization decreases only slowly with
increasing multipole. The theoretical cross sec-
tions obtained with the imaginary component of V

included in the calculations have slightly sharper
structure than the cross sections obtained using

2 T/

IO

io' =

42
Ca + p Ep= 22.9 MeV

D + C (HJ + Im)

0+ C {HJ)
g (HJ)

+ Q = -1.52 MeV
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&p 2'15 &I 1'1

U

b

-l
4 Q = -2.76 MeY

LSJ = 404

Ep = 1.57

I= 1.21

IO 0 80 i 20 I 60
ec.m. (dsg)

FIG. 6. Theoretical (p, p') cross sections for first
2+ and 4+ excitations in 42Ca with E& =22.9 MeV.

The theoretical (p, p') cross sections for the
excitation of the first 2' and 4' states in ' Ti are
compared with the 17.5 and 40.0 MeV data of
Refs. 37 and 38 in Fig. 8. The format of the fig-
ure is the same as that of Fig. 6. With the ex-
ception of the values of «» the results for Ti
have the same general characteristics as the re-
sults for 2Ca. The increase in the values of
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state in "Ca.
-5

IO

Ep for "Ti, compared with "Ca, is not due to an
increase in the strength of core polarization in
' Xi. It only reflects that the valence cross sec-
tion D(HJ) for ' Ti are smaller, because the model
space includes only proton configurations in this
case.

The theoretical (e, e') form factors for the ex-
citation of the first 2' and 4' states in ' Ti are
compared with the data of Refs. 54 and 58 in Fig.
9. Here we have shown the results obtained using
the wave function of Table II (D) and the transi-
tion densities of Table VIII (D+ C). The results
here show rather clearly the importance of F4
polarization.

IO I I ~ I

0.4 O.S
I I J I I

1

l.2 l.6 2.0 2A 2.8
q(fm ')

FIG. 9. Theoretical (e, e') form factors for first 2+

and 4+ states in 5 Ti.

3. ~Zr

The theoretical (p, p') cross sections for the
excitation of the first 2', 4', 6', 8', and 5 states
in ' Zr are compared with the 18.8 and 61.2 MeV
data of Hefs. 39 and 43 in Figs. 10-12. The I.SJ
=515 contribution to the 5 cross section was
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FIG. 8. Theoretical (p, p') cross sections for first
2+ and 4+ states in 50Ti with E& =17 5 and 40 0 MeV
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FIG. 10. Theoretical (p, p') cross sections for first
2+, 4+, 6+, and 8+ excitations in Zr with E& =18.8
MeV. DirectLSJ=202 cross section has been multi-
plied by 10.
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FIG. 12. Theoretical (p, p') cross sections for exci-
tation of first 5 level in +Zr at E& =18.8 and 61.2 MeV.

found to be negligible and has not been shown.
Results for the excitation of these same levels by
40 MeV protons have previously been presented
elsewhere xs

Again the overall agreement between experi-
ment and the theoretical results with core polar-
ization included is reasonable. Relative to the
results for the 2', 4', and 6'excitations, the
cross sections for the 8' and 5 levels appear to
be underestimated at 18.8 MeV. The situation is
somewhat improved at 61.2 MeV. This improve-
ment is also evident in the 40 MeV results. Col-
lective model calculations"'"'" for the 8' and 5
excitations yield considerably larger values of
P~ at 18.8 MeV than at 40 and 61.2 MeV. This is
simply an indication that multiple excitation is
important for these levels at the lower energies.

The imaginary part of V is essential in repro-
ducing the forward peaks of the 61.2 MeV cross
sections for all of the excitations except the 2'
level. It is also important in giving the correct
multipole dependence for the theoretical cross
sections. These same observations were made
with respect to the 40 MeV results for these same
excitations. " These effects do not show up so
clearly at 18.8 MeV partly because of the difficulty
in reproducing the 8' and 5 cross sections at this
energy and partly because the shapes of the angular
distributions are not so distinctive at the lower
energies. The latter remark applies equally well
to the 22.9 MeV results for ~Ca and the 17.5 MeV
results for 'OTi. The effect of the imaginary part
of V is starting to show up in the results for ' Xi
at 40 MeV; however, the picture is not complete
because of the limited range of multipoles which
are available in this case.

