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Starting from the Brueckner-Hartree-Fock approximation and Reid's hard core nucleon-nucleon

interaction, we calculate and parametrize the energy —and the density —dependence of the isoscalar,
isovector, and Coulomb components of the complex optical-model potential in infinite nuclear matter, for
energies up to 160 MeV. We then construct the optical-model potential in a finite nucleus. In a first step,
we adopt a local density approximation which implies that the value of the complex potential at each point of
the nucleus is the same as in a uniform medium with the local density. We compute the corresponding
volume integrals per nucleon and mean square radii of the real and of the imaginary parts of the optical-
model potential, in particular for protons scattered by ' C, ' 0, Al, 4 Ca, Ni, ' Sn, and Pb. We
compare these results with a compilation of empirical values and find that the calculated and experimental
volume integrals are in good agreement but that the theoretical mean square radii are too small. We ascribe
this discrepancy to the fact that our local density approximation does not include accurately the eA'ect in a
nonuniform medium of the range of the effective interaction. We include this range in a
semiphenomenological way suggested by the Hartree approximation. With a reasonable value for this range
parameter; which is the only one occurring in our work, good agreement is obtained between the theoretical
and the empirical values of the volume integrals and mean square radii of the real and, to a lesser extent, of
the imaginary parts of the optical-model potential, for mass numbers 12 & A & 208 and for energies E up to
160 MeV. Our results are given in analytic form and can thus be used in analyses of experimental data. We
also discuss the diA'erence between the optical-model potentials for protons and for neutrons.

NUCLEAR REACTIONS Calculation of the complex optical-model potential for
finite nuclei from Reid's hard core interaction; comparison with a compilation

of empirical potentials.

I. INTRODUCTION

The present paper is devoted to the calculation
of the complex ~pticat-model potential (OMP)
from "next to first" principles, i.e. , from a real-
istic nucleon-nucleon interaction, and to the com-
parison between these results and a compilation of
empirical values. Its aim and limitation are ac-
curately described by Hodgson' who emphasized
long ago that "nuclear matter theorists should
help the optical-model analysts to get some idea of
the overall form of the OMP. . . since one cannot
always determine the OMP purely phenomenolo-
gically. . . "; he added that ".. . also one cannot de-
termine the OMP purely from nuclear matter con-
siderations: What one can do is to use nuclear
matter calculations to get some idea of the overall
form of the OMP and then use optical-model analy-
ses to make them more precise by comparing with
experimental data. " Despite these early calls
from practitioners of the optical model and the
fundamental interest of the problem, progress
has been rather slow. We have recently given a
critical survey of the main previous theoretical
attempts.

It has been argued that the volume integrals of
the real' and of the imaginary" parts of the OMP
are rather well determined by the scattering data

and that, on the average, these quantities vary
smoothly with energy and with target mass num-

ber. This is further confirmed by the compila-
tion of experimental values that we present in Sec.
IV, and which also include the mean square radii.
This observation indicates that the main properties
of the OMP are characteristic of the nuclear me-
dium and can thus hopefully be evaluated from the
investigation of nuclear matter. This is our basic
prejudice. We use a theoretical approach whi. ch
combines Green's function theory and Brueckner's
low density expansion for the OMP in nuclear
matter. ' Of course, it must be expected that some
finiteness corrections will have to be performed.
One of these will be discussed in Sec. VI. Since
we are interestedhere intheproperties of the average
OMP, we do not include shell effects; we believe
that these might, however, be taken into account
a' Postexi oui .

The present paper is organized as follows. In
Sec. II we briefly recall the main theoretical for-
mulas and establish our notation. " In Sec. III,
we parametrize the real and imaginary parts of
the OMP in infinite nuclear matter: We include
their dependence on incident energy, on density,
on the amount of neutron excess, and on the
strength of the Coulomb field. We restrict the
discussion to the energy domain 0 & E & 160 MeV,
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to the Brueekner-Hartree- Fock approximation, and
to Heid's hard core nucleon-nucleon interaction.
We have given elsewhere some preliminary results
for the intermediate energy range (E&150 MeV)'
and for corrections to the Brueckner-Hartree-Fock
approximation. '" In Sec. V, we construct the
OMP in a finite nucleus from a local density ap-
proximation which is rather crude but is never-
theless instructive; it introduces no adjustable
parameter into the calculation. It consists in
assuming that at each point of the nucleus the OMP
is the same as in a uniform medium characterized
by the local values of the density, of the amount of
neutron excess, etc. The comparison with em-
pirical values, previously compiled in Sec. IV,
shows that this local density approximation yields
good volume integrals but too small. mean square
radii for the real and for the imaginary parts of
the QMP. %'e argue in Sec. VI that the discrepancy
was to be expected since the long-range part of the
effective nucleon-nucleon interaction gives rise
to surface corrections; the latter are included
semiphenomenologieally by introducing an adjusta-
ble range parameter. With a reasonable value
for this single parameter, good agreement is ob-
tained with the empirical values of the volume
integrals and mean square radii of the real. part
and, to a lesser extent, of the imaginary part of
the OMP. Section VII is devoted tothe discussion
of the isovector and Coulomb components of the
OMP, to the role of a neutron- rich skin. and to
the qualitative interpretation of our results. Final-
ly, Sec. VIII contains our conclusions. In the Ap-
pendix, we discuss some features of the improved
local density approximation of Sec. VI.

II. THEORETICAL FORMULAS

%e briefly recall several definitions and formu-
las which are needed for the calculation of the
QMP in nuclear matter in the framework of the
Brueckner- Hartree- Fock approximation. Details
and justifications can be found in Befs. 7 and 8.
We consider successively the isoscalar, the iso-
vector, and the Coulomb components of the OMP.

A. Isoscalar component

The isoscalar component of the QMP is the one
which corresponds to symmetric (N = Z) and un-
charged nuclear matter. I.et kz denote the Fermi
momentum and p the density:

p=2(3v') 'k~'.

