Effective charges and E2 transitions in 1f-2p shell nuclei

A. K. Dhar* and K. H. Bhatt

Physical Research Laboratory, Navrangpura, Ahmedabad-380 009, India (Received 22 December 1976)

The proton and neutron effective charges needed to reproduce the observed E2 data on the transitions between the ground state bands of the isotopes of Ti(A = 44-50), V(A = 47-51), Cr(A = 48-52), and Fe(A = 52,54) are found to be $e_p = (1.33 \pm 0.09)e$, $e_n = (0.64 \pm 0.10)e$. These charges were obtained by a leastsquares fit between the deformed configuration mixing shell model calculated and the observed B(E2) values for the transitions in these nuclei. These values support the charges $e_p = 1.25e$, $e_n = 0.47e$ obtained recently by Kuo and Osnes in a microscopic calculation and the charges $e_p = 1.21e$, $e_n = 0.79e$ obtained on the basis of macroscopic estimates of Bohr and Mottelson.

> NUCLEAR STRUCTURE Semiempirical effective charges, B(E2) values for transitions in Ti(A = 44-51), V(A = 47-49, 51), Cr(A = 48-50, 52), and Fe(A = 52, 54) nuclei calculated within deformed configuration mixed calculations based on projected Hartree-Fock theory within $(fp)^n$ space.

A considerable amount of experimental data on electric quadrupole moments and E2 transitions in 1f-2p shell nuclei has now become available. We have used this data in conjunction with our deformed configuration mixing (DCM) shell model calculation¹ to deduce the semiempirical effective charges appropriate for the $(fp)^n$ shell space.

Analogous to the microscopic derivation of effective interactions various attempts¹⁻⁷ have been made for obtaining the effective charges for the description of E2 rates. There is a large uncertainty in the values of effective charges resulting from these microscopic calculations. However, the recent calculations of Kuo and Osnes⁶ for fpshell nuclei yielded average proton and neutron effective charges $e_p = 1.25e$, $e_n = 0.47e$. The effective charges e_p and e_n resulting from the macroscopic calculations of Bohr and Mottelson⁷ are 1.21e and 0.79e, respectively.

One of the ways to check the adequacy (or inadequacy) of these effective charges in reproducing the E2 transition data would mean doing exact shell model calculations within the chosen model space. Owing to the unmanageably large matrix dimensionalities, the exact shell model calculations in $(fp)^n$ space have thus far been limited⁸⁻¹⁰ to the nuclei with $A \leq 44$. Two sets of effective charges $e_{b} = 1.2e$, $e_{n} = 0.5e$ and $e_{b} = 1.5e$, $e_{n} = 0.5e$ were used in these calculations. However, the agreement of these calculations with the experiment was not very good mainly because the low-lying states of *fp* shell nuclei in the neighborhood of ⁴⁰Ca contain large admixtures of the highly deformed "core" excited states. Earlier we showed¹¹ however, that for the transitions between the states projected from the lowest energy Hartree-Fock (HF) states of the even-even isotopes of Ti, Cr, and Fe the

charges $e_p = 1.5e$, $e_n = 0.5e$ provide a reasonable agreement with the experimental data. A leastsquares fit between the experimental and calculated B(E2, 2-0) values in these nuclei yielded¹² effective charges $e_p = (1.32 \pm 0.16)e$, $e_n = (0.89 \pm 0.18)e$. These charges also provide a reasonable description for some of the transitions¹²⁻¹⁷ in odd-A isotopes of Ti, V, and Cr.

Recent shell model calculations¹⁸ within the $(f_{7/2})^n$ configuration space show that effective charges as large as $e_p = 1.9e$, $e_n = 0.9e$ are required for the description of E2 rates in $f_{7/2}$ shell nuclei. The need for such large effective charges in the $(f_{7/2})^n$ configuration model calculations clearly indicates the importance of deformation in these nuclei.

The deformed configuration mixing calculations based on project Hartree-Fock (PHF) theory¹⁹⁻²³ within the $(fp)^n$ space take into account the effects of the deformation of the valence nucleons in the fp shell space. These calculations are also found to be quite successful^{12-17, 24-26} in describing the energy spectra of the low-lying states of fp shell nuclei. In all these calculations the modified Kuo-Brown effective interaction^{8, 27} labeled MWH2 was employed.

We have used the wave functions obtained in our DCM calculations to calculate the B(E2) values for a number of transitions in the various fp shell nuclei.

The operator corresponding to E2 transitions is

$$Q_{M}^{2} = e_{p} \left(\sum_{i=1}^{z} r_{i}^{2} Y_{M}^{2}(\theta_{i}, \phi_{i}) \right)_{p} + e_{n} \left(\sum_{j=1}^{N} r_{j}^{2} Y_{M}^{2}(\theta_{j}, \phi_{j}) \right)_{n}$$

where $Y_M^2(\theta, \phi)$ are the usual spherical harmonics of rank 2, p and n stand for proton and neutron,

16

792

TABLE I. The contributions M_p and M_n due to protons and neutrons to the reduced matrix element of the electric quadrupole operator and the B(E2) values for the transition between the members of the ground state bands of the states projected from the lowest energy Hartree-Fock intrinsic states of the even-even fp shell nuclei. The values of the transitions marked by asterisks are used in the least-squares fitting calculations. The symbol @ indicates sharp deviations of our calculated B(E2) values from the observed values.