The increasing importance of the imaginary part
of V with increasing multipole is a result of the
zero-range form of t,~ in contrast to the finite-
range form of t~&~. The results we have obtained
do not undeniably establish that the phenomenolog-
ical treatment" of the imaginary part of V is cor-
rect. We can conclude, however, that the multi-
pole dependence obtained in the calculations using
only the real part of T is inadequate and it is
interesting that the simple prescription for in-
cluding the imaginary part of V gives reasonable
results.

Even with the imaginary part of V included there
are still some deficiencies in the 61.2 MeV re-
sults. These occur mainly at back angles where
the D+ C(HJ+Im) results have more structure than
the data for the 2', 4', 6', and 5 excitations. In
addition, the D+ C(HJ+ Im} results for the 8' state
appears to underestimate the back angle cross
section. It has been shown'~'4' that the inclusion
of a spin-orbit component in V can improve these
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FIG. 13. Theoretical (e, e') form factors for first
2+ and 4+ excitations in 90Zr.

results. In addition, the presence of contribu-
tions from this interaction component does pro-
vide some direct evidence of the decreasing im-
portance of core correlations with increasing
multipolarity. "

The theoretical (e, e') form factors for the ex-
citation of the first 2' and 4' states in "Zr are
compared with the experimental data of Refs. 58,
60, and 61 in Fig. 13. The format of the figure
is the same as Fig. 9. Here again we have an ex-
ample of important E4 polarization.

89y

The theoretical (p, p') cross sections for the
+

first —, excitation in "Y are compared with the
18.9, 24.5, and 61.2 MeV experimental cross
sections of Refs. 76, 77, and 46 in Fig. 14. There
are four allowed L,SJ amplitudes for this transi-
tion. These are LSJ =314, 514, 505, and 515.
The contributions from the 514 and 515 ampli-
tudes were found to be negligible. The 505 ampli-
tude was found to be dominant, but the contribu-
tion from the 314 amplitude is appreciable, par-
ticularly at forward angles. This is consistent
with the fact that the —, level in "Y is known to

decay by M4 y emission. "
In Fig. 14 we have shown the LSJ =314 and 505

cross sections obtained using the real part of V
and the transition densities of Table VIII and IX.
%e have also shown the sum of these two cross
sections. As before these curves are labeled
D+C(HJ). The valence results, D(HJ), have not
been shown. The fourth curve shown D+ C(HJ+ Im)
is the sum of the LSJ =314 and 505 cross sections
obtained using both the real and imaginary parts
of V. For the LSJ =505 cross section at 24.5
MeV, a~ =3.16 and e, =1.37. At 18.9 and 61.2 MeV

e~ and e~ for the LSJ =505 cross section have
the same values that were given in Fig. 12 for
the excitation of the 5 state in 'OZr at these ener-
gies. (It is shown in the Appendix that the LSJ
=505 form factors for the & -,-' transition in "Y
and the 0' - 5 tra.nsition in "Zr are essentially
the same in our modei. ) For the LSJ = 314 cross
sections, e~ =0.51, 0.52, and 0.50 at 18.9, 24.5,
and 61.2 MeV. For this cross section e, =1.0 at
all energies, because we have taken the imaginary
part of V to be spin independent.

From Fig. 14 we see that the theoretical calcu-
lations do not reproduce the energy dependence of
the experimental cross sections exactly. The the-
oretical results are in good agreement with the
data at the lower energies, but a bit too high at
61.2 MeV. A similar discrepancy was noted in
the results for the 5 level in ' Zr, except that
the theoretical results were a little low at 18.8
MeV and in fairly good agreement with the data at
61.2 MeV. There is a noticeable difference in
shape, at forward angles, between the 61.2 MeV
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experimental cross sections for the excitation
in 'Y and the 5 excitation in Zr. This is con-
sistent with the presence of the LSJ =314 contri-
bution to the former. It appears that the LSJ = 505
contribution to the "Y cross section is slightly
overestimated in our calculation, so this effect
does not show up quite so clearly in our theoretical
results. %e conclude that the LSJ = 505 contribu-
tion to the cross section for the state in "Y is
somewhat smaller than the corresponding con-
tribution to the cross section for the 5 state in
"Zr, a feature which cannot be reproduced with
the simple model for core polarization that we
are using.