The Brueckner reaction matrix g, [w] is related to
the nucleon-nucleon potential v by the integral
equation

where we have indicated schematically that the
sum over a and b is restricted to plane wave states
with momenta a =

~
a, ~, b = ~b

~
larger than k~. In

the Brueckne r- Hartree- Fock approximation the
mass operator is given by

M, (k, &)= g &i, k lg. [&+c,(i )] li, k)e (3)
j& kp

with the following self-consistent choice for the
energies e, (p) (@=1):

(4)

The symbol 8 in Eq. (3) refers to antisymmetri-
zation. Relation (4) also defines a functional de-
pendence of P on energy and density:

E = + ReMp(Pp(E), E) .P,'(E)

The real and imaginary parts of the isoscalar
component of the OMP for a nucleon with energy
E are given by

V,(p, E)= HeM, (k, (E),E),
W (p, E) =m[m(p, E)] ' W (p, E),
W, (p, E) = ImM, (k,(E),E),

where the E mass is defined as follows

(7a)

(71)

m(p, E)/m= 1—
@

HeM, (k, (E), h) . (8)
«g

B. Isovector component

The isovector component of the OMP is the one
which arises from neutron excess. I.et us denote
by p„and p~ the neutron and proton densities, re-
spectively. The amount of neutron excess is mea-
sured by the asymmetry parameter

W(p, E)=,
)

imN(p, E),Kjp, E

Pff+ PP

The corresponding isoveetor contribution to the
OMP is usually written in. the form

+o.[V,(p, E)+iW, ( p, E)],
where the upper and lower signs refer to neutrons
and to protons, respectively. In Ref. 8, we ex-
pressed V, and W, in terms of an auxiliary function
N(E) whose Brueckner-Hartree- Pock approxima-
tion is given by Eqs. (60b) and (61) of Ref. 8:

As

V, (p, E) = ' Re%(p, E),
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where the k mass rS is defined by

rH(p. , E) s1+ rnk ' —Rel, (k, E)
Bk - k=kp(E)

It is related to the familiar effective mass m*

=1 — V( E)
m

=
dE

by the equation

m m
m m

C. Coulomb component

(15)

III. PARAMETRIZATION IN NUCLEAR MATTER

In order to provide the reader with utilizable
expressions for the OMP, it is necessary to param-
etrize our numerical results in analytical form.
All the quantities given below are calculated from
Reid's hard core nucleon-nucleon potential. " We
include all the P partial waves but only the S and
D partial waves with total angular momentum J
~ 2. We consider the energy domain 10& E & 160
MeV. We computed all quantities at about 10 en-
ergies in this domain, for the Fermi momenta
k~=1.4, 1.35, 1.25, 1.10, 1.00, 0.82, and0. 50 fm ',
respectively.

In first approximation, the role of the Coulomb
force which acts on an incident proton amounts to
adding the Coulomb field V~ to the OMP. How-
ever, the fact that the latter is nonlocal and en-
ergy dependent must be taken into account by re-
placing the energy variable E by E-V~ in all ex-
pressions. For instance, the isoscalar component
of the OMP for a proton with energy E is given by

V (p, E Vc)+iWO(p, E—Vo). (16)

m~(P, E)
m C&

Wc(p, E) = Wo(p, E —Vc) —Wo(p, E) .

One has in general'

& (p, E)&0, W (p, E) &0.

(18)

(20)

D. Total optical-model potential

I,et us gather the expressions given in Secs.
QA-IIC. The real and imaginary parts of the
OMP for a neutron with energy E in uniform nu-
clear matter with density p and neutron excess n
read

V.(P, E) = V.(P, E)+ &V,(P, E),
W„(p, E) = Wo(p, E) + n W, (p, E) .

(21)

(22)

In the case of a proton with energy E and in the
presence of a Coulomb field V~, the correspond-
ing quantities are given by

Vp(P E) = Vo(P E)+ &o(p E) —&V (P E- Vc),

(23)

~~(p, E) = W, (p, E)+ Wc(P, E) —a W, (p, E —Vc) .
(24)

In order to exhibit the so-called "Coulomb correc-
tion, " we write expression (16) in the form

V, (p, E)+iW, (p, E)+ [&c(P,E)+i Wc(P, E)], (17)

with

~,(P, E) = V.(P, E V,)- V.(P-, E)

A. Real part, of the optical-model potential

We have parametrized the quantity V,(p, E) in
the form

(25)

The coefficients a, ~ are gathered in Table I; the
units are MeV for V, and E and fm ' for p. One
has, for instance a„=-974 MeVfm'. The choice
of the powers of p appearing in Eq. (25) is largely
arbitrary. The only physical requirement is that
for small densities V,(p, E) must become propor-
tional to the probability of having another nucleon
in the neighborhood of the incident particle, "i.e. ,
to p.

The quantity V,(p, E) is i.ntimately related to the
potential energy density which plays a central role
in the energy density approximation for finite nu-
clei." We argue in Sec. VI that the ratio V,/p is
closely connected with the strength of the effective
interaction used in the Thomas- Fermi approxima-
tion. " In Fig. 1, we plot the ratio

~
V, ~/p versus

p for the energies 10, 30, 50, 80, and 140 MeV.
As expected, this ratio decreases with increasing
energy"" and with increasing density. " We shall
return to these points in Secs. VI and VII.

Expression (25) has been fitted to the calculated
values of V, (p, E) in the energy interval 10 &E ~160
MeV. Hence, it is not very accurate for negative
energies; in particular, it should not be used to
compute the Fermi energy E~ which is defined by

TABLE I. Coefficients a&, in the expression (25) for
Vo(p, E).

-0.9740 x10 0.1126 x10 —0.4250 x10
0.7097 x10 -0.1257 x10 0.5853 x10

-0.1953 x10 0.4180 x10 0.2054 x10'



16 OPTICAL-MODEL POTENTIAL IN FINITE NUCLEI FROM. . .

TABLE II. Coefficients b;j in the expression (28) for
Re@,.

600-

0.3601 x10 0.5224 x10
0.2691 x104 0.5130 x10'
0.7733 x10 -0.1717 x10

0.2051 x10 '
0.2470 x10
0.8846 x100

with the values shown in Table III. The values of
m* can be calculated from Eqs (14.) and (25) and
those of m from Eq. (15).