N	Transition		$M_p \qquad M_n$		Der i h	$B(E2) \ (e^2 \text{ fm}^4)$			
Nucleus	J'-	→ J	(fn	n-)	Present	(J _{1/2})" -	Expt.	Reis. °	
⁴⁴ Ti	2	0	12.0	12.0	117	107	$120 \pm 30*$	30	
							117 ± 25	32 d	
							157 ± 22	31	
	4	2	18.9	18.9	154	135	252 ± 75	31,32	
							280 ± 60	30,32	
	6	4	22.7	22.7	154	59	$157 \pm 22*$	31,32	
	8	6	24.6	24.6	137	61			
⁴⁶ Ti	2	0	11.8	16.5	138	116	$160 \pm 34*$	36 °	
							171 ± 8	37	
							209 ± 12	32	
							214 ± 20	34	
							217 ± 17	33	
	4	2	18.6	26.2	191	128	177 ±20*	32,33	
	6	4	22.5	32.5	198	110	$150 \pm 80 *$	32,33	
	8	6	24.2	37.6	186	122			
⁴⁸ Ti	2	0	10.6	14.5	109	101	$140 \pm 28*$	36	
							146 ± 24	38	
							138 ± 12	34,39	
							142 ± 8	32	
							151 ± 18	40	
	4	2	17.0	22.6	153@	126	$95 \pm 22*$	32	
	6	4	20.1	28.6	156@	76	$53 \pm 5*$	31,32	
	8	6	19.7	34.4	137	80			
⁵⁰ Ti	2	0	-10.1	-4.8	55	77	$66 \pm 8*$	31, 32, 34	
							48 ± 4	41	
							49 ± 8	40,42	
							63 ± 6	37	
	4	2	-13.5	-10.2	66	77	$60 \pm 12*$	31,32	
	6	4	-12.0	-18.9	61	35	$34.2 \pm 1.2*$	31,32	
⁴⁸ Cr	2	0	17.0	17.0	225	152	$207 \pm 27*$	43	
							350 ± 100	32,40 ^d	
	4	2	27.1	27.1	316	184	317 ± 176	43	
							330 ± 190	40	
							210 ± 120	32	
	6	4	33.5	33.5	335	187			
	8	6	38.1	38.1	331	196	>320*	43	
⁵⁰ Cr	2	0	15.9	15.1	190	136	$208 \pm 23*$	33,44-46	
							204 ± 8	37	
							213 ± 12	32	
							227 ± 20	31	
							229 ± 12	33	
	4	2	25.1	24.1	264@	176	$160 \pm 20*$	32,33	
	6	4	30.6	30.4	278@	142	$130 \pm 30*$	32,33	
	8	6	34.1	35.4	272	151			
^{52}Cr	2	0	14.3	4.4	95	105	$96 \pm 4*$	41	
							113 ± 10	40,47	
							115 ± 7	32	
							119 ± 7	46	
							132 ± 6	37	
		0	04.0	F 0	1010		86	42	
	4	Z	21.2	7.6	121@	117	83±17*	31	

	Transition $J' \rightarrow J$		$M_p \qquad M_n$ (fm ²)		В					
Nucleus					Present ^b	$(f_{7/2})^{na}$	Expt.	Refs. ^c		
							79 ± 17	32		
	6	4	24.1	12.1	122@	97	59.5 ± 3.4	31,32		
	8	6	25.7	16.1	116	75				
⁵² Fe	2	0	14.0	14.0	153	119				
	4	2	22.1	22.1	210	151				
	6	4	35.6	17.1	214	66				
	8	6	29.5	29.5	198	68				
⁵⁴ Fe	2	0	13.1	3.3	77	81	$102 \pm 4*$	41		
							108 ± 10	40		
							122	42		
	4	2	18.8	6.8	96	81	$78 \pm 16 *$	31,32		

TABLE I. (Continued)

^a Effective charges $e_p = 1.9e$, $e_n = 0.9e$. See Ref. 18.

18.3

12.5

^bB(E2) values calculated between the members of the ground state bands obtained by projected Hartree-Fock calculation. The least-squares fitted effective charges $e_p = 1.33e$, $e_n = 0.64e$ are used in these calculations.

80@

^cReferences to the experimental B(E2) values.

^d Also see Ref. 29.

6 4

^e Also see Ref. 35.

and e's are the corresponding effective charges. The B(E2, J' - J) value for the transition from an

eigenstate J' to the state J can be expressed as:

$$B(E2, J' \to J) = \frac{1}{2J' + 1} |\langle J \| Q^2 \| J' \rangle|^2$$
$$= \frac{1}{2J' + 1} |M_p e_p + M_n e_n|^2,$$

where M_p and M_n are the contributions from the protons and neutrons to the reduced matrix element of the quadrupole operator. The matrix elements of r^2 have been evaluated by calculating the oscillator length parameter from the relation $\hbar \omega$ = 41 $A^{-1/3}$ MeV.

