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The binding energy of 'H, the percentage S-, S'-, and D-state probability, and the charge form factor of
'He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core
potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and

Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the

unitary pole approximation) gives a good approximation to the binding energy of 'H and the charge form

factor of 'He, even at large momentum transfer (K' & 20 fm ').

NUCLEAR STRUGTUHE H binding energy, He charge form factor, Faddeev
approach, separable expansion to realistic N-N interactions.

I. INTRODUCTION

Over the past few years it has become clear that
we cannot reproduce the experimental binding en-

ergy and charge form factor of the trinucleon using
any of the present realistic nucleon-nucleon. poten-
tials. In fact, a survey of the present theoretical
results seems to indicate that as we reduce the
discrepancy in the binding energy, we increase the
disagreement in the charge form factor. ' ' Qne
possible solution to the above dilemma is to in-
troduce three-body forces'"' and meson exchange
effects. ~" Although in any final theory these ef-
fects may be intimately related to the basic choice
of nucleon-nucleon, interaction, the fact that they
are small may justify the use of perturbation theo-
ry to calculate the contribution of three-body
forces and meson exchange effects. For this pro-
gram to have any success we need to solve the
Faddeev equations for a "realistic" two-body in-
teraction and obtain a simple, yet accurate, wave
function for use in perturbation theory.

Furthermore, with the advent of the new meson
facilities there is a growing interest in (P, w) re-
actions as a probe of short range correlations in

nuclei, as the momentum transfer in these reac-
tions is greater than 2 fm"'. However, at present
there are two schools of thought as to the reaction
mechanism, and one way of resolving the ambigu-
ity is to examine the reaction d(P, v)f at low ener-
gies."" Here, we know both the initial and final
nuclearwave function, and thus may gain some in-
sight into the reaction mechanism. However, be-
fore we can calculate such cross sections we need
the trinuclear wave function that has the correct
behavior at momentum transfer of 2-3 fm '.

With the above need for a simple yet accurate
trinucleon wave function, we have examined the

three-nucleon problem (i.e. , binding energy and

charge form factor) using the recent separable
expansion of Adhikari and Sloan. ' These are
the main features of the Adhikari-Sloan expansion
(ASE) for the potential: (i) It converges in the
operator sense while other expansions converge
pointwise. This we hope will allow us to use less
terms in the expansion for better accuracy. (ii)
By proper choice of basis functions we can get the
T matrix for the ASE to be exact, half off shell at
selected energies. This second feature we use to
minimize the number of terms needed in the ex-
pansion. for optimum convergence in the three-
nucleon bound state. For comparison we also ex-
amine the unitary pole expansion (UPE), which has
been extensively used in three-nucleon calcula-
tions. "'" As we will show, the pole dominance
idea which has led to the success of the UPE, is
in fact incorporated in the Adhikari-Sloan expan-
sion.

Since the main contribution to the binding energy
of 'H (Er), and the charge form factor of 'He (CFF)
comes from the 'S, and Sy Dy nucleon-nucleon
channels, ' we will restrict our discussion of the
trinucleon with only these channels included. Fur-
thermore, this restriction will allow us to compare
our results with the more exact solution of the
Faddeev equations in coordinate" and momentum"
space.

Qn comparing the trinucleon results using the
Reid soft core (RSC) potential" for the two sepa-
rable expansions we find that: (i) the binding en-
ergy of 'H (Er) converges as we increase the rank
of the ASE without any resort to perturbation the-
ory. This was not the case with the UPE" where
it was found that one needs T-matrix perturbation
theory to get the desired accuracy. (ii) Taking the
ASE of rank equivalent to the unitary pole approx-
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imation (UPA), we get a binding energy of 7.08
MeV which is better than the UPA result of 7.15
MeV" when compared with the exact result of 7.0
MeV. (iii) The resultant trinucleon wave function
and charge form factor with the lowest order ASE
are far superior to the UPE wave function, and
are in good agreement with the exact results ob-
tained by solving the two dimensional Faddeev
equation with the exact HSC T matrix. '4'"

From the above result, we see that the trinucleon
wave function from the lowest rank ASE (the rank
is equivalent to the rank of the UPA) can be used
for calculating other processes. More important,
this wave function is simpler to determine and
easier to use.

In Sec. II we briefly present the results for the
hvo separable expansions and discuss the impor-
tant features of each. We then proceed in Sec. III
to discuss the binding energy of 'H. In particular
we discuss the convergence of the two methods
and the possible sources of numerical inaccuracy.
As a test on the quality of the wave function we
calculate the S, S', and D probabilities and the
charge form factors of 'He. These results are
presented in Sec. IV, while Sec. V is devoted to
some concluding remarks.

x P fc„.(y",.&,
ft

with the normalization Zz &zfz,
~

zjz, &
= 5„.. Trun-

cating the sum in Eq. (1) enables us to write an N
term separable expansion for the potential

(2)

V,",". (N) = g (y, &C;;.'(N)&y, .'(,

where the form factors
~ )z, &

= G, 'z'(-B)
~

ztz, & and
the strength matrix C», (N) is given as

C zz ~(N) Az Bzz A (

in terms of the N x N matrices A, and B»„where

Here, I and l' refer to the angular momenta in the
coupled channels, G,(E) = (H, E) -', and B is the
deuteron binding energy. The states

~
zjz"z& are so-

lutions to the homogeneous LB equation written as
an eigenvalue problem

II. SEPARABLE EXPANSION FOR THE T MATRIX

The main advantage to the use of separable ex-
pansions in three-body calculation is the reduction
of the Faddeev equations to a set of coupled one
dimensional integral equations, The number of
such equations is determined by the rank of the
expansion and the number of two-body partial
waves included. Since we will be restricting our-
selves to the 'S, and 'S,-'D, partial waves of the
HSC potential, the number of equations is com-
pletely determined by the rank of the expansion.
Thus the vital criterion for the choice of expansion
is to get optimum convergence with smal. lest rank.
W'ith this in mind we now proceed to a discussion
of first the UPE which has been extensively used
in three-nucleon calculations, and second the ASE
which turns out to have better convergence proper-
ties.