200-

0 0.05 0.10

P (fm ~)

0.15
I 1 4

W, (p, E)= 1+ ), g d, &p'E~', (30)

B. Imaginary part of the optical-model potential

The parametric form of the imaginary part of
the isoscalar component of the OMP should take
into account the fact that it is proportional to
(E —ez)' near the Fermi surface. We obtained a
good fit to our numerical results with the expres-
sion (in MeV)

FIG. 1. The full curves represent the dependence on
the density of the quantity

~ Vo(p, E) ~ /p for the energies
10, 30, 50, 80, and 140 MeV. The short dashes corre-
spond to the parametrization (A3).

(26)

ReN= g 5 p'E~ '. (28)

We have calculated E~ from the Brueckner-
Hartree- Fock approximation; our result is well
reproduced by the expression (er in MeV, p in
fm ')

e„(p)= p(-510.8+ 3222p —6250p') . (27)

This formula yields
~ ez~ =26 MeV at saturation

density. This value is larger than the average
binding energy per nucleon because it does not in-
clude the contribution of the rearrangement poten-
tial, ' which is large at negative energies.

The real part of the quantity N can be paramet-
rized in the form (in MeV)

--1 4

ImN, (p, E)= 1+ g f;;p'Ei '.
It turns out that the value of F determined from
the fit in the energy interval 10 & E & 160 MeV is
so small that the first factor on the right-hand
side of Eq. (31) is of aesthetical rather than prac-
tical value. We took F=1 MeV. The other coeffi-
cients are listed in Table V.

(31)

with a= 600 MeV' and the values of d, &
given in

Table IV. In Fig. 2, we show the dependence on p
of the quantity j W, (p, E) (/p for the energies 10,
30, 50, 80, and 140 MeV. We note that j W, (p, E)

~

tends to decrease with increasing energy for
p&0.9 fm '. At larger densities, the quantity

~
W, (p, E)

~
steadily increases with energy. Clear-

ly, these features will yield a transition from sur-
face to volume absorption at about 50 MeV in finite
nuclei.

The imaginary part of N [see Eq. (12)] behaves
like (E —ez) near the Fermi surface. " Therefore,
we parametrized it in the form (in MeV)

m(p, E)

tg j=I
(29)

The coefficients b;,- are gathered in Table II.
Equation (11) shows that the real part of the iso-
vector component of the OMP is obtained by multi-
plying expression (28) by the k mass. The latter
can be fitted as follows: 0.4557 x10

0.2051 x10'
—0.6509 x10

-0.5291 x10
0.4906 x10
0.3095 x 10

0.6108 x10
0.1812 x10

-0.1190x10 '

TABLE III. Coefficients c;j in the expression (29) for
m(p, E).
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TABLE IV. Coefficients d;; in the expression (30) for 8'o(p, E).

0.1483 x10
0.2988 x10

-0.2128 x106
0.5125 xlo

0.3718 xlo
-0.9318 x10

0.7209 x10
-0.1796 x10

0.3549 xloo
0.9591 x10

-0.7752 x10'
0.1980 xlo

0.1119x10 ~

-O.316O x1O-'

0.2611 xloo
-0.6753 x10

IV. COMPILATION OF EMPIRICAL VALUES

We shall mainly discuss the QMP for protons;
the difference between the OMP for neutrons and
for protons will be considered in Sec. VII. It has
been repeatedly observed'" that the differential
and total cross sections generated from various
OMP are rather insensitive to the detailed form
of the latter provided that the various OMP have
the same volume integral per nucleon

Jr/A = —A ' V(r)d'r (32)

and the same root mean square radius

f V(r)rsdsr i/2
Rv~

f V(r)d'r
(33)

Js/A = -A ' W(r)d'r; (34)

it has also been claimed" to be valid for the root

10

300-

50

200-
80

UJ

CL
100

140

Recently, it has been shown that an analogous pro-
perty also holds, although less strictly, for the
volume integral per nucleon of the imaginary part
of the QMP4"

mean square radius of the imaginary part

(R,), g 2 f W(r)r d r

f W(r)d'r
(35)

All these features will be confirmed and exhibited
below. Thus, a meaningful test for the agreement
between a calculated and an empirical OMP con-
sists in comparing their volume integrals and root
mean square radii.

We have calculated the va.lues of Jr/A, (Rr'),
Js/A, and (Rs') for the empirical OMP compiled by
percy and percy" for the nuclei "C, "O, "Al,
"Ca, "Ni, '"Sn, and "'Pb. Whenever possible,
we only retained those phenomenological OMP
which yield fits considered as "good" or "very
good" by Percy and Percy; the corresponding
values are represented by full dots in Figs. 3-16,
where the open dots correspond to "acceptable"
fits which were used when no better choice was
available. Whenever several phenomenological
OMP existed in a narrow energy domain, we have
averaged them over a 5 MeV interval, in order to
simplify the figures. Then, the dot represents the
average value, while the error bar shows the
standard error (standard deviation of the mean
value).

The fact that the empirical values plotted in
Figs. 3-16 show only little dispersion about a
smooth function of energy confirms that the scat-
tering data determine fairly well the lowest mo-
ments (32)-(35) of the OMP. On the average, the
quantity Jr/A decreases practically linearly with
increasing energy for 10 +E - 70 MeV; the de-
creasing rate becomes smaller for larger ener-
gies. The mean square radius (Rr') is essentially
independent of energy; this also holds true for
(R~a), but in the latter case the empirical values
show more dispersion. In general, it appears that
Zs/A tends to increase with energy for E & 20 MeV.
The A dependence of these quantities will be dis-
cussed in Sec. VII.

0
0 0.05 0.10

P (fm~)

I

0.15

FIG. 2. Dependence on the density p of the quantity
( Wo(p, E) ( /p, where Wz is the isoscalar component of
the OMP, for. the energies 10, 30, 50, 80, and 140 MeV.