In Tables I and II are given the values of the contributions M_p and M_n for the E2 transitions in some of the even-even and odd isotopes of the fp shell nuclei. For the even-even nuclei the wave functions used for the states J' and J were the ones projected from the HF state of a nucleus and the mixing of configurations was ignored. Full deformed configuration mixed wave functions were used for the odd isotopes.

We can now determine the semiempirical effective charges e_p and e_n by making least-squares fits between calculated and about 38 well determined experimental B(E2) values. The B(E2) values included in the fit are indicated by an asterisk in the tables. The best fit values of the charges turned out to be: $e_p = (1.33 \pm 0.09)e$, $e_n = (0.64 \pm 0.10)e$.

≤147

 40 ± 0.5

37

These are quite close to Bohr-Mottelson estimates but slightly larger than the Kuo-Osnes charges.

42

31.32

The B(E2) values calculated using the best fitted charges are compared in Tables I and II with the experimental values and those obtained in the $(f_{\tau/2})^n$ configuration model¹⁸ using $e_p = 1.9e$, e_n = 0.9e. A similar comparison is also made in Table III for the electric quadrupole moments of the first 2^{*} states in even-even nuclei and of the first few excited states in even-odd nuclei of the fp shell. The maximum errors in our calculated B(E2) values and quadrupole moments due to the errors associated with our effective charges would be less than 20% and 10%, respectively.

The agreement with the experiment of our calculated B(E2) values and quadrupole moments is quite satisfactory. However, it is seen that the experimental trend of the reduction in the B(E2)values for the transitions (indicated by the symbol @ in the tables) between some of the higher members of the ground state bands, particularly in even-even nuclei (^{50,52}Cr, ⁵⁴Fe), is not reproduced. It is likely that the inclusion of two particle-two hole excited states in the basis space or the variation-after-projection calculation might help in reducing the deformation with increasing angular momenta in the yrast bands of these nuclei.

Nucleus	Trans J'-	ition • J	M _p (fn	M_n	DCM ^a	$B(E2) (e^{2}) (f_{7/2})^{n^{b}}$	fm ⁴) Expt.	Refs. ^c
45Ti	3	7	10.3	13.6	126	71		
	$\frac{\frac{2}{5}}{2}$	3	-14.9	-19.0	171	6.5		
	$\frac{5}{2}$	$\frac{7}{2}$	15.2	19.0	175	211		
	9 2	5 2	15.4	17.7	101	53		
	9 2	7 2	-13.5	-13.6	71	98		
	$\frac{11}{2}$	$\frac{7}{2}$	18.2	21.9	122	115		
	$\frac{11}{2}$	<u>9</u> 2	-11.9	-13.8	51	69		
	$\frac{13}{2}$	9 2	21.3	25 .9	144	89		
	$\frac{13}{2}$	$\frac{11}{2}$	-12.7	-10.7	40	34		
	$\frac{15}{2}$	$\frac{11}{2}$	21.9	25.0	127	130		
	$\frac{15}{2}$	$\frac{13}{2}$	-9.8	-11.5	26	17		
	$\frac{17}{2}$	$\frac{13}{2}$	22.0	27.5	122	5		
	$\frac{17}{2}$	$\frac{15}{2}$	-11.0	-8.9	23	2		
⁴⁷ Ti	$\frac{7}{2}$	$\frac{5}{2}$	15.4	24.7	167	115	$232 \pm 33 *$ 252 ± 44	48 49
	9 2	<u>5</u> 2	10.8	14.3	55	73	126 ± 64	48
	<u>9</u> 2	$\frac{7}{2}$	16.6	22.5	133	31	51_{-20}^{+46}	48
	$\frac{11}{2}$	$\frac{7}{2}$	15.5	20.8	96	127	$149_{-142}^{+40} *$	48 49
	$\frac{11}{2}$	$\frac{9}{2}$	-14.7	-22.3	95	39		
	$\frac{13}{2}$	9 2	18.9	24.6	119	0.4		
	$\frac{13}{2}$	$\frac{11}{2}$	-15.2	-18.0	72	23		
	<u>15</u> 2	$\frac{11}{2}$	-19.9	-26.0	116	109	70	50
	$\frac{15}{2}$	$\frac{13}{2}$	11.2	17.0	42	9		
	$\frac{17}{2}$	$\frac{13}{2}$	20.3	31.8	125	54		
	$\frac{17}{2}$	$\frac{15}{2}$	-13.6	-14.5	42	29		
⁴⁹ Ti	$\frac{11}{2}$	$\frac{7}{2}$	-16.3	_7.3	58	90		
	$\frac{3}{2}$	$\frac{7}{2}$	9.1	6.3	65	78	>32,<60	42,49
	$\frac{9}{2}$	$\frac{7}{2}$	16.0	12.5	86	58		
	$\frac{9}{2}$	$\frac{11}{2}$	3.7	11.5	15	0.4		
	$\frac{5}{2}$	$\frac{7}{2}$	10.8	1.3	38	57	>7.5	49
	$\frac{5}{2}$	$\frac{3}{2}$	4.8	9.8	26	45		
	$\frac{15}{2}$	$\frac{11}{2}$	-13.3	-7.9	32	47		
⁵¹ Ti	$\frac{7}{2}$	$\frac{3}{2}$	-14.6	-11.0	88			
	$\frac{5}{2}$	$\frac{3}{2}$	11.3	6.9	63			
	$\frac{5}{2}$	$\frac{1}{2}$	5.3	5.3	18			
	$\frac{11}{2}$	$\frac{7}{2}$	-18.2	-16.7	101		95 ± 16	56
	$\frac{9}{2}$	$\frac{7}{2}$	4.2	4.3	7			