Unitary pole expansion

The motivation behind the development of the
UPE was the desire to construct a separable ex-
pansion for the T matrix which (a) satisfies two-
body unitarity in all ranks, and (b) reproduces the
position and residue of any bound state poles. "
To satisfy both of these criteria, we write an ex-
pansion for the symmetrized kernel of the Lipp-
mann-Schwinger (LS) equation in the 'S,-'D, chan-
nel

LBzz ] ~
= &+z I+zz I +z: & . (6)

Since the N-N interaction has both attraction and
repulsion, the eigenvalues X are either positive
(attractive) or negative (repulsive). Thus, to con-
struct the potential in Eq. (3) we take I, form fac-
tors that correspond to the smallest positive eigen-
values and M, form factors corresponding to the
smallest in magnitude, but negative eigenvalues.
The resultant potential is labeled M, A+M, R and
is of rank M=M, +M, .

For central potentials (i.e. , 'S,) we have Vzz.
=5zz, V, and the strength matrix C„.(N) is diagonaL
In this case due to the absence of a bound state we
take B=O in Eqs. (1) and (2). This is justified by
the fact that the 'S, antibound state pole is close to
zero energy but on the second sheet.

The potential given in Eq. (3) leads to a two-body
T matrix that satisfies unitarity and reproduces
the deuteron bound state pole and its residue. The
latter condition is only satisfied provided the form
factor corresponding to A. = 1 is included in the de-
finition of V"~E. Since the Faddeev equations for
the trinucleon require as input the T matrix at
negative energies, it would not be sufficient for
the UPE to get the T matrix only in a small neigh-
borhood of the bound or antibound state pole. How-
ever, it has been showrP' that increasing the rank
of the UPE potential enlarges the domain of agree-
ment between the UPE and exact T matrix. Thus
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we achieve the convergence in three-body obser-
vables by increa, sing the rank M of the expansion.

vASE g vlf n&cmll(gm
I
v

n, m=1

with

(7)

[~ ']" =«"
I
vlf"& (8)

Here the states If"& and Ig"& are arbitrary and for
the present we take them to be identical. Solving
the I.ippmann-Schwinger equation for V" we get
the T matrix to be of the form

T (E) = g Vlf"&[7'(E)]„(f
I

V (9)

with

[T(E)]„=(f I
V+ VG (E)Vlf ) . (10)

At first sight it may seem that the introduction of
the exact potential V into the form factor in Eq. (9)
has made the calculation of theASE T matrix more
difficult than the corresponding UPE T matrix.
This, however, is not the case since the deter-
mination of the UPE form factor involves the use
of Eq. (2) which includes the exact potential V.

It is easy to show from Eq. (7) that

vABE Ifn& vlfn& (f I

vASE (fnl v

n = 1, . . . M . (11)

The first of these equations means that V" is
exact when considered as an operator acting on the
subspace of L' spanned by the states lf "&. The
second means that for any state lu) in L', for
which Vlu) is defined, the projection of V lu)
onto this subspace is exact. These properties be-
come particularly important if the state lf") can
be chosen to span a subspace which is in some
sense especially important to the problem at hand.
They also guarantee that as M is increased, and
more independent basis states If") are added, the

Adhikari-Sloan expansion

While most separable expansions for the poten-
tial converge in a pointwise manner [i.e. ,
V"~""'(p,q)- V(p, q) for M sufficiently large],
the Adhikari-Sloan expansion is designed to con-
verge to the exact potential in an operator sense
to be illustrated shortly. This we hope will im-
prove the convergence of the ASE as compared
with other expansions. Another unique property
of the ASE is its ability to reduce to other expan-
sions (see Refs. 28 and 29). In particular, the
expansion can be constructed to give the half-shell
T matrix for selected energies and momenta.

In its most general form a rank M ASE for the
potential V is given by

ASE potential will become an increasingly accurate
representation of the exact potential.

The basis states for coupled 'Sg Dy channels are
assumed to have a partial wave expansion

If g= P IzsTI&lf",&, (12)

n = 1, . . . M' . (l 7)

In other words by proper choice of basis function
the ASE T matrix is exact for all momenta P',
angular momenta l' at M' set of energy momentum,

where, in momentum space, f",(p) =(plf",) are real
functions. Following Adhikari and Sloan" we chose
the basis states f ",(p) to be

f."(p) =(p'+m'~')-'0. (p),

f,"(P) = o

for n=2m-1, an.d

f."(p) =0,

fl(p) =p'(p'+~'o") '0.(p)

for n = 2m, where n = 1,2, . . . , M/2, and g (P) are
the Sturmian functions of the S-wave Hulthbn. po-
tential; the variable n is taken to be 0.5 fm '.
This choice of basis gives the extra degree of
freedom necessary for the potential to have the
correct admixture of S and D components. How-

ever, the minimum value of M for which we get
both S- and D-wave components to the potential is
M = 2. This is to be compared with M = 1 for the
UPE. We will see in the next section that M = 1
UPE and M =2 ASE give the same number of cou-
pled integral equations for the three-nucleon sys-
tem. In this sense we will consider the two to be
equivalent.

For the '8, channel the basis functions are sim-
ply taken as

f".(p) = (p'+&'o") '(l.(p), &=1, . . . , M (18)

with a=0.5 fm '. In this case, a rank M UPE is
equivalent to a rank M ASE. In fact if we choose
the ASE basis functions such that l}f/= Vlf' is the
UPE form factor then the two expansions are iden-
tical. There is, however, no such simple equiva-
lence in the 'S,-'D, channel.

One useful feature of the ASE, which we will
make use of in the next section, is the possibility
of choosing M' of the basis function such that

Vlf"&=T(E.)lf.p.& s=»2 " M'-M (18)

where T(E„) is the exact T matrix at energy E„.
With this new choice of basis function it is possible
to show from Eqs. (9) a,nd (10) that
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and angular momentum (E„,p„, l„) .In particular by
taking E„ to be the energy of the bound state
('S,-'D, ), or antibound state ('S,}, we can ensure
that the ASE T matrix gets the correct behavior
at the pole, as in the case of the UPE. However,
we note that while the UPE reproduces the deuteron
pole and its residue with one term in the expansion,
it takes the two term ASE to achieve the same re-
sult. This is due to our choice of basis function
in Eqs. (13}and (14). Finally we note that taking
P„'h'/m =E„and M' =M the ASE becomes formally
equivalent to the Ernst, Shakin, and Thaler ex-
pansion, ' a.s implemented by Pieper. "

To implement the condition in Eq. (16) we make
use of the fa,ct that T for sufficiently large I is
identical to the exact T matrix, in this case

I lf "&=T(E.) Il.p.&

-=g I'If"&~-(E.)&f'I I'Il.p.&

r, s 1

= g I If"&C,(E.l.p.),

where

C„(E„l„p„)= g 7.„(E„)(f'Ivlf„p„&. (19)
da-. 1

In, the present calculation we have found that M = 20
gives the df'. sired accuracy. Since the optimum
choice of energies, momenta, and angular momen-
ta (E„P„l„)at which the half-shell T matrix is ex-
act depends on the problem at hand, we will post-
pone the discussion as to their choice for the next
section.