V. LOCAL DENSITY APPROXIMATION

A. Definition

In the present section, we construct the OMP in
a finite nucleus from the assumption that at a. dis-
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TABLE V. Coefficients f;,. in the expression (31) for ImN&.

0.5461 x10
0.8471 x10
0.5172 x10
0.1140 x10

-0.1120 x102
0.2300 x10
0.1520 x104
0.3543 x 104

0.1065 x10
0.2439 x10
0.1717 x102
0.4169 x10

0.3541 x10
0.8544 x10 '
0.6211 x10 i

0.1537 x100

Vs(r)+ i'(r) = V(p(r), E)+ i W(p(r), E). (36)

tance r from the nuclear center, where the density
is equal to p(r), the OMP is given by [see Eqs.
(~&)-(~4)]

are given by the following average expression,
proposed by Negele"

p (tc)

p'"'(r) =
1+exp[(r- C,)/a, ]

' (37)

In other words, this local density approximation
(LDA) ascribes to the OMP at the density p(r) the
same value as in a uniform medium with the same
value of the density, with the same neutron excess,
and at the same energy. This LDA is rather crude,
but the comparison of its predictions with experi-
ment will be instructive. It will be improved upon
in Sec. VI.

The input of our calculation consists in two in-
gredients, namely, the nuclear matter results
presented in Sec. III on the one hand and density
distributions for protons and neutrons on the other
hand. Except in Sec. VIID, we assume for sim-
plicity that the density distributions of the protons
and of the neutrons have the same geometry and

where

a, =0.54 fm,

C, = (0.9'I8+ 0.0206A'i')A'~' fm

(ff ) 3K

47fC (i+/ g /C )
'

(38)

(39)

B. Real part of the OMP

This parametrization reproduces reasonably well
the experimental charge density distribution; its
accuracy is poorer for light nuclei or in the ex-
treme tail. It is appropriate to utilize here such
an "average" expression for the density since we
deal with the "global" OMP rather than with a
spec if ic n.ucleus.

A
N )
lX
V

34—

3.0—

2,6—

600—

$$
I

,
'

$$ ',

12C

The full curves in Figs. 3-9 show the dependence
on energy of the quantities Jr/A and (Rr')' ', as
calculated from the LDA in the case of protons.
The agreement between theoretical and empirical
values of Jr/A is excellent in the whole energy
range 0 & E & 170 MeV. This agreement is much
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IN
AN)
lZ
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600—
E

I $$
I

16p

FIG. 3. The dots in the upper and lower parts repre-
sent the empirical values of the root mean square radius
and of the volume integral per nucleon of the real part
of the proton OMP of C. The compilation of Percy and
Percy (Ref. 18) has been used. The full dots correspond
to "good" or "very good" fits; the open dots to "accept-
able" or poorer fits. The full curves show the theoreti-
cal result of the LDA (Sec. V). The long dashes corre-
spond to the improved LDA of Sec. Vl, with a range t
=1.2 fm.

)
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200—

25 50
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I $$ I

150 175

FEG. 4. Same as Fig. 3, for ' O. The open squares at
E=22.5 MeV are obtained from Ref. 37.
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FIG. 9. Same as Fig. 3, for Pb. The short dashes
correspond to a neutron-rich skin (Sec. VII D). 50—

of compound nuclear states is smaller and the in-
elastic channel thresholds lie higher. We return
to this point below.

The energy dependence of J~/A is well repro-
duced, for instance in the case of "'Pb where
numerous accurate empirical values are available.
The rapid increase of the OMP with energy for
E &20 MeV is mainly due to the imaginary part W~
of the Coulomb correction [Eq. (19)]. This is ap-
parent from Fig. 16, where the dash-and-dot line
represents the negative of the quantity

I

25 50
E (WeVj

I $$ I

150 175

FIG. 11. Same as Fig. 4, for the imaginary part of the
OMP.

This imaginary Coulomb correction is responsible
for the difference between the curve shown in Fig.
16, where W~ is included, and the preliminary re-
sults given. in Ref. 5, where the contribution of
Wc was omitted. It must be stated, however, that
our LDA is not accurate below the Coulomb bar-
rier. This shows up dramatically in the fact that
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FIG. 12. Same as Fig. 5, for the imaginary part of the
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FIG. 15. Same as Fig. 8, for the imaginary part of the
OMP. The short dashes correspond to a neutron-rich
skin (Sec VII D).

the value of &~' = &~+ V~, which is the Fermi en-
ergy of the protons in the LDA, is positive in the
surface region in the case of '"Pb. According to
the parametrization (30), the value of W, (E —Vc)
= W, (E)+ Wc vanishes for E&eg'. This difficulty
is related to the fact that the LDA is a quasi-
classical approximation which is thus questionable
in the classically forbidden regions. However,
this difficulty is encountered only at low energy,
for instance at E & 10 MeV in the most unfavorable
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FIG. 16. Same as Fig. 9, for the imaginary part of the
OMP. The dash-and-dots represent the Coulomb correc-
tion Jg /A. The short dashes correspond to a neutron-
rich skin (Sec VII D)
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ue corresponding to A. = 16, since it appears to in-

clude an error due to the use of the derivative of
a Woods-Saxon instead of a Gaussian, for the
form factor of the surface absorption given in Ref.
22. The same error affects some of the empirical
values of J~/A for "Al and 4'Ca; the corresponding
error bars are represented by dashed lines in Fig.
17. The full curves show the results of our LDA

for E=20, 25, and 50 MeV. We see that the aver-
age behavior of the empirical values is quite well

reproduced, in particular the rise of J~/A with

decreasing mass number. W'e discuss this trend

in Sec. VIIC.
Finally, the full curves in the upper parts of

Figs. 10-16 show the energy dependence of the

LDA values of (R~')'~'. We see that the calculated
root mean square radii are significantly smaller
than the empirical ones. This discrepancy is even

larger than in the case of (Rv')'~'. As in the latter
case, it reflects the fact that the calculated radial
form factor is too steep at the nuclear surface.
For instance, the function W(r) in the case of "'Pb
at 30 MeV can be fitted by the expression

FIG. 17. The dots and error bars represent the de-
pendence on mass number of the empirical values of the
volume integral per nucleon of the imaginary part of the
OMP, as compiled by Hodgson (Ref. 5), for proton ener-
gies E ~ 25 MeV (upper part) and E& 25 MeV, respec-
tively. The full curves show the theoretical results
derived from the LDA at E=15, 25, and 50 MeV. The
short dashes correspond to E=150 MeV.