TABLE II. The contributions M_{p} and M_{n} due to protons and neutrons to the reduced matrix element of the electric quadrupole operator and the B(E2) values for transitions between the ground state bands and some of the other low-lying states of the odd isotopes of Ti, V, and Cr. The values marked with asterisk are used in the least-squares fitting calculations.

Nucleus	Transition $J' \rightarrow J$		sition M_p M_n $B(E2) (e^2 \text{ fm}^4)$ + J (fm^2) DCM ^a $(f_{7/2})^{nb}$ Expt.				m ⁴) Expt.	Refs.c
		11	47.0	10.7	70	.,,,		56
	2	2	-17.2	-19.7	10		58 ±20	50
	$\frac{13}{2}$	$\frac{9}{2}$	16.4	20.6	88			
⁴⁷ V	$\frac{5}{2}$	$\frac{3}{2}$	19.0	22.7	264	51		
	$\frac{7}{2}$	$\frac{3}{2}$	14.7	16.7	114	50	>25	49
	7	5	19.7	21.3	195	207	312 ± 121	51,52
	2 9	2 5	18.5	23.3	156	45	161 ± 91	51,52
	2 9 2	$\frac{1}{2}$	14.1	18.7	94	78	141 ± 81	53
	11	7	-23.2	-27.6	196	134	907 ± 504 200^{+100}	53 53
	2	2 9	-16.3	-17.1	89	80	200-80	00
	2 13	2 9	25.8	30.8	209	43		
	2 13	2 11	11 4	16.2	46	23		
	2 15	2 11	-27.9	_33.5	214	130	>110	53
	2	2	-21.5		47	0.7	>110	50
	$\frac{10}{2}$	$\frac{10}{2}$	13.7	14.5	47	0.7		
⁴⁸ V	5	4	25.2	29.0	246	0.7	$120 \pm 45*$	54 55
	6	4	-11.7	-14.0	46	97	$48 \pm 5*$	55 54
	-	-					$41.4^{+9.3}_{-8.3}$	55
	6	5	-26.7	-31.1	236	111	≤ 510 202.1 ^{+128.5}	54 55
	7	5	15.6	18.6	71	0.3	20211-86.0	
	7	6	-24.4	-29.8	177	89		
	8	6	21.6	26.0	121	126	>14.04	
	8	7	-18.2	-24.7	94	0.01	≥44.04 ≥60.9	55
	9	1	25.1	29.9	145	139	≥08.2 >0.49	55
	9	8	-20.3	-26.9	103	49	≥9.12	55
	10	8	25.3	30.5	134	110		
	10	9	-15.5	-22.3	58	0.2		E 4
	2	4	-3.9	-3.3	11	198	$28.5 \pm 0.2*$	54
	1	Z	15.9	18.8	300	202	127125	54
	4	4	2.1	4.0	ა ი	102	13.7 13.3	94
	4	Э 4	-5.5	2.0	5	30	<110	
	ა ი	4 9	-1.0	15.9	109	110	≥0.06	54
	ა ნ	4	-12.0	-10.2	102	59	≥1.6	54
	C E	4		-14.0	49	9 9	~1.0	04
	5 2	2	-4.7 5.3	-0.5	28	61	≥0.6	54
49.7	5	7	18.8	_18.2	223	245		
v	2	$\frac{1}{2}$	-10.0	-10.2	220	110	107 1 20	5.0
	$\frac{3}{2}$	$\frac{1}{2}$	13.9	14.6	193	116	$197 \pm 30*$ 197 ±20	53 57
	$\frac{3}{2}$	$\frac{5}{2}$	16.0	18.5	275	88		
	$\frac{11}{2}$	$\frac{7}{2}$	-21.1	-24.6	160	119	$144 \pm 28*$	57
	2	2					172 ± 59	58
	_	_					200 ± 90	53
	9 2	$\frac{7}{2}$	-9.5	-15.9	52	9	$58 \pm 33*$	57
	-						106 ± 28	58
	$\frac{9}{2}$	2	-14.6	-20.4	105	29	$126 \pm 17*$ 83 + 44	58 57
	9	11	-16.0	-14.0	91	75	00 T 44	57