For a detailed comparison of the ASE and UPE
with the corresponding exact RSC T matrix in both
the 'S, and 'S1 'D, channels we refer the reader to
Hefs. 18-20, 22, 27, and 30. It suffices to say
that both expansions have good convergence pro-
perties both at positive and negative energies.
However, the ASE has the added advantage that it
can be constructed to give the exact half-shell T
matrix at selected energies and momenta.

III. TRINUCLEON BINDING ENERGY

The Faddeev equations for the trinucleon with
separable two-body T matrices have been dis-
cussed extensively in the literature. However,
since the relation between the number of coupled
integral equations and the rank of the potential is
different for the ASE and UPE, we will briefly
derive the integral equations for the two separable
expansions. This will be followed by a detailed
discussion of the convergence of the binding energy
of 'H (Er) as a function of the rank of the expan-
sions.

The difference between the structure of the two
expansions is only present in the coupled 'S,-'D,
channel for which the two-body T matrix is given
by

f„,(p, p', E}= Q g„g(p) 7
g

g'. (E)g„, , ( p'),
n, n'=1

for UPE (20a)

=&iplv (21b)

The difference in structure between the two ex-
pansions lies in the separability of t», in the an-
gular momentum l. The propagator r(E) for the
UPE is a. (2M x 2M) matrix of the form

'(E}=c '+&xlG. (E)lx& (22)

with the matrix of strength C given in Eq. (4) and

(xl a row matrix of length 2M and of the form
[&x,'I" &x,"l&x,'I ~ ~ ~ &xfl]. On the other handthe
ASE propagator T(E) is an'(M x M) matrix given
in Eq. (10). As we will see, the independence of
T"" (E) in Eq. (20b) of the orbital angular momen-
tum will lead to a reduction in the number of cou-
pled integral equations.

For three identical nucleons, the total wave
function is given by"

I
4& = &e+ (»3)+ (132)&

I q. & ~

where e, (123), and (132) are elements of the per-
mutation group S3, and a=1, 2, or 3. The re-
quirement of antisymmetry of the total wave func-
tion is satisfied by the condition that

(Py) IP.&=- I4.&, (24)

where (Py) is an element of S,. The Faddeev equa-
tions for

I g, & are then given by"

I'4&=-2G.(E)T (E)(123) lg &

=-2G.(E}T.(E}I &s& (25)

where G, (E) = (H, —E) ' is the free three-particle
Green's function, and E is the energy of the bound
three-body system (i.e. , E& 0). In Eq. (25) T (E)
is the two-body T matrix for the pair (Py) in three-
body Hilbert space.

To write Eq. (25) in partial wave form for the
separable two-body T matrix, we use the J-J
coupling scheme

= Q g.g(p)7""'(E)z.
&
(p'),

n, n'=1

for ASE, (20b)

where the form factors g„,(P) are

(21a)
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so = 0'~ + 0'~,

I =L,+a',
j = lo+%

J=j +I (26)

angular momentum eigenstates are then

I&,". .&=1(f.r.)» I[(f.s.}j.; (L.o.)f.) J& (27)

= +g+ ~„, T=t. + T.

where l is the relative orbital angular momentum
of the pair (Py) and L is the orbital angular mo-
mentum of particle o. relative to the center of mass
(c.m. ) of (&8y). In Eq. (26) r, and &r, are the iso-
spin and spin of particle e. The isospin, spin

with N, = fn„L„I ) labeling the three-body chan-
nels and n, = {f,s jsj labeling the two-body chan-
nels.

Kith this coupling scheme the two-body T ma-
trix in three-body Hilbert space is given for a rank
M UPE potential, by"

T, (&&= I, aq q
*

~

&&"; r. &t (z", —, q,*)&&&;,';q
&IN P

= I' f& r r.I&r;.', ;r.& i:,.(z- r r.')(r,",:q. ~

!~1~

with q the momentum of particle e relative to the

c.m. of (Py) and

(29)

with the row matrix Ig„, & given by

(30)

In Eq. (28}X =}Is/m with the nucleon mass. For
the ASE Eq. (28) still holds, provided we use the

appropriate form factors and we recall that 7. ..- r "~, which is independent of I, and l'.
Making use of Eq. (28) we rewrite the Faddeev

equations (25} as

I V.& =-2Go(~) Q dq qa Igr r&r

.qr& Xr rr (qa)

(31)

with the column matrix of spectator wave func-
tion X,~J„defined as

x, „(q,&= r", , r——r ')(,r, , „;&,lr &
TJ'

f3,
~~ 2 TJ

(32}

and satisfying the coupled one dimensional integral
equations

3%
+r, r&r, (q }=-2Z rr;r', Er&- 4 q dqsqs +r;», ; rsr&rs(q qs'Er&)Arsrr (qs}

1~ $~ 0

where

qs &s) =(gr".N. 'q. IG.(&.)lg;,;s;qs,
(34)

the explicit form of which is given in the Appendix.
In the case of ASE, Eqs. (31)-(34) are still valid
provided we do the substitution

Qa ~~a—e g

and

Ig;.'.;q.&- Ia",q.&=+ Ig,". .;q. &

and the corresponding change in the definition of
the form factors. In doing this substitution we have
effectively performed the sum over l' and l~ in Eq.
(33), and thus reduced the number of coupled in-

tegral equations. For the present investigation we

have restricted our two-body interaction to the

Sp and Sg Dg channe ls. In this case the number

of three-body channels (I„N ) is five, and these
are given in Table I. For the UPE with rank M,

TABLE I. The three-body channels included in the
solution to the Faddeev equation.

Channel

0 0

1

1

i

f 1
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TABLE II. The perturbed and unperturbed binding en-
ergy of H (Ez+QEz) and (Ez) for different rank M uni-
tary pole expansions.