W(r) = Wvfw(r) —4 Wqa w ~Pw(r),
d

r —Rf (r)= (]+exp
aw

with the numerical values

W~=-5. 0 MeV, W~=-12.7 MeV,

Rw=1. 14A' ' fm, aw=0. 52 fm.

(42)

(42)

case of" Pb, and in a narrow range of values for
the radial distance r.

The dotted curve in Fig. 13 represents the val-
ues of J~/A and of (R~')'~' that we computed from
Figs. 22-25 of the recent paper by Vinh Mau and

Bouyssy. " These authors performed a micro-
scopic calculation of W(r) in 4'Ca; they used a
random phase approximation for the OMP, togeth-
er with a phenomenological nucleon-nucleon inter-
action fitted to the properties of low-lying bound

states. We see that their computed volume inte-
gral is somewhat too small, while ours is too
large; their root mean square radius is about the
same as ours.

In order to smooth out the shell effects, it is of
interest to consider the dependence on energy or
on mass number of Z~/A when the latter quantity
is averaged over mass numbers or over energy,
respectively. In Fig. 17, we show the dependence
on A of empirical values of Z~/A averaged over
energy in the two energy domains E &25 MeV and

E ~ 25 MeV. ' The full dots and standard deviations
are taken from the recent compilation by Hodgson. '
We have, however, left out from the latter the val-

The diffuseness aw is significantly smaller than

the value aw=0. 7 fm which is usually adopted in

empirical analyses.

VI. IMPROVED LOCAL DENSITY APPROXIMATION

A. Weakness of the LDA

The LDA yields good agreement between the

theoretical and the empirical values of the volume

integrals per nucleon of the real and of the imagi-

nary parts of the OMP. This indicates that the

Brueckner- Hartree- Fock and local density approx-
imations are fairly satisfactory in the central re-
gion of the nucleus. However, the calculated root
mean square radii are systematically too small.
This suggests that the LDA is not accurate in the

surface region. This is not surprising since im-

proved approximations based on nuclear matter
results usually involve surface corrections, some-
times expressed in terms of derivatives of the

local density as in the Thomas-Fermi" and ener-
gy- density" approaches.

In order to exhibit the main weakness of the LDA

which has been adopted in Sec. V, we consider the
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following simple model. We assume that the nu-

cleon-nucleon interaction v(x) only depends on the
relative distance r between the two nucleons and

is sufficiently weak to justify the use of first order
perturbation theory. I,et us furthermore only re-
ta, in the direct (Hartree) contribution to the (real. )
OMP and omit the exchange (Fock) term. In a
finite nucleus, the Hartree approximation reads

r'"(r)=(:f X r'r(~r —r'~)tt(r'),

where C is a spin-statistical factor. In nuclear
matter with density p, the Hartree potential is
given by

V" =Cp d x'v

(23) j. Tile con'tl'ibu'tioll 'to 'tllls quantity of 'tile 180-

scalar component of the QMP has been plotted ver-
sus density in Fig. 1, which is discussed further
in the Appendix. %e now introduce a range for the
interaction (49). For simplicity, we adopt a Gaus-
sian form factor:

v (p, (r- r'() =(few) 'exp(-(r- r'('/f')v (p).

(50)

In view of the fact that the justification of our
procedure is only qualitative, we did not consider
other expressions for the form factor.

Equatio ns (44) and (50) lead to the following "im-
proved" I.DA for the real part of the QMP:

if the LDA of Sec. V is used, the resulting ex-
pression for the QMP reads x exp(-~r- r' ~'/t') p(r')d'r' (5la)

It is only in the case of a zero-range interaction
that the LDA (46) becomes identical to the more
correct expression (44): because of the finite
range of the interaction, approximations (44) and

(46) thus differ in a nonuniform medium. We note
that this discussion remains qualitatively valid for
a density-dependent interaction.

Sometimes, the difference between (44) and (46)
is expressed in terms of derivatives of the local
density. This is suggested by the expansion"

V PN(Y) V LDA(r.) + 1 v Ap+ +v (I12p

w'here

(47)

v =C d3x'r'"v r' . (48)

In practice, the domain of validity of the expansion
(47) is quite limited, and the coefficients of the

gradient terms are thus treated as phenomenologi-
cal parameters in the energy-density formalism. "

Another possible approach consists in retaining
the effect of the range of the effective interaction
in the calculation of the mean potential field, as
for instance in the Thomas-Fermi approximation. "
It is the latter point of view that we adopt below.

„() V(p E)
p

(49)

where V is the real part of the OMP [Eqs. (21) and

8. Improved local density approximation

Equation (45) suggests to identify the strength of
the effective interaction with the energy- and den-
sity- dependent quantity

where Vz(r') is the LDA value defined in Eq. (36).
The normalization factor on the right-hand side of
Eq. (50) was chosen in such a way that Vz(r)
= Vz(r) in a uniform medium, as should be the
case accoxding to our discussion in Sec. VIA. %e
note that the use of p(r') instead of p(r) as argu-
ment of vz in Eq. (51a) is arbitrary. The differ-
ence between these two choices should be negligible
for a sufficiently small value of the range t, and

is discussed further in the Appendix. Here, we

adopt the choice (5la) because it facilitates the
theoretical interpretation of our numerical re-
sults.

From the multiple scattering approach, we ex-
pect that finite range corrections to the I.DA must
also be introduced for the imaginary part in the
surface region. Therefoxe, it may be instructive
to show numerical results for the quantity

(r (r)= (ttr) *f (r (r')ax)t(-~r —r'~*/t )tt'r',

(52)

although the theoretical foundation of this folding
formula is more shaky than that of Eq. (51a). In
particular, it is likely that the range f in Eq. (52)
should be larger than in Eq. (51a) because it is
mainly the long-range part of the effective nucleon-
nucleon interaction which is responsible for the
imaginary part of the QMP.