TABLE II. (Continued)

Nucleus	Transition $J' \rightarrow J$	on M _p	(fm ²) <i>M_n</i>	DCM ²	$B(E2) (e (f_{7/2})^{n^{b}})$	² fm ⁴) Expt.	Refs.c
	$\frac{15}{2}$ $\frac{11}{2}$	-25.	1 _29.1	170	114	279 ± 128	57
	<u>13 9</u>	21.3	2 25.1	140	0.3	<71 295* ²³⁰	58 57
	2 2 5 7			45	0.0	200-125	01
	2 2	-0.1	2 3.9	15	0.8		
	$\frac{5}{2}$ $\frac{5}{2}$	-0.4	4 -7.9	5	19	>0.3,<435	57
	$\frac{5}{2}$ $\frac{3}{2}$	2.9	9 0.5	3	7	570_{-260}^{+595}	57
	$\frac{3}{2}$ $\frac{5}{2}$	_3.	1 -1.9	7	7	<122	57
	$\frac{7}{2}$ $\frac{5}{2}$	-0.8	8 5.1	2	6	$4.2^{+8.8}_{-3.7}$	57
⁵¹ V	$\frac{5}{2}$ $\frac{7}{2}$	-19.0	6 -6.3	151	191	$154 \pm 8*$	59,60
	с с о с					146 ± 7	49
	$\frac{3}{2}$ $\frac{3}{2}$	-11.9	9 -3.9	81	49	$107 \pm 9*$	59,60
	3 7	44 9	, <u>,</u> ,	74	67	101 ± 8 76 ± 5 *	49 59 60
	2 2	11.0	J J.2	14	07	$70 \pm 3^{+}$ 72 + 13	42
	<u>11</u> 7	-20.3	2 -7.1	82	87	$83 \pm 8*$	59
	2 2					78 ± 14	61
	$\frac{9}{2}$ $\frac{7}{2}$	7.8	8 4.1	17	32	$27.5 \pm 6.3 *$	59,61
	$\frac{9}{2}$ $\frac{5}{2}$	_9.0	0 -4.3	22	30	$27.6 \pm 6.6 *$ 32.7 + 5	61 59
	$\frac{9}{2}$ $\frac{11}{2}$	-13.7	7 _4.1	43	66	02.1 10	00
	$\frac{15}{2}$ $\frac{11}{2}$	-19.4	4 _7.1	58	64	$66 \pm 5*$	62
⁴⁹ Cr	$\frac{7}{2}$ $\frac{5}{2}$	26.7	7 26.4	343	187	$302 \pm 79*$	63
	$\frac{9}{2}$ $\frac{5}{2}$	-16.3	3 –15.4	99	54	160*	63
	$\frac{9}{2}$ $\frac{7}{2}$	-27.3	26.2	279	97	310_{-110}^{+260}	63
	$\frac{11}{2}$ $\frac{7}{2}$	-24.2	2 _22.0	179	153	133 <u>+66</u>	63
	$\frac{11}{2}$ $\frac{9}{2}$	24.6	3 25.2	199	70	505_{230}^{+620}	63
	$\frac{13}{2}$ $\frac{9}{2}$	28.9	26.5	219	44		
	$\frac{13}{2}$ $\frac{11}{2}$	24.2	2 22.6	156	48		
	$\frac{15}{2}$ $\frac{11}{2}$	-26.5	5 _24.9	164	164		
	$\frac{15}{2}$ $\frac{13}{2}$	-15.3	-18.0	62	2		
	$\frac{17}{2}$ $\frac{13}{2}$	_33.5	5 _33.6	242	48		
	$\frac{17}{2}$ $\frac{15}{2}$	14.6	6 16.2	50	23		
	$\frac{19}{2}$ $\frac{15}{2}$	-20.3	18.4	74	154		
	$\frac{19}{2}$ $\frac{17}{2}$	_7.4	4 _10.8	14	38		

TABLE II. (Continued)

 $^{a}B(E2)$ values calculated using deformed configuration mixed wave functions. The least-

squares fitted effective charges $e_p = 1.33e$, $e_n = 0.64$ are employed.

^b Effective charges $e_p = 1.9e$, $e_n 0.93$. See Ref. 18.

^cReferences to experimental B(E2) values.