1A + 1R 1A + 2R 2A + 1R

E', (m)
aE,(m)
E',(m)+ ~E,(m)

7.148
-0.181

6.967

6.991
+0.043
7.034

6.947 7.037
+0.083 -0.018
7.030 7.019

in 'So and M, in the 'S, -'B, the number of coupled
integral equations is M, +4M„or 5M if My M2 M
Qn the other hand for the ASE, the number of cou-
pled integral equations is M, + 2M, or 3M for M,
=M, =M. Thus, we hope with ASE we can go to
larger M and thus achieve convergence without any
resort to perturbation theory which was neces-
sary for the UPE. '

For the sake of comparison we briefly sum-
marize the UPE results for the Reid soft core
potential. Here, we first calculate the binding
energy of 'H by solving the Faddeev equation (33)
for rank M potentiaL (For the sake of simplicity
we have chosen M, =M, =M, in this way avoiding
the optimization of both M, and M, .) This gives
us the unperturbed energy Eor(M) and wave func-
tion. We then treat the difference between the ex-
act and rank M UPE T matrix as a perturbation,
with the resultant correction to the unperturbed
energy «(N) given by

«(M) =12& ps(M) I

T'""'- I ""(e
I qs(»)&

-=12( i{,(M)
I

r""(x) r""(M)
I i{,(—M)),

(35)

where N»M is chosen to be large enough so that
7" (N) =—T'*"', and any further increase in IV

does not change «(M). For the present investi-
gation we have found ¹ 7A+6R to satisfy both of
these conditions. In Table II we give the unper-
turbed and perturbed binding energies for 1A,
1A+1R, L4+2R, and 2A+1R potentials. A com-
parison of the unperturbed energy for the different
rank potentials indicates that convergence has not
been achieved, and that we may need to go to 2A

+2R or higher rank potentials. With both 1A+ 2R
and 2A+ 1R we have already 15 coupled integral
equations, while with 2A+ 2R we go to 20 coupled
equations with no guarantee of final convergence
and an increase in numerical inaccuracy. How-

ever, we expect the correction to the energy and
wave function due to higher terms in the UPE to
be small. This is based on the fact that the 2A

+ 1R T matrix is already a good approximation to
the exact T matrix. '4 Furthermore, the first order
correction to the energy in all cases except the 1A

is less than 0.1 MeV, indicating that higher order
corrections can be neglected. If we now examine
the energy E~= E'~+ &E~ for different M, we ob-
serve that we have improved our convergence to
the extent that IEr(» =3) —Er(.U= 2)

I
~0.015 NfeV

as compared with
I E;(3) —E'(2) I

= 0.05 Me V.
More important is the fact that Er(IA+ 2R)
=Er(1A+1R) which is due to the fact that the sec-
ond repulsive term can be treated with good ac-
curacy in perturbation theory, while that is not
the case with the second attractive term as is clear
from Table II. This implies that Er(2A+1R) is a
better approximation to the energy than Eor(2A+ 2R)
since it not only includes the second attractive but
all higher terms in the UPE. Considering the fact
that IFr(2A+1R) —Er(2A+ 1R)

I
&0.02 MeV we would

expect the error in neglecting higher order con-
tributions in perturbation theory to be less than
~ 0.01 MeV.

Let us now examine some of the possible sources
of numerical inaccuracy in the above method.

(i) In Eq. (35), the replacement of the exact T
matrix by a high rank UPE has introduced two
possible sources of inaccuracy. One is the fact
that the UPE T matrix is only an approximation
to the exact one. More important is that high rank
UPE involves eigenstates of the Lippmann-,
Schwinger kernel corresponding to la.rge eigen-
values ~„which a,re highly oscillatory. This may
introduce inaccuracies in any integral involving
such eigenstates. To test the above two sources
of inaccuracy in the perturbation theory, we have
repeated the calculation of E~ using the exact T
matrix in Eq. (35) for 1A and 2A+ 1R potentials.
The resultant binding energies are 6.968 and 7.019
MeV, respectively, which are in excellent agree-
ment with the results in Table II. The advantage
of replacing the exact T matrix by a high rank
UPE is a. major reduction in computing time.

(ii) To solve Eq. (33) we replace the integration
by 16 point Gauss-Legendre quadratures mapped
onto 0 to ~. This replaces the set of 5' coupled
one dimensional integral equations by 80K alge-
braic equations. To check this reduction we have
repeated the 1A binding energy calculation using
24 points with a resultant change in energy of less
than 0.005 MeV. For 2A+ 1R and 1A+2R, rather
than increasing the number of points (which would
have produced a storage problem on the computer)
we decreased them to 12 points, again producing
a change of less than 0.005 in the binding energy.
Thus the maximum possible numerical, inaccuracy
is + 0.01 MeV. This gives us a binding energy of
'H with the 'S, and Sy By Heid soft core potential
of

7.02+ 0.02 MeV.
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TABLE III. The energies E„and angular momenta l„
for which the ASE T matrix (p/ ~

T+s (g„) ( )„p„)p„
=-E„/4 is exact for all p and l.

ig

Z„(MeV)

3 3S(- D)
Z„(Mev)

0.0
—i5i. i
-269.3
-492.4

-7.0i3
-269.3
—i5i. i
-492.4
-952.6

952.6

Having established that the convergence in the
binding energy of '0 is slow as we increase the
number of terms in the UPE, and the necessity of
perturbation theory, we turn to a discussion of the
use of ASE in three-nucleon calculations. One
important feature of the ASE, which is not present
in the UPE, is the possibil, ity of choosing certain
values of the energy E„, momenta P„, and angular
momenta l„, such that (pl

~

T"ss(E„)~l„p„) is iden-
tical to the exact 7 matrix for all P and l [see Eq.
(1V)j. This feature which was also present in the
separable expansion of Ernst, Shakin, and
Thaler" as implemented by Pieper" can be used
to improve the convergence of the expansion for
the two-body T matrix. However, it is clear that
the optimum choice of (E„,P„,l„) will depend on
the problem at hand. For the ASE, the Faddeev
Eq. (33) reduces to the form

x dq q 'Z~r~ (q, q;E,)X„~(q~).
0

(36)

To solve these equations, we replace the integral
by N quadrature points q, ~ ~ .q„. We then ob-

Qserve that there are Nz energies at which the two-
body T matrix is required, namely

E„=E,——q„') n=1. . .Nq.
3X

needed after replacing the integrals by sums over
quadrature points. Unfortunately, this is not easily
implemented, since such a procedure would lead to
a very high rank potential, and as we will find,
convergence in the binding energy of 'H is achieved
with a relatively low rank potential. We have thus
chosen P„' = E„/-k, which makes the half-off- shell
T matrix exact at selected energies. In Table III,
we present our choice of E„and t„ in 'S, and 'Sg-
Dj channels, with the only exception to the above

rule being Eg 0 for the 'S,. In practice, as we
increase the rank of the separable expansion used
in the trinucleon calculation, the more values of
(E„,l„) are taken in the change of basis. Thus for
rank Mi So and M2 Si Dz we take the first M
energies E„(n = 1,2, . . .M„) and M, energies and
angular momenta (E„,f „;n= 1, . . .M,). Such a po-
tential will be referred to as ASK (M„M,).