C. Numerical results

The main geometrical differences between the
improved LDA Vz(r) and the LDA Vz(r) can be
figured out from the work of Sussmann'4 and of
Myers" on leptodermous distributions. I.et us,
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for definiteness, consider the case where V(r)
has the Woods-Saxon shape

V(r) =, , C, =r,~'". (53)
U

1+exp r- C„ar
In the limit

t a
(54)

Cv
'

Cv

the folded potential Vz(r) also has a Woods-Saxon
shape, with the following values of the depth, half-
depth radius, diffuseness, "

t2
U= U, Cv= Cv 1-—

j./2
lot 2 3
av= av+ 2 t2'

In the limit (54), the volume integrals of V(r) and

V(r) are equal

Hef. 26).
The real part of the folded potential well can be

fitted with a Woods-Saxon formula. In the case
of 2OSPb at 30 MeV, the corresponding param-
eters are

U =-53.6 MeV, C =1.21A'/', a =0.62 fm,

which should be compared with the values given
in Eq. (40). The imaginary part of the folded po-
tential can be fitted by expression (41). In the
case of '08Pb at. E= 30 MeV, the parameters (43)
become

~,=-5.8 Mev,

R~= 1»19A.'/' fm, a~= 0.61 fm.

D. Discussion

but the root mean square radii differ

Helation (57) indicates that the good agreement
obtained in Sec. V between the empirical and cal-
culated volume integrals per nucleon will not be
spoiled in the improved I.DA. Equation (58) shows
that the inclusion of the finite range effects will
lead to an improvement of the comparison between.
empirical and calculated root mean square radii.
The long dashes in Figs. 3-9 show the dependence
on energy of the root mean square radius (R„)'~',
in the case

The validity of the LDA at low energy, in its
simplest or improved form, has often been ques-
tioned (see Hef. 27, and references contained
therein). We indicated in Sec. VI that our theory
truly aims at calculating the strength of the ef-
fective interaction. In a more sophisticated ver-
sion (cf. Appendix), it could be used to find not
only the strength, but also the form factor of this
interaction. Hence, the LDA corresponds to the
construction of the density-dependent effective in-
teraction V, /p, in the spirit of density dependent
Hartree-Fock calculations. In its improved form
(i.e. , with due account of finite range effects), it
requires that the strength of the effective inter-
action varies only little over the range of the in-
teraction, i.e. , that

t=1.2 fm. (59)

As expected from Eq. (57), the volume integral per
nucleon Zr/A is so close to J'r/A that these two
quantities cannot be distinguished graphically.

%e show the energy dependence of the quantities
ZI,/A and (R~')'~' in Figs. 10-16, for f = 1.2 fm.
In most cases, the values of Z(»/A and of ZI/A can-
not be distinguished graphically. The introduction
of a range t appears to reduce somewhat the dis-
crepancy between theoretical and calculated root
mean square radii for the imaginary part of the
OMP, without eliminating it for heavy nuclei.

In view of the semiphenomenological nature of
our improved LDA, no intimate relationship exists
between the numerical value (59) for the range
parameter t and the actual range of "the" effective
interaction. We return to this point in the Ap-
pendix. We note, however, that the value t = 1.2
fm is close to the range of commonly used pheno-
menological effective interactions (see, e.g. ,

—'= E(E)(1—dp'~'),
P

where d "-2 fm' and E(E) is density independent.
Evaluating the left-hand side of (62) at r=R»,
where ~dp/dr

~
is largest, one finds the condition

t &&2.4 fm~ (64)

which is reasonably well fulfilled. Qf course, one
should keep in mind that our LDA involves a num-
ber o1' approximations besides inequality (62), for
instance the use of the Brueckner-Hartree-Fock
approximation and the neglect of shell effects.

In the Appendix, we show that the following formu-
la" is a fair approximation:
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VII. DIFFERENCE BETWEEN PROTON AND

NEUTRON POTENTIALS

J» /A =-A 'fV~(r, E)d'r, (65)

A. Dependence of Jz/A on mass number

Equations (21)-(24) show that the origin of the
difference between the OMP for neutrons and pro-
tons lies in the Coulomb correction ~c+iW~ on
the one hand, and in the symmetry (isovector) po-
tential on the other hand.

In Fig. 18, we represent the dependence on A of
the following quantities, at E =35 MeV:

500-
E

400-

300-
0.05

E„= 11MeV

0.10 0.1 5
N-Z

A

0.20

J~ /A=-A ' bc(r, E)d'r,

J'» /A = oA ' V, (r, E)d'r.

(66)

(67)

FIG. 19. The crosses represent our calculated values
of the volume integral of the real part of the OMP for
neutrons (Sec. VI) for E„=11MeV, the open circles and
the full dots show the empirical values given in Ref. 32.
The full straight line is a least square fit to the em-
pirical values of Ref. 31, for E„=8 MeV.
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FIG. 18. The full curves represent the A dependence
of the volume integrals per nucleon of the real part of
the proton OMP, of the Coulomb correction, and of the
isovector component [Eqs. (65)-(67)], at E= 35 MeV.
The long dashes correspond to the empirical proton
OMP of Ref. 28. These curves are drawn through the
values calculated for the nuclei C, 60 Al, Ca,

Ni, Sn, Tm, and Pb, and indicated by open
circles and by crosses on the curves marked J~&/A.
The short dashes represent the contribution 4 ~0/A of
the isoscalar component.

The full curves are drawn through values calcula-
ted in the framework of the LDA for the nuclei
12C 16P 27Al 40Ca 58N j 120Sn 169Tm and 208Pb

whence the vanishing of J» /A for A = 12, 16, and
40 (n =0). The long dashes correspond to the em-
pirical proton potentials of Ref. 28 (A & 40). While
the calculated and empirical values of the volume
integral of the full potential are in very good agree-
ment, Fig. 18 shows that the calculated Coulomb
correction is larger than was assumed in Ref. 28.