The similarity between the semiempirical effective charges obtained by our microscopic DCM calculations and the ones obtained by Kuo-Osnes and Bohr-Mottelson indicate that the deformations of the nuclei in the first half of the fp shell, generated by the MWH2 effective interactions, are consistent with the ones required by the experimental E2 transitions. The $(f_{7/2})^n$ model calculations generally succeed well in reproducing the enhanced B(E2) values by using the larger effective charges. It should be noted, however, that in many instances the symmetry²⁸ inherent in the $(f_{7/2})^n$ configuration space leads to vanishing or small B(E2) values in contrast to the experimental

	Θ (e fm ²)							
Nucleus	J *	Expt.	Present ^a	$(f_{7/2})^{n b}$	Ref. ^c			
⁴⁴ Ti	2 *		-21.2	-18.1				
⁴⁵ Ti	$\frac{7}{2}$ -	$\pm 1.5 \pm 1.5$	-10.8	-2.5	64			
	<u>3</u> -		15.7	-22.3				
	$\frac{5}{2}$		-3.6	12.7				
⁴⁶ Ti	2*	$-21 \pm 6, -19 \pm 10$	-23.7	13.2	37,34			
⁴⁷ Ti	5-	29 ± 1	24.2	13.9	65			
	$\frac{7}{2}$ -		8.0	10.5				
⁴⁸ Ti	2*	-13.5 ± 8.8 -22 ± 8	-20.3	3.5	39 34			
⁴⁹ Ti	$\frac{7}{2}$	24	22.6	21.0	66,67			
	$\frac{3}{2}$ -		7.5	8.2				
⁵⁰ Ti	2*	$8 \pm 16, -2 \pm 9$	12.4	-13.9	37,34			
⁵¹ Ti	$\frac{3}{2}$ -		-11.2					
⁴⁷ V	$\frac{\frac{3}{3}}{\frac{2}{2}}$		19.3	16.1				
	$\frac{5}{2}$ -		-8.9	-23.7				
	$\frac{7}{2}$ -		-20.0	_7.9				
⁴⁸ V	4*		44.5	1.5				
	2*		-8.8	-1.5				
	1*		8.9	0.8				
10	5'		18.1	-2.6				
⁴⁹ V	$\frac{7}{2}$		-12.4	-9.1				
	$\frac{5}{2}$		-10.8	-20.8				
	$\frac{3}{2}$		17.8	15.4				
⁵¹ V	$\frac{7}{2}$	-5.2 ± 1.0	-5.8	-7.1	68			
	$\frac{5}{2}$		-14.2	-19.8				
	$\frac{3}{2}$ -		13.1	12.8				
⁴⁸ Cr	2*		30.4	0				
⁴⁹ Cr	$\frac{5}{2}$		35.1	22.8				
	$\frac{7}{2}$		6.9	11.1				
$^{50}\mathrm{Cr}$	2*	-36 ± 7	-27.7	-11.4	37			
⁵² Cr	2 *	-14 ± 8	-17.3	0	37			
⁵² Fe	2*		-24.8	-19.1				
Jan Fe	2*		_15.9	-14.3				

TABLE III. A comparison of the calculated and experimental quadrupole moments of the first 2^* states in even-even nuclei and first few excited states in odd-*A* and odd-odd nuclei of the *fp* shell.

^aEffective charges $e_p = 1.33e$, $e_n = 0.64e$.

^b Effective charges $e_p = 1.9e$, $e_n = 0.9e$. See Ref. 18.

^cReferences to the experimental data.

as well as DCM values. The DCM calculation includes the effects of seniority breaking. We have predicted the values of quadrupole moments of the first few states and E2 transitions in the yrast bands of a large number of fp shell nuclei. Experimental measurement of these values is quite desirable. We would like to thank C. S. R. Murthy for providing us his least-squares fit computer code. Thanks are also due W. Kutschera for providing us the experimental and $(f_{7/2})^n$ configuration model calculated values in even-even nuclei and to B. A. Brown for sending us his results prior to publication. *Address after Jan. 1, 1977: Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark.

¹A. K. Dhar, D. R. Kulkarni, and K. H. Bhatt, Phys. Lett. <u>47B</u>, 133 (1973); Nucl. Phys. <u>A238</u>, 340 (1975).