In Table IV we present our results for the binding
energy of 'H (Er) with the RSC as a function of the
rank of the Adhikari-Sloan expansion. We find that
increasing the rank of the 'S, potential (M, ) from
two to four changes E~ by as little as 0.002 MeV.
Similarly, changing the rank of the 'S,-'D, po-
tential (M, ) from 4 to 5 and 5 to 6 gives a change
of 0.01 and 0.003 MeV, respectively. Thus with a
rank (4, 6) ASK, we have achieved the convergence
necessary without resorting to perturbation theory as
was the case with the UPE. To test the sensitivity
of our results to the choice of E„, we have re-
peated the calculation of Er with rank (1,2) ASE
taking E, the energy of deuteron (i.e. , -2.2246
MeV), and E,= 508.0 MeV. This gives Er
= 7.119 MeV, a change of 0.037 MeV compared
with the result in Table IV. We expect this sen-
sitivity to the choice of energies E„, at which the
half-shell T matrix is exact, to decrease with in-
crease in the rank of the expansion. In fact, sim-
ilar tests with a rank (4, 6) ASK give a smaller
change in E~, and in all. cases less than 0.01 MeV.

Combining the possible sources of error, i.e. ,
finite rank expansion, choice of energies E„, and
finite quadrature points, we expect an error in E~
of less than 0.03 MeV. Thus the final result for the
binding energy of 'H using the ASE for the RSC

It is then a fairly obvious choice to take M of the
N~ energies as the energies used in the change of
basis for the rank M ASE T matrix. Of course
E, is at this stage not known exactly, but we do
have a rough idea of its value, and, since we hope
that small changes in E„wil.l not change our re-
sults, this value of E, should be accurate enough
to calculate the E„.

It would now be most desirable to choose the
momenta p„ for the change of basis to be those at
which the T matrix in the Faddeev equation is

Rank of expansion
(Mev)

(i, 2)
(2, 4)
(4 4)
(4, 5}
{4 6)

7.082
6.981
6.983
6.973
6.970

TABLE IV. Binding energy of H using the Adhikari-
Sloan expansion for the Reid soft core potential.
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potential in 'S, and 'S,- D, is

6.97+ 0.03 MeV.

In comparing this result with the corresponding
UPE result of 7.02+0.2 MeV we note: (i) With
the ASE we have achieved convergence without
perturbation theory, indicating that the trinucleon
wave function for the ASE rank (4, 6) is a better ap-
proximation to the exact wave function than the
22+ 1R UPE wave function. This will be illustrated
in the next section when we compare the charge
form factor of 'He for the two expansions. (ii) The
Faddeev equation for the ASE with rank (4, 6)
potentials consists of 16 coupled one dimensional
integral equations, which are comparable to the
15 coupled equations we had for the 2A+ 1R UPE
potential.

mation to the exact wave function; (ii) to see if
we can get the short range behavior of the wave
function with a low rank expansion such as the UPE
(1A) (i.e. , UPA) or ASE (1,2). This second point
might give us a simple yet accurate wave function
for use in evaluating the contribution of three-
body forces to the binding energy of 'H, as a cor-
rection to the form factor due to meson exchange,
and for use in such reactions as pion elastic scat-
tering and absorption on the three-nucleon sys-
tem.

Using again J-J coupling scheme [see Eqs. (26)
and (27)] we can write the partial wave expansion
for the total trinucleon wave function as

I4&- P In" & IU" & (38)
la, No

where the angular part Intr~„& is defined in Eq.
(27), and the radial part

I UP~„& can be written as
IV. TRINUCLEON WAVE FUNCTION AND CHARGE FORM

FACTOR OF 3He

Having established the better convergence of the
ASE as compared with the UPE in determining the
binding energy of 'H, we now examine the three-
nucleon wave function for the two expansions. The
aim of the present investigation is (i) to estabLish
which of the two expansions gives a better approxi-

IUrz
& g In

rsvp

1-ly 2

with

and

(39)

(40)

n&".~".'(P. , q.) = (P.q. ; fl,".,.I 0, + ti„&

[1 ( )
l~+ s~+t~ ] dt F Itttt&,' ltt tt8 (qtt t qtt~ x)nl8 N& (Ptt I qlt) (41)

with

qa =f'a +4 q~ +P~q~h, Pa =4P, + —q —4p q f, x= ——, (-, q +p ().J2 2 1 2 f2 1 2 9 2 3 1

8
(42)

with

G.(P., q. ;E.)= [-E.+&(P.'+ .q. ')] '. -(44)

I
g N ~ f N is given explicitly in Eq.i~No,' Jg Ng

(A3) of the Appendix. The second line of Eq. (41)
can be derived after some tedious angular mo-
mentum algebra (see Ref. 30).

From Eqs. (39)-(41) we see that the determina-
tion of the radial wave function Utr~~ (p„q ) has
been reduced to obtaining an expression for
n~~P'(P„q ). The function of two variables
(P, q, ) can be further simplified to almost a pro-
duct of a function of P and one of q, if the two-
body T matrix is separable. For the UPE, making
use of Eq. (31) in Eq. (40), we get for n~~„' the
result

n 'V.'t=-2G (f 0q 'Eo)&f. Ig.. &x" (q.)(43)

While this result is strictly correct for the UPE
only, the equivalent expression for the ASE is ob-
tained by dropping the subscript l from the spec-
tator wave function (i.e. , X tr~„-X„r~). In other
words, the q dependence is the same for l =j
+1 for a given j when s =1. We also observe
that g, „' is nonzero only for the five three-body
channels included in Table I. However, from Eq.
(41) we see that n~~„2 has a nonzero value for an
infinite set of values of (I„N,), and the sum in

Eq. (38) is by no means finite, and we will have to
cut it off at some reasonable value of (I,N, ).
These higher partial waves in the total wave func-
tion are present due to the antisymmetry of the
total wave function.