We discussed the origin of this finding in Ref. 8:
It is related to the fact that the geometrical charac-
teristics of V0 and of ~~ are different. In the case
of "Ca, the ratio of our calculated Coulomb cor-
rection to the standard one is equal to 1.2, in ex-
cellent agreement with the value 0.48/0. 40= 1.2 re-
cently deduced by Rapaport et al."from the compa-
rison between proton and neutron scattering data.

In Fig. 19, we compare our theoretical results
(crosses) of the volume integral per nucleon in the
case of neutrons with the empirical values of Holm-
qvist and Wiedling'"" (full curve) and of Ferrer,
Carlson, and Rapaport"; in their analysis of the
data, the latter authors used either an average
geometry (open circles) or a geometry which is
allowed to change from nucleus to nucleus (full
circles). We see that the agreement between theo-
retical and empirical values is good, despite the
fact that in the nuclear interior our calculated val-
ue for the isovector component (V,) of the OMP is
smaller than the one which is usually quoted. This
confirms the conclusions of Ref. 8.

B. Discussion

In the present section, we give a qualitative
explanation for the dependence on mass number of
the volume integral per nucleon of the real part of
the OMP. Figure 18 shows that the volume integral
per nucleon of the isoscalar component of the OMP
decreases monotonously with increasing mass
number, and that this decrease is steeper for A
& 50. For E =85 MeV for instance, one has J» /A
=447, 381, and 343 MeV fm' for "C, "Ca, and
"'Sn, respectively. One might be tempted to as-
cribe this behavior to the second term contained in
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the brackets of the expression

(8) (N)~o ~oio~ I o I o +~o (70)

These relations, together with Eqs. (39) and (68)
yield Eq. (69), as should be the case. They show
that the depth l U, l

of the real part of the isoscalar
component of the OMP increases with increasing
A in this simple model. This property remains true in

general: In the case of the improved LDA of Sec.
VI and at E=30 MeV, one has U, =-43.4, —46.5,
and -46.9 MeV for the depth of the isoscalar com-
ponent of the QMP of the nuclei "C, "Ca, and
"'Sn, respectively. Hence, any argument based on

Eq. (68) alone is quite dangerous.
Let us now consider the realistic case when the

strength (v, (p)
~

of the effective interaction de-
creases with increasing density. We still restrict
the discussion to the LDA of Sec. V since Eq. (57)
shows that this is sufficient for our purpose.
From Eqs. (39), (68), and (70), we have

'F Qy n'a, '
d», /A =

~
v.(p.) ~

', 1+ .A".i, 1+ 2A'2is

(Vla)

where U'o denotes the depth of the QMP. We now

show that this interpretation would be incorrect.
Fol simplicity we consider the simple LDA of

Sec. V and a fixed energy, which allows us to drop
the energy index. Let us first adopt the simple
(and incorrect) assumption that the strength v,
[Eq. (49)] of the effective interaction is density
independent. Then, one has

V,(r) = v,p(r), Z», /A =
~
v, ~, (69)

and Z», /A is thus independent of A. In other words,
the dependence on mass number of the volume in-
tegral per nucleon of the isoscalar part of the QMP
is due to the fact that the strength of the effective
interaction depends on density. Equation (57) shows
that this conclusion remains true for the improved
LDA of Sec. VI.

Within our simplified assumption that the strength
vo is independent of p, one has

with our considerations in the preceding para, -
graph. However, Fig. 1 shows that in reality vo

depends on the density. This has two consequen-
ces: (i) The first factor on the right-hand side of
Eq. (Vib), i.e. , the strength ~v, (p,) ~

of tte ef-
fective interaction, decreases by approximately
20% between A=12 and A=40, because of the in-
crease of the central density p, [Eq. (39)]; it then
remains constant between A = 40 and A = 208. (ii)
The product of the second 3nd third factors on the
right-hand side of Eq. (Vlb) smoothly decreases
by about 20/p between A=12 and A=208.

In conclusion, the rapid Bnd then slower de-
crease of 8» /A with increasing A is mainly due

~
0

to the density dependence of the strength of the ef-
fective interaction. The plateau observed for A
& 50 in the curve which represents J~ /A in Fig.
18 is due to the increasing importance of the iso-
vector and Coulomb components. It does not ap-
pear in the case of 1» /A (Fig. 19).

Z~ /A =-A '
W~(r, E) d3r,

J'q, /A=-A Wc(r, E)d r, (73)

/A =-oA '
W, (r, E V) d'—r (V4)

are represented in Fig. 20, for E= 35 MeV. The
convention is the same as in Fig. 18; the dashed
curves show the values of Z~ /A and of J'~, /A found

empirically by Becchetti and Greenlees. " These

J A

C. Dependence Of J& jA On mass number

The calculated (LDA) Coulomb and isovector
contributions to the volume integral per nucleon of
the imaginary part of the proton QMP, i.e. , the
quantities

e 10—
X

0„ I

ys

Jw ~A

It can easily be checked from Eqs. (55) and (56)
that the product of the last two factors on the
right-hand side of Eq. (Vlb) is independent of A
whenever the potential Vo is obtained by folding
the density p with a density-independent effective
interaction with a short range; this is in keeping

0l
50 100 200

FIG. 20. Same as Fig. 18, for the imaginary part of
the OMP.
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authors did not introduce explicitly a Coulomb cor-
rection. The latter has been recently considered
by Patterson, Doering, and Galonsky ' who did not,
however, separate it out from the value of the
total W~, which they write in the form W, (E —Vc)
+ W~(E —Vc).

The interpretation of the dependence on mass
number of the volume integral per nucleon of the
imaginary part of the OMP is similar to that given
in Sec. VII B in the case of the real part. We only
note a few differences. (i) The contributions J~
and J~ of the Coulomb and of the isovector com-

1
ponents of the QMP, respectively, approximately
cancel each other in the case of low energy pro-
tons. (ii) The "strength" w, =

] W, ~/p of the im-
aginary part of the effective interaction is practi-
cally independent of p for E &120 MeV (see Fig.
2). Together with point (i), this has the conse-
quence that J~/A is independent of A for E=140
MeV (Fig. 17).