- ²B. R. Barrett and M. W. Kirson, in *Advances in Nuclear Physics*, edited by M. Baranger and E. Vogt (Plenum, New York, 1971), Vol. 6, p. 219, and references therein.
- ³See Lecture Notes in Physics, Vol. 40: Effective Interactions and Operators in Nuclei, Proceedings of the Tucson International Conference on Nuclear Physics, Tucson, Arizona, 1975, edited by B. R. Barrett (Springer-Verlag, Berlin, 1975).
- ⁴S. Yoshida and L. Zamick, Annu. Rev. Nucl. Sci. <u>22</u>, 121 (1972), and references therein.
- ⁵T. T. S. Kuo and E. Osnes, Nucl. Phys. A205, 1 (1973).
- ⁶T. T. S. Kuo and E. Osnes, Phys. Rev. C <u>12</u>, 309 (1975). ⁷A. Bohr and B. R. Mottelson, *Nuclear Structure* (Ben-
- jamin, New York, 1975), Vol. 2, Chap. 6. ⁸J. B. McGrory, B. H. Wildenthal, and E. C. Halbert,
- ²J. B. McGrory, B. H. Wildenthal, and E. C. Halbert, Phys. Rev. C <u>2</u>, 186 (1970).
- ⁹K. H. Bhatt and J. B. McGrory, Phys. Rev. C <u>3</u>, 2293 (1971).
- ¹⁰J. B. McGrory, Phys. Rev. C <u>8</u>, 693 (1973).
- ¹¹A. K. Dhar, D. R. Kulkarni, S. B. Khadkikar, and K. H. Bhatt, in Proceedings of the International Conference on Gamma-Ray Transition Probabilities, Delhi, 1974, edited by S. C. Pancholi and S. L. Gupta (Delhi U.P., to be published).
- ¹²A. K. Dhar, Physical Research Laboratory and Gujaval University, India, Ph.D thesis 1976 (unpublished); K. H. Bhatt, in Proceedings of the International Conference on Gamma-Ray Transition Probabilities (see Ref. 11).
- ¹³A. K. Dhar and K. H. Bhatt, Nucl. Phys. <u>A271</u>, 36 (1976).
- ¹⁴A. K. Dhar and K. H. Bhatt, Phys. Rev. C <u>14</u>, 1630 (1976).
- ¹⁵A. K. Dhar and K. H. Bhatt, Nucl. Phys. Solid State Phys. (India) <u>18B</u>, 219, 222 (1975); <u>19B</u> (to be published).
- ¹⁶A. K. Dhar, D. R. Kulkarni, and K. H. Bhatt, Nucl. Phys. (to be published).
- ¹⁷A. K. Dhar and K. H. Bhatt (unpublished).
- ¹⁸W. Kutschera, B. A. Brown, and K. Ogawa, Riv. Nuovo Cimento (to be published); W. Kutschera (private communication).
- ¹⁹W. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Lett. 15, 980 (1965).
- ²⁰C. S. Warke and M. R. Gunye, Phys. Rev. <u>155</u>, 1084 (1967).
- ²¹G. Ripka, in Advances in Nuclear Physics, edited by M. Baranger and E. Vogt (Plenum, New York, 1968), Vol. 1, p. 183.
- ²²M. R. Gunye, Phys. Lett. <u>27B</u>, 136 (1968).
- ²³S. B. Khadkikar and M. R. Gunye, Nucl. Phys. <u>A110</u>, 472 (1968).
- ²⁴A. K. Dhar, S. B. Khadkikar, D. R. Kulkarni, and K. H. Bhatt, in Proceedings of the International Conference on Gamma-Ray Transition Probabilities, Delhi, 1974 (see Ref. 11).
- ²⁵A. K. Dhar, S. B. Khadkikar, D. R. Kulkarni, and K. H. Bhatt, in *Nuclear Self-Consistent Fields*, Proceedings of the International Conference on Nuclear Self-Consistent Fields, Trieste, 1975, edited by G. Ripka and M. Porneuf (North-Holland, Amsterdam/ American Elsvier, New York, 1975), p. 83.