Using the definition of the total wave function
(23), and the multiplication table for the permu-
tation operators, we can write the normalization
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TABLE V. Normalization of the total wave function
for different separable expansions and number of partial
waves.

Expansion
Channels
in Table I

(4'
]

4')
All channels with

1~+1.o ~ i0

UPA
2A+ iR
ASE {i,2)
ASE {4,6)

0.9252
0.9234
0.92 i 8
0.92 k i

0.9966
0.9965
0.9964
0.9963

of the total wave function as

(4 ~4&=3&4. j4.&+6&(. ~0, )

&4 ~4&= g (V,"„~V,"„&, (46)

where the number of channels in the sum is in.-
finite. Our criterion for restricting the sum in

Eqs. (38) and (46) to a finite number of channels is
now determined by comparing the result of Eqs.
(46) and (45) for the normalization. In this way we

know what percentage of the wave function we have
lost on truncating the sum in Eq. (38) to a finite
number of partial waves.

To study this convergence we consider the UPA

[i.e. , UPE (IA)] with the wave function normalized
according to Eq. (45). If we now restrict our sum
in (46) to the five channels in Table I we get 0.9252,
indicating the loss of 7.5% of the wave function. In-
creasing the sum in (46) to all three-body channels
with I +L «10 (I, +L «20), we increase the
normalization from Eq. (46) to 0.9966 (0.9993).
This indicates that a restriction to l + L & 10 with
42 terms in the sum in Eq. (46) is sufficient and the
increase in accuracy by doubling the number of
terms is not wa. rranted. To show that this conver-
gence is not unique to the UPA, we present in

Table V similar results for higher rank UPE and
ASE.

Having established that 42 terms (i.e. , all chan-
nels with I +I,, «10) in the sum in Eq. (38) are
sufficient we now renormalize our wave function
using Eq. (46), in this way guaranteeing a proper
normalization of the total wave function.

As an initial test of the total trinucleon wave func-
tion resulting from the two separable expansions
to the RSC potential, we evaluate the probability

[(q Err=1
~
q Tzm1&

l~N~

+2(q~r~ ' ~qr~ --'&] (45)

where the sum runs over the five three-body chan-
nels in Table I. Alternatively, we can write the
normalization from Eq. (38) as

UTJ gTJ' (47)

for the different components of the wave function
in the Blatt-Derrick representation. In this way
we can also compare our results with those ob-
tained by solving the Faddeev equations for the
exact RSC potential in coordinate space by La-
verne and Gignoux (LG)" and in momentum space
by Brandenburg, Kim, and Tubis (BKT).-' In
Table VI we give the percentage probability of the
S- and D-wave contribution to the triton wave fun. c-
tion obtained by using the UPE and ASE to the RSC
potential. Since we have not included any P-wave
nucleon-nucleon potential in our calculation, we
have not tabulated the P-wave probabilities even
though they are included in the normalization. We
have included in Table VI all components with l
+L ~10. In the table, L and S refer to the total
orbital angular momentum and spin in L-S coup-
ling. The column labeled P gives the symmetry
under permutation of the spin isospin part of the
wave function. Thus A denotes the totally anti-
symmetric component, and + denotes the two
mixed symmetry components. The totally sym-
metric components have zero probability for even
total orbital angular momentum L, and a.re not
shown. From the results in Table VI we observe
that (i) there is good agreement between the low
rank and high rank expansion of both types, this
agreement being, in general, slightly better in
the case of ASE, particularly in channel I; (ii)
there is good agreement between the two expansions.

To see how our results compare with those of
other methods, we give in Table VII the results of
LG and BKT along with our UPE (22+ 1R) and ASE
(4, 6) results. At first sight it appears that there
is very good agreement between the results of all
four methods except in channel number one. This
apparent discrepancy is in fact due to the different
number of channels used in different calculations;
for while BET include only the nine channels in

Table VII in their ca,lculation, and thus have their
wave function normalized to one with only these
channels, the same nine account for only 99.5/p of
the LG wave function, 98.8% and 98.6% of the UPE
(22+ 1R) and the ASE (4, 6) wave functions. We
thus give in brackets the values obtained for the
probability when the wave function is normalized
including only the nine channels in Table VII. We
see that to the accuracy given, only the probability
in charm. el one is altered, bringing the four results
into much closer agreement.

A further comparison of our wave functions for
'H using separable expansion can be achieved by
calculating the probability that a given pair of nu-
cleons are in state with quantum numbers (I n ),
i.e.
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TABLE VI. Percentage probabilities of the Blatt-Derx-ick components of the trinucleon
wave function for the RSC potential.

Channel L S l o Lo P UPA 2A+ fR UPE ASE (1, 2) ASE (4, 6)

10

12

13

17

18

19

20

22

23

0 q 0

0 p 0

0 q 1

0 g 2

0 p 2

0 p 3

0 q 4

0 ~ 4

0 p 5

2 ~ 03

2
3

2 z
3

2 2 2
3

2 2 2
3

2 2 33

2 — 23
2

2 2 33

2 2 33

43

2 ~ 43

43

2 p 5

2 ~ 5

2 p 6

4 A 0.26

0.0072

0.013

1.08

2.64

1.05

3.07

0.18

0.36

0.f4

0.21

0.059

0.020

0.034

0 ~ 028

0.091

Q.of 6

A 87.74

0.74

0.74

2 A 118
Q.057

0.047

87.55

0.77

0.77

1.30

0.059

0.048

0.28

0.0070

0.012

1.06

2.56

1.09

3.08

0.18

0.39

0.16

0.14

0.22

0.062

0.020

0.035

0.028

0.095

0.017

87.16

0.78

0.79

1.24

0.062

0.051

0.28

0.0075

0.013

1.10

2.69

1.15

3.22

0.19

0.16

0.14

0.22

0.064

0.019

0.036

0.028

0.097

0.017

S7.16

0.80

0.81

0.063

0.050

0.29

0.0073

0.012

1.07

2.60

f.14

3.17

O. f9

0.40

0.16

0.14

0 ~ 22

0.064

0.02Q

0.036

0.029

0.099

0.017

We will refer to these probabilities by the spectro-
scopic notation '~&+'l

z . In Table VIII we compare
our results for P, „using UPE (2A+ 1B) and ASE
(4, 6) with the results of LG who solved the Fad-
deev equation in coordinate space. " Since the
states given in the table constitute 100% of the LG
wave function, while they account for only 99Vo of
our wave function, we also give in brackets the
renormalized values of our probabilities (where
they differ from the unrenormalized ones). Once
again we see that this brings our results in close
agreement with those of Laverne and Gignoux. "
We also note that although the two-body interaction
is only in the 'S, and 'S,-'D, channel. , the total
wave function has components in which the two nu-
cleons are in other states.