D. Neutron-rich skin

We now turn to the effect of assuming the exist-
ence of a neutron-rich skin at the nuclear surface.
Recent n-particle scattering data indicate that the
root mean square radius of the neutron distribution
exceeds that of the proton distribution by ~r = 0.30
+ 0.07 fm for ' 'Pb." This is slightly larger than
theoretical estimates by Myers, "who also pre-
dicts that this difference smoothly decreases with
decreasing A. Accordingly, we compute the pro-
ton QMP of Sn and Pb for a typical difference
~r =0.23 fm between the root mean square radii
of the neutron and proton distributions, in the
framework of the improved LDA of Sec. VI. The
results are represented by short dashes in Figs.
8, 9, 15, and 16. We see that a neutron-rich
skin leads to a sizable increase of (Rr') in me-
dium-weight and heavy nuclei, and helps improving
the agreement between the theoretical and em-
pirical results.

VIII. CONCLUSIONS

The content of the present paper is threefold.
(a) We present in Sec. IV a compilation of the

empirical values of the volume integrals per nu-
cleon and of the root mean square radii of the real
and of the imaginary parts of the proton QMP for
the nuclei "C, "0 "Al, "Ca "Ni "'Sn, an.d' 'Pb. Qur results show that these quantities have
a smooth dependence on energy and on mass num-
ber, thus encouraging their theoretical investi-
gation from a nuclear matter approach.

(b) We parametrize in Sec. III the isoscalar,
isovector, and Coulomb components of the complex
OMP in uniform nuclear matter. These algebraic

expressions can be used by the reader to construct
the OMP in a finite nucleus from a suitable version
of the local density approximation (LDA).

(c) We use two approximation schemes to obtain
the OMP in a finite nucleus. The first one (Sec.
V) does not introduce any adjustable parameter.
It yields satisfactory values for the volume in-
tegrals per nucleon of the real and of the imagin-
ary parts of the QMP, but too small root mean
square radii. We argue in Sec. VI that the latter
discrepancy was to be expected because the LDA
does not retain the full influence of the range of
the effective nucleon-nucleon potential when the
density is not uniform. In Sec. VII, we correct
for this drawback in a semiphenomenological
manner by introducing an adjustable range param-
eter. With a reasonable value for the latter, we
reach fair agreement with the empirical data.

~)
x p(r') exp (—, rPr'

b2 (Al)

It can easily be seen that
~
Vs(0) ] ] Vs(0)

~

for
b = t; the equality is fulfilled for b - 0. In Figs.
7 and 14, the short dashes correspond to the value
of (Al) [and of Wgr), constructed in the same way],
for b=1 fm.

A more satisfactory approach to the calculation
of the real part of the QMP of a finite nucleus would
consist in constructing a finite range effective in-
teraction from the nuclear matter results, as has
been done for instance by Negele. " In the present
case, however, this effective interaction would not
only be density dependent but also energy depen-
dent. Carrying out this approach exceeds the scope
of this paper. Nevertheless, a few semiquantita-
tive considerations can be made.

Seyler and Blanchard'"" and later on Myers and
Swiatecki" introduced in Thomas- Fermi calculations
an energy-dependent and real effective interaction
which changes sign at approximately 82 MeV. The
value of this "critical" energy essentially derived
from saturation requirements. Its smallness is
probably associated with the fact that the Seyler-
Blanchard interaction is independent of density;
the corresponding mean potential field as calcula-
ted in the Thomas-Fermi approximation, changes
sign at 60 MeV,"which is unreasonably low as
compared to empirical evidence.

It is now well established that the effective in-

APPENDIX

In Sec. VI, we indicated that there exists no theo-
retical reason for preferring the improved LDA
(51b) over the form
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teraction is density dependent. Myers" used the
phenomenological form

(r) CC e-(r/t&2(i dp2/s ) (A2)

with d=2 fm', 1=1.39 fm. The short dashes in
Fig. 1 represent the expression

F(E)(1—dp'/'), (A3)

j r- r'j'
p(r') exp (-, d'r' .

t (A4)

with d = 2.03 fm' and F(E) = (903 —7 67E.+ 0.022E')
MeV (10 MeV& E& 140 MeV). We recall that in
Sec. VI we multiplied (A3) by a Gaussian form fac-
tor with t= 1.2 fm. Hence, Myers's parametriza-
tion is qualitatively valid in our case.

According to Bethe, " the density dependence of
the effective interaction is mainly due to the short-
range part of the nucleon-nucleon interaction. If
this would be strictly so, we should associate a
finite range E only to the density independent part
of the effective interaction V,/p (see also Ref. 35).
Hence, we also used the following improved LDA
for the isoscalar component of the real part of the
OMP [see Eq. (25)]

3 8 3

~,(r, E) = p p a, ,[p(r)]'E' '+ g a, /E' '
i=2 j=l j=l

It can easily be seen that 'Uo and V, have the same
volume integral in the case of a leptodermous
density distribution. ' '" %e used the alternative
(A4) of the LDA for the real part of the OMP, and

analogously for the imaginary part. The result-
ing agreement with the empirical values is very
similar to that found in Sec. VI. However, this ap-
proach has the drawback that the radial dependence
of the second term on the right-hand side of Eq.
(A4) is sufficiently different: from that of the first
term to introduce a small plateau in the radial
dependence of u, (r) at the potential surface. More-
over, the specific parametrization (25) (for in

stance) is somewhat arbitrary. Different powers
could be used for the density p and for the energy
E, then leading to different values for that con-
tribution to (25) which is linear in the density.

Finally, we note that Sinha and Duggan" sug-
gested to improve the LDA of Sec. V by modifying
Eq. (1) which relates k~ and p. It appears doubt-
ful that this procedure is justified, since this
modified relation (which, incidentally, is mis-
quoted in Ref. 36) is mainly based on corrections
to the Thomas- Fermi expression for the kinetic
energy; it is thus not connected with the dynam-
ical origin of the absorptive part of the OMP.
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