10'-

10

I I

Pb+ p

I I I——D + C(HJ + Im)

5 207Pb

The theoretical (p, p') cross sections for the
excitation of the first four single particle states
in ' 'Pb are compared with the 20.2 MeV experi-
mental data of Ref. 65 in Fig. 15. Results for the
excitation of these same levels at 39.5 Me V have
previously been presented elsewhere. " Contri-
butions from S =1 amplitudes were found to be
negligible in all cases and only S=0 contributions
to the cross sections are shown in the figure.
There are two interesting aspects to the results.
One is that e~ for the; excitation which goes by
LSJ=404 transfer is comparable to c~ for the

and —,
' excitations which proceed with LSJ=202

transfer. Other evidence for large L, = 4 core
polarization in the Pb region was seen previously
in the cross section for the excitation of the 2f„,
single particle state in '"Bi by 61.2 MeV protons. "
The other interesting feature is that there is a
shape difference between the cross section for
the ~ level and 2 level both of which are excited
by LSJ= 202 transfer. Although the theoretical
results do not give a completely accurate repro-
duction of the experimental data, they do show
this shape difference rather nicely. The difference
in shapes is due to the differences in the radial
wave functions for the valence neutrons in the two
final states. Similar effects are not seen in the
lighter nuclei, because the radial wave functions
tend to be more similar there, at least for the
cases we have considered.

6. -+Bi

Theoretical {P,p') cross sections for states in' 'Bi obtained using the wave functions of this
work have been discussed in detai1. elsewhere"
and will not be discussed here.

V. CONCLUSIONS

%e have shown that a fair sized sampling of ex-
perimental inelastic electron and proton scatter-
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FIG. 15. Theoretical (p, p') cross sections for neu-
tron hole transitions in Pb with E& =20.2 MeV.

ing data for nuclei near closed shells can be
understood, at least qualitatively, in calculations
which assume to a first approximation that the
interaction between two bound nucleons and be-
tween a bound and a continuum nucleon are given
by G matrix interactions derived from free two-
nucleon potentials. In the calculations, the (e, e')
reaction was treated using a modified Born ap-
proximation. The (p, p') reaction was treated
using the distorted-wave approximation and the G

matrix interaction was modified to account for
knock-on exchange and excluded reaction chan-
nels. Core polarization was treated in lowest
order and with the G matrix interaction renor-
malized to roughly account for the effect of long-
range core correlations. The results clearly
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show that core polarization effects are large and
persist as the multipolarity of the transitions
increase. They also show that the motions of
target protons and neutrons are strongly corre-
lated although there may be some weakening in
the correlation for transitions where the I. trans-
fer exceeds 5.

Although our results indicate a strong correla-
tion between proton and neutron motions in the
excitation of the levels considered, in detail there
are small differences between proton and neutron
motions even for the I.= 2 transitions. Brown
and Madsen" have recently discussed some of the
expected differences and it would surely be in-
teresting to examine our results more carefully
in this regard. This can, in principle, be done on
the basis of the data we have considered, "but it
requires considerably greater care in the calcu-
lations than we have expended and thus must be
postponed until a later date. Forthcoming data '
for the excitation of nuclear levels by m' and m

inelastic scattering should provide additional in-
formation concerning these differences.

Finally we note that the use of an "effective"
core coupling interaction in a first order treat-
ment of the renormalization of one-body operators
was found to give reasonable results in the sense
that it does seem to account for some of the ef-
fects attributable to collective correlations in the
core. It would be interesting to pursue this fur-
ther taking care to include the second order terms
that we have ignored. Other interaction choices
might also be investigated, for example the re-
cent effective interaction of Schiffer and True. '~

One of us (F. P.) would like to thank the staffs
of the Michigan State University Cyclotron Labora-
tory and the Lawrence Berkeley Laboratory for
their assistance during the course of this work.

APPENDIX

In this Appendix we give the values of the spec-
troscopic amplitudes SI for the specific tx ansi-
tions we are considering. S~ is defined in Eq.
(71).

A. Single partide transitions

1

Q —a(ph} -Q —e(ph)

x F„(j(jb,jfj(), (A4)

where Q and a(ph) have been defined in Eq. (91).