Finally, in Table IX we give the total S, S&, and
D probability for the different separable expansions
in conjunction with the results of I.averne and

TABLE VII ~ A comparison of the percentage proba-
bilities of Table VI with those of LG (Ref. 24) and BET
(Ref. 25).

Channel 2A+ fR UPE ASE (4, 6) LG BET

1

2
3
4

10
11
12
13
15

87.6(88.7)
0.8
0.8
1.3
1.1
2.6
1.1
3.1
0.4

87.2 (88.4)
0.8
0.8
1.4
1.1
2.6
1.1
3.2
0.4

87 ~ 8 (SS.2) 88.9
0.8 0.8
0.8 0.9
1.4 f.3
1.1 1.0
2.7 2.5
f.2 1.1
3.3 3.1

0.4 0 4

Gignoux" and Brandenburg, Kim, and Tubis. " In
calculating the probabilities we have once again
included all channels with l + L & 10, and for this
reason we obtain a lower S-state probability than
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TABLE VIII. Percentage probabilities of the two-body

states in the triton for the RSC potential.

Channe ethod 2A+1R UPE ASE (4, 6) LG

's,
1S

3D

P1
P
Pp

1P

'I2
Dp

D3

45.5(46.0)
43.9(44.3)
3.3
1.7
1.2
1.1
0.9
0.4
0.4
0.2
0.4

45.3 (45.7)
43.7 (44.1)
3.4
1.8
1.3

1.0
0.4
0.5
0.2
0 4

46.1

44.3
3.3
1.8
1.2
1.1
1.0
0.4
0.4
0.3
0.2

BKT. %e get a higher D-state probability tha, n

BKT because in their calculations they have omit-
ted a number of channels which contribute to our
D-state probability; in particular they ignore the

chan. nels 14 and 18 of Table VI, which give large
contributions. Since we have included the P-wave
component of the wave function in calculating the
normalization, our sum for the S, S', and D prob-

F,„(k)=- Q F,(k), (48)

where

ability does not add to 100Vp. As a final check on
the number of partial waves needed, we have ex-
tended our sum in Eqs. (38) and (46) from l +I.
~10 to l +I. ~20 with the resultant change in the
S, S', and D probability from 89.17, 1.61, and
9.14%) to 89.05, 1.62 and 9.26%). This further in-
dicates that the restriction to E +I. &10 is a
good approximation.

So fa,r our results have shown that both separable
expansions, even in lowest rank, give a good re-
presentation of the trinucleon wave function. How-

ever, if such wave functions are to be used in cal-
culating reactions such as d(P, )i')'H, the contribu-
tion from three-body forces and meson exchange
(which involve high momentum transfer}, we need
to examine the short range behavior of the three-
nucleon wave function. For this reason, and to
see if one separable expansion is superior to the
other and how high a rank we need, we have cal-
culated the charge form factor of 'H. The three-
nucleon cha, rge form factor is given as

d, (d) = )d'rd. 'r, d', d'r, '"'~d'( „„r,)d, (r, , )d(r„„r,) (49)

with )ld(r„r„r,) the total three-nucleon wave function. The charge density p, (r, r;) is defined as

p, (r, r,.) = ~(1+ r, ,)f~h(r —r, )+ -,'(1 —r,,)f",h(r —r,.), (50)

where r, , is the Pauli isospin matrix, and f~h and f",„are, respectively, the Fourier transform of the pro-

ton and neutron charge form factors. Since we know the three-nucleon wave function in momentum space

and in J-J coupling, we can write the above form factor in terms of U& „as".
F,„"'(k)= g(F~„(k)[3G0(k)+ G, (k)]+ 2F",„(k)G,(k)j,

F',„"(k)= (2F~„(k)G,(k) + F",„(k)[3G,(k) + G, (k}]j,
(51)

with x=k ~ q and I„=[l,s„,j„,I.„I„].The functions Fdh and F,"„are the proton and neutron charge form
factors, respectively. In our calculations we use the analytic expressions given by Janssens et al. 32 for
these form factors. The radial wave function fI&~z is given by Eqs. (39}-(41)where it is written in terms
of the spectator wave function.

where G, (k) f =0, 1 is given by

G, (d)=E f ddd* ddd d*-' ——", (q- i( "d" *d;(d)-.((l-; (dd)rr,*; (d
~

ldi(),
(52)

TABLE IX. Percentage probabilities of the three-body states in the triton for the RSC po-
tential.

Probability Method UPA UPE 2A+1R ASE (1, 2) ASE (4, 6) LG BKT

P(S)
P(S')
P(D)

89.2
1.6
9.1

89.1
1.7
9.1

88.7
1.7
9.5

88.8
1.7
9,4

89.2
1.8
9.0

90.2
1.7
8.1
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To test the effect of truncating the sum in Eq.
(52), we have calculated the charge form factor
at seiected momenta K for the UPE (2A+ Ut) using
the five channels in Table I, all channels with
l +L «10, and all channels with/ +L «20.
From Table X it is clear that for E'=7.0 and 20.0
fm ', we have achieved convergence with l' + L
«10. To make the equivalent statement for EP
= 14.0 and 15.0 fm ' we compare in Fig. 1 the

charge form factor for the UPA with five channels
and all 42 channels with E, +L «10. We observe
that K = 14.0 and 15.0 fm is in the vicinity of the
minimum in the charge form factor and thus the
convergence, though not as good, is very reason-
able, provided we take all 42 channels with
E +L «10. As a final test of convergence in the
partial wave expansion we have calculated the
charge rms radius for both the UPA and UPE

10

10-1

Y 10-2
Z

U.

10-'

10-4
QG 2Q

I I I I I l

4.0 6,0 80 10.0 12.0 14.0 18.0 208

K& Ifm &)

FIG. 1. Comparison of the BSC He charge form factors calculated using all channels with I~+I.~ «10 (42 channels)
and the channels of Table I (5 channels).
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TABLE X. The charge form factor for the 2&+ fR
UPE of the RSC potential.

TABLE XI. The charge radius of He obtained using
various numbers of channels in the UPA and 2A+ 1R cal-
culations.