- ²⁶A. K. Dhar, D. R. Kulkarni, and K. H. Bhatt, in Proceedings of the International Conference on Nuclear Structure and Spectroscopy, Amsterdam, 1974, edited by H. P. Blok and A. E. L. Dieperink (Scholar's Press, Amsterdam, 1974), p. 59.
- ²⁷T. T. S. Kuo and G. E. Brown, Nucl. Phys. <u>A114</u>, 241 (1968).
- ²⁸R. D. Lawson, Nucl. Phys. <u>A173</u>, 17 (1971).
- ²⁹R. B. Huber, W. Kutschera, C. Signorini, and P. Blasi, J. Phys. (Paris) 32, C6-207 (1971).
- ³⁰W. R. Dixon, R. S. Storey, and J. J. Simpson, Nucl. Phys. A202, 579 (1973).
- ³¹B. A. Brown, D. B. Fossan, J. M. McDonald, and
- K. A. Snover, Phys. Rev. C 9, 1033 (1974).
- ³²W. Kutschera (private communication).
- ³³W. Dehnhardt, O. C. Kistner, W. Kutschera, and H. J. Sann, Phys. Rev. C <u>7</u>, 1471 (1973).
- ³⁴O. Haüsser, D. Pelte, T. K. Alexander, and H. C. Evans, Nucl. Phys. A150, 417 (1970).
- ³⁵R. L. Auble, Nucl. Data <u>B4</u>, 269 (1970).
- ³⁶P. H. Stelson and L. Grodzin, Nucl. Data A1, 2 (1965).
- ³⁷C. W. Towsley, D. Cline, and R. N. Horoshko, Nucl.
- Phys. <u>A250</u>, 381 (1975).
- ³⁸J. Rapaport, Nucl. Data <u>B4</u>, 351 (1970).
- ³⁹P. M. S. Lesser, D. Cline, Ph. Goode, and R. N. Horoshko, Nucl. Phys. A190, 597 (1972).
- ⁴⁰W. Kutschera, R. B. Huber, C. Signorini, and P. Blasi, Nucl. Phys. A210, 531 (1973).
- ⁴¹J. J. Simpson, J. A. Cookson, D. Eccleshall, and M. J. L. Yates, Nucl. Phys. 62, 385 (1965).
- ⁴²O. F. Afonin, A. P. Grinberg, I. K. Lemberg, and I. N. Chugunov, Yad. Fiz. <u>6</u>, 219 (1967) [Sov. J. Nucl. Phys. 6, 160 (1968).].
- ⁴³B. Haas, P. Taras, J. C. Merdinger, and R. Vaillancourt, Nucl. Phys. <u>A238</u>, 253 (1975).
- ⁴⁴F. K. McGowan, P. H. Stelson, R. L. Robinson, W. J. Milner, and J. L. C. Ford, Jr., in *Proceedings of the International Conference on Nuclear Spin-Parity Assignments* (Academic, New York, 1966), p. 222.
- ⁴⁵S. Raman, R. L. Auble, W. T. Milner, J. B. Ball, F. K. McGowan, P. H. Stelson, and R. L. Robinson, Nucl. Phys. A184, 138 (1972).
- ⁴⁶D. Cline, C. W. Towsley, and R. N. Horoshko, in Proceedings of the International Conference on Nuclear Moments and Nuclear Structure, Osaka, Japan, 1972, edited by H. Horie and K. Sugimoto [J. Phys. Soc. Jpn. Suppl. 34, 439 (1973)].
- ⁴⁷J. Rapaport, Nucl. Data <u>B3</u>, 85 (1970).
- ⁴⁸J. J. Weaver, M. A. Grace, D. H. F. Start, R. W. Zurmühle, D. P. Balamuth, and J. W. Noé, Nucl. Phys. A196, 269 (1972).
- ⁴⁹D. C. S. White, W. J. McDonald, D. A. Hutcheon, and G. C. Neilson, Nucl. Phys. A260, 189 (1976).
- ⁵⁰L. Meyer-Schützmeister, G. Hardie, and T. Sjoreen, Phys. Rev. C <u>14</u>, 109 (1976).
- ⁵¹P. Blasi, T. Fazzini, A. Giannatiempo, R. B. Huber, and C. Signorini, Nuovo Cimento 15A, 521 (1973).
- ⁵²B. Haas, P. Taras, and J. Styczen, Nucl. Phys. <u>A246</u>, 141 (1975).
- ⁵³J. V. Thompson, R. A. I. Bell, L. E. Carlson, and M. R. Najam, Aust. J. Phys. <u>28</u>, 251 (1975).
- ⁵⁴B. A. Brown, D. B. Fossan, J. M. McDonald, and K. A. Snover, Phys. Rev. C 11, 1122 (1975).
- ⁵⁵B. Haas, P. Taras, J. C. Merdinger, and R. Vaillancourt, Nucl. Phys. <u>A236</u>, 405 (1974).

- ⁵⁶B. A. Brown, D. B. Fossan, A. R. Poletti, and E. K. Warburton, Phys. Rev. C <u>14</u>, 1016 (1976); B. A. Brown (private communication).
- ⁵⁷B. Haas, J. Chevallier, J. Britz, and J. Styczen, Phys. Rev. C 11, 1179 (1975).
- ⁵⁸S. L. Tabor and R. W. Zurmühle, Phys. Rev. C <u>10</u>, 35 (1974).
- ⁵⁹R. Horoshko, D. Cline, and P. M. S. Lesser, Nucl. Phys. A149, 562 (1970).
- ⁶⁰P. G. Bizzeti, in Proceedings of the International Topical Conference on the Structure of $1f_{7/2}$ Nuclei, Padua, Italy, 1971, edited by R. A. Ricci (Editrice Compositori, Bologna, 1971), p. 393.
- ⁶¹A. S. Goodman and D. J. Donahue, Phys. Rev. C <u>5</u>, 875 (1972).
- ⁶²B. A. Brown, D. B. Fossan, A. R. Poletti, and E. K. Warburton, in *Proceedings of the International Con*-

ference on Nuclear Physics, Munich, 1973, edited by J. de Boer and H. J. Mang (North-Holland, Amsterdam/ American, Elsevier, New York, 1973), Vol. 1, p. 286.

- ⁶³R. W. Zurmühle, D. A. Hutcheon, and J. J. Weaver, Nucl. Phys. <u>A180</u>, 417 (1972).
- ⁶⁴R. C. Cornwell and J. D. McCullen, Phys. Rev. <u>148</u>, 1157 (1966).
- ⁶⁵V. S. Shirley, in *Hyperfine Structure and Nuclear Radiation*, edited by E. Matthias and D. A. Shirley (North-Holland, Amsterdam, 1968), p. 985.
- ⁶⁶G. H. Fuller and V. M. Cohen, Nucl. Data <u>A5</u>, 433 (1969).
- ⁶⁷V. S. Shirley, in *Tables of Nuclear Moments in Hyperfine Interactions in Excited Nuclei*, edited by G. Goldring and R. Kalish (Gordon and Breach, New York, 1971), p. 1255.
- ⁶⁸W. J. Childs, Phys. Rev. 156, 71 (1967).