B. Single hole transition

For a transition between two single hole states,

)»j»((t(}J(M, ) =-) n'(l, j, ', -»»(»)

= (-1)') (a,.
~ C),

(»j»f(»») J~Mf)—= ( jj(flfjf ', -mf)

=(-I)ff- fa, ) C),

(AS)

(A6)

Eq. (V4) gives

S,(»»fly jf »((I» j( jjaj) )

=(-I)f»'& f
j» jf '5» j 5~f . (AV}

o

Inserting this result in Eq. (80) and then making
use of the conjugation relation Eq. (V8} and the
permutation property of F„given in Eq. (82), we
find

For a transition between two single particle
states,

(»r((»()Z(M(&=-~ n(f» j(»n(&=a(t) C&, (A1)

I (()f(»() Zf Mf) -=I nf IIJf&f) af I C), (A2)

Eq. (74) gives

S (nf lg jfj n( I» j» JJ aJ~ ) = 5(» i~ 5ff i a

Inserting this result in Eq. (80) we obtain [see
Eq. (A8)j:

(+flilf II
&"'ll n»I( j(&

{~plgjj '{{&"'i{~) j, '&=-{-)) I{jilli'."{lj& ~ I; q, @ ~„+ % {jpj„jj)I. {.a. s&,
f pi))

The matrix elements for a single hole transition differ from the matrix elements for a single particle
transition by an overall phase which depends on the particular operator being considered. This is of no
consequence in this work because we are only interested in the square of these matrix elements. Another
difference is that the position of P+ has been shifted from the second to the first term inside the brackets.
This has nearly a negligible effect because e(ph} is typically much greater than Q and the effect of P+ on
F„ is weak as may be seen from Eq. (87) which is valid for the case of a zero-range coupling interaction.
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We conclude that single particle transitions and single hole transitions are equivalent for all practical
purposes.

C. Transitions between two particle states

For a transition between two particle states,

I o&(«)~&M&) el (ji,)&&M&&= Q (ii,«&~&]&&M&)«'«,'I &&, (A9)

I7/(&&) CTf M&&) ] (jig)tliMi) = g ( jja&&&m~ [ JfMf ) Q &z&
~
C)

the spectroscopic amplitude is given by

S,((jj,) J'i, (jj,)J&;j ~jy}=(1+6,i } '"(1+6„) '"(-1)"i&'~j&

x 1+(-1. ~& 5„+(-1)'j'5„O, , 6, , {-1~ij, j j'
JJ, j,

(A10)

1 2 2

f

In the special case j,=j, =j, Z, andri must be even and Eq. (A11) reduces to
~ ~

S'.((j')~i (i') ~&;i i „)=-6&.&6&„i(-I)'2~&j"

JJg j
For this case we find

(A11)

(A12)

~ ~

((i')~ill f'"ll(i')~&&=-(-I)'2~&i ' (i Ill', "l]li)+g — (I+(-I)'") +' (i jh,ij),
JJj j pih

Q

(A13}

where we have again used Eq. (82). It is interesting to note that when J& =0, then' Ji is even, and the
second termon the right hand side of Eq. (A13) vanishes when S=1. The valence contribution given by
the first term on the right of Eq. (A13) vanishes in this case also; so, core polarization does not break
the valence selection rule. When J, =0 and S =0, the factor in parentheses in the curly brackets becomes
2 and core polarization is effective.

Another case of particular interest here is the transition between the states

] a&(«)X&M&)=«~ (j,') 8&=0M&=0)+6] (j,')4&=0M&=0), (A14)

(A16)

a'

~
c&i(n) JqMf) ] (jg j&}lipMf). (A15)

This corresponds to the description of the 0' to 5 transition in "Zr given in Table II. In this case we find

~(&&&i ~f & lR&
& I J«j&,) ~~Ii [&&fa j& 6i i 6, i - ( 1)'&'2 'r bj-& j2 6& i 6i ' ].

Inserting this expression into Eq. (80) and again making use of Eq. (78) and Eq. (82), we obtain

( y&Ill@ I& &a& &= ~~+r'&+2 & '+&-~& ~&I(& II ~ && &+ p &&2& h&+ &2&
iP&h

& +' (j,jh, j.j,) . (A17)

These expressions differ from those for the single particle transition j,-j, only by an overall constant.
With j,=2P,g jg 1gglg ~=0.8, b=0.6, 4&=5, and S=O, this constant has the value 1.02. With S=1 the
constant is 0.507. %Ye conclude that the important LSJ =505 amplitude for the 0'- 5 transition in "Zr
is nearly identical to the corresponding amplitude for the 2p„,- 1g», transition in "Y. The LSJ = 515
amplitude for the ' Kr transition is reduced in magnitude in comparison to corresponding amplitude for
the 8 Y transition.
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