K
(fm )

~ 3He(K 2)

Channels included in calculation
Those in Those with Those with
Table I /~+L~ «10 l~+Lo «20

Channels
included

Those in Those with Those with
Table I l +L «10 l +L «20

7.0
14.0
15.0
20.0

3.20x 10 2

2.72x 10-4

8.62 x f 0~
f.75x 10+

3.33x10 '
2.09x 10~
4.77 x 10-'
1.66x10 '

3.31 x10 '
1.80xfO 4

4.99 x 10"4

1.66 x10 '

(r~ )UpA {fm} 2. 121

2.111

2.055

2.070

2.054

2.070

(2A+ 1R). Again we see (Table XI) that with 42
terms in the partial wave expansion we get very
good convergence.

Having established the number of terms we need
in the sum in Eq. (62), we now present in Fig. 2

the charge form factor of 'He using four different
separable approximations to the RSC potential,
and all three-body channels with l + J «10. The
experimental points in Fig. 2 are those of McCar-
thy et a/. " The agreement between experiment and
the calculated form factor is comparable to previ-
ous results using the exact RSC T matrix. This
discrepan, cy between experiment and theory for
K - 10 fm ' can be partly reduced by including
meson exchange effects and three-body forces. '"
More important from our point of view is the fact
that the ASE gives a better convergence than the
UPE to the extent that ASE (1,2) is closer to ASE
(4, 6) than is the case with the UPA and UPE
(2A+ 1R). Taking into consideration the fact that
ASE converged without perturbation, which was
not the case with the UPE, we expect the ASE
(4, 6) to give a more accurate wave function than
the UPE (2A+ 1R). This implies that the form fac-
tor with ASE (4, 6) is closer to the exact result
than the UPE (2A+ 1R). This in fact is true if we
compare our results with those of I.averne and
Qignoux" and Brandenburg et al." The surprising
result is then the fact that the ASE (1,2) gives a
better result than the UPE (2A+1R). Thus we
have achieved our aim in constructing a separable
expansion of the same rank as the UPA and which
gives a very accurate reproduction of the charge
form factor even at large momentum transfer.
Such a wave function for the trinucleon is simple
to calculate yet gives the same results as the more
complicated wave functions one gets by solving the
Faddeev equation for the exact potential.

Finally in Table XII we give the rms charge
radius, the position of the minimum in the charge
form factor, the ratio R of the experimental over
calculated form factor at EP = 20 fm ', and the
binding energy of 'H, for the different separable
expansions and the I,Q and BET ' results. We

&. CONCLUSION

From the above detailed comparison of the tri-
nucleon bound state results for the RSC potential
using the separable expansions of Adhikari and
Sloan and the UPE on the on.e hand, and the more
exact solutions in coordinate space, and momen-
tum space of the Faddeev equation on the other
hand, we can draw the following conclusions: (i)
The separable expansion gives a very good approx-
imation not only to the binding energy of 'H, but
also the charge form factor of 'He (even at large
momentum transfer), the S-, S'-, and D state-
probability of 'H, and the rms radius. (ii) Of the
two separable expansions the ASK has better con-
vergence properties, to the extent that we need
not resort to perturbation theory in calculating
Er, which we had to do for the UPE. (iii) The

TABLE XII. Comparison of trinucleon results for the
two separable expansions of different rank, and the more
exact solution of the Faddeev equation in coordinate
space LG (Ref. 24) and momentum space BKT (Ref. 25).

Method
(&

(fm)
Eg

(MeV)

UPA
2&+ fR
ASK {1,2)
ASZ (4, 6)
BKT
LG

2.05
2.07
2 ~ 08
2 ~ 09

f4 4
14.2
14.0
13.9
13.9
f4.0

7.15
7.04
7.08
6.97
6.98
7.0

3.61
3.32
3.33
3.22
3.5
3.0

find that in all cases the agreement between the
separable expansion results and the LG and BKT
very good. Furthermore the ASE (1,2) is always
better than, the UPA and in some cases better than
the UPE (2A+ 1R), the only exception being the
binding energy of 'H. It is clear from a compari-
son of the ASE (1, 2) with the results of Laverne
and Gignoux and Brandenburg et al. that the tri-
nucleon wave function for ASE (1,2) is much easier
to ealeulate and as good as any of the other wave
functions resulting from the solution of the Faddeev
equation with the exact potential.
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FIG. 2. Comparison of the HSC 3He charge form factors using the four different expansions.

lowest rank ASE considered [i.e. , ASE (1,2)] gives
not only a good approximation to E~, but repro-
duces the charge form factor of 'He obtained using
a more exact wave function. This means we can
use the simpler wave function obtained from ASK

(1,2) to calculate the contribution to the energy
and form factor from three-body forces and ex-
change currents. Also the correction to the ener-

gy and charge form factor from the neglected
higher nucleon-nucleon partial waves can now be
calculated by perturbation theory. Furthermore,
since the experimental form factor is reproduced
for E' ~ 12 fm ' with ASE (1,2) we may use such
wave functions to study low energy pion production
with the hope of learning more about the reaction
mechanism.
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APPENDIX

In the present Appendix we give an explicit expression for Z, „., „ in a form amenable to computation.

Although we use J-J coupling for the present, the steps leading to this result are similar to those used in

Ref. 34 to derive the equivalent expression in the channel spin coupling. %e have

~r z;&&z (& esiE) = &&s z

with

"&g..&. l& &&Iele;&) ~r~ (
.„)d„

E —X(g 2+ qg2+ g~gp)
(Al)

and

l~
pe = -qg - 2qa ~ pa= qe+ &qg ~

A AX=/ 'g~, (A2)

(A3)

In Eq. (A3) P~(x) is the I.egendre polynomial of order L, and the coefficients A~"~' are given by

2l +I 21~+ I («2 ~8 Tr fe
A~'~ ~=(-)"t f&0 %~l fP LBj jP 1~(2L+1)2"~'~ '& (2l —2a+1) (21& —2b+1)

2Q 2b ) v~ T t~

s ) ''is sago
0'g 0' s

x g( )»(2S+I) P (-)~'(2L'+1) L o l LB oz
S v~ S s8

,
I' S J, L' S J

where d= (2a+ I)'~' and

Ty+ To + G~+ 0'of —tfj —s~+ i~+ 2 T + L

and the 12-J symbol is that defined by Ord-Smith. "

(A4)

(A5)
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