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%e calculate the effective interaction for ' 0 in a simulated Hartree-Fock basis by taking a fixed oscillator
parameter of 1.7 fm for the s and p shells and a variable parameter b„ for the sd and pf shells. A central
interaction is used and diagrams of first, second, and third order in V are calculated. The dominant effect is

one of scaling with diagrams of second and third order all decreasing in the same exponential fashion as a
function of b„. Comparing pure oscillator {b„=1.7 fm) and simulated Hartree-Pock (b„= 2.0 fm) results,
we find a reduction factor of roughly 0.7, 0.7', and 0.7' for first, second, and third order, respectively.
Diagrams containing a particle-particle ladder usually fall off somewhat less rapidly than the others. The
implications of these model results are discussed.

NUCLEAR STRUCTURE Effective interaction theory; model simulation of a
Hartree- Fock basis.

I. INTRODUCTION AND CALCULATION

There is at the present no established theory of
effective interactions. ' It is known from the work
of Kuo and Brown' that the bare G-matrix elements
plus corrections of second order in G produce de-
cent results in many shell model calculations. The
reasons for this, however, remain unclear, since
additional effects are known to be of numerical
importance. In this situation it seems useful to
try to establish qualitative trends and here we
shall focus on Hartree-Fock (HF) effects, l.e.,
the effects of using a HF unperturbed Hamiltonian
rather than the commonly chosen harmonic oscil-
lator.

Previous calculations in a HF basis" show that
whil. e the wave functions of the closed shell core
can be reasonably well described as harmonic
oscillators with a fixed parameter b„ this is not
satisfactory for the unoccupied orbitals. There a
larger value of the oscillator parameter b„ is need-
ed to give good overlap with the HF wave functions.
This is very reasonable since these orbitals are
only weakly bound and the infinite nature of the
oscillator well would be expected to pull in the
wave functions too much. Indeed, in many cases
we are dealing with orbitals which are unbound so
that we hope to approximate the important interior
region of the resonant continuum wave functions.
These aforementioned changes in the wave functions
weaken the relevant matrix elements and thereby
weaken the calculated effective interaction rather
substantially.

It is thus of some interest to explore the sensiti-
vity of the results to the wave functions employed,

since the best wave functions are not a priori known
and HF calculations with different interactions will
give differing results. An example of the latter is
to be found in the work of Malta and Sanderson, 4

who obtain smaller effects than those originally
observed in the calculations of Ellis and Mavro-
matis. ' We may also remark that smaller effects
have been found by Pradhan and Shakin, ' who em-
ployed a Woods-Saxon basis, although we must
point out that their pure oscillator results through
8@(d are rather different from those of Vary,
Sauer, and Wong. '

We shall study the first, second, and third order
diagrams of the effective interaction in a simulat-
ed HF basis. Although this represents the first
attempt to calculate the diagrams of third order
in anything other than an oscillator basis, our
primary interest is not in order-by-order cal-
culations per se. Rather, since the HF basis is
surely to be preferred over the commonly em-
ployed oscillator basis both on physical grounds
and on the basis of model calculations, "we hope
to obtain a more realistic view of the important
physical processes at work. This may suggest the
partial summation of a different class of diagrams
than has hitherto been studied. In addition, the
numerical estimates obtained here can be used to
estimate quickly and roughly the effect of switch-
ing to a HF basis. Such a qualitative estimate may
be all that is justified at the present time, since
an accurate calculation would be a major under-
taking.

For the purposes of a qualitative discussion of the
effective interaction in "Q we shall employ a sim-
ple model. For the Os and Op orbitals which are

16



EFFECTIVE INTERACTIONS: QUALITATIVE DISCUSSION-. - 785

occupied in the "Q core we shall employ oscilla-
tor wave functions with a parameter b, which is
fixed at 1.7 fm except as noted; this gives a rea-
sonable radius for "Q and is the usual choice
made. For the (1sOd) and (1p0f) shells we shall
also choose oscillator wave functions but we shall
allow the parameter b„ to vary and display our
results as a function of this parameter. Of course
the wave functions thus defined are only orthogonal
at b, = b„. We therefore Schmidt-orthogonalize
by admixing into the 1s wave function a small Os

component; this increases (r') by a moderate
amount (10%at b„=2.0 fm). Similarly for the lp or-
bitals. Oscillator wave functions with b„=2.0 fm are
found to overlap quite well with their HF counter-
parts. "Thus the comparison of results obtained
with b„= 1.7 and 2.0 fm will give an indication of the
effect of changing from an oscillator to a HF basis. Of
course this simulation of a HF basis is only rough, but
it should be adequate for a qualitative discussion.

For the interaction to be used we choose a Yukawa
potential of range 1.37 fm, strength 55MeV, witha
Rosenfeld exchange mixture. ' This renders the com-
putation of the relevant matrix elements straightfor-
ward since Wegner" has given an analytical expres-
sion for the Slater integrals required. We shall not of
course hope, nor indeedwish, to reproduce accurate-
ly the results obtained with realistic interactions.
We do however expect and, in large part find, that
the qualitative trends can be carried over to the
much more difficult realistic calculations.

We shall restrict our attention to the effective
interaction for J=0 T = 1 states of "Q. The dia-
grams which we calculate are shown in Fig. 1,
where we have followed the notation of Barrett
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FIG. 1. Schematic listing of perturbation theory dia-

grams for the effective interactions through third order.

and Kirson, " except for the cases involving a
particle-particle ladder. 'The diagram listing is
schematic. 'Thus we show only one member of a
pair of nonfolded diagrams which together give
a Hermitian contribution to the effective interac-
tion, e.g. , the "upside-down" version of diagram
12 is not explicitly shown. None of the diagrams
shown contain HF or single particle potential in-
sertions, since they cancel if a HF basis is used
and we hope to simulate such a basis here. In
calculating the diagrams of Fig. 1 we shall restrict
the intermediate states to be those corresponding
to 2@co excitation energy in the pure oscillator no-
tation [we follow the common practice of exclud-
ing the (2s1dOg) shell from intermediate summa-
tions]. Further, we shall take fixed energy de-
nominators of 28 MeV so as to focus on the effect
of changes in the wave functions alone. These
were, in fact, found to give the dominant effect
in calculations in a HF basis."As regards in-
termediate states of high excitation energy, we
are aware that they can give significant contri-
butions, ' but in such cases it is probably more
reasonable to use plane wave states rather than
the HF wave functions we seek to investigate here.

We shall ignore the question of spurious c.m.
motion apart from remarking that if b„ is changed
from 1.7 to 2.0 fm the value of (R') increases by
about 10% for our (sd)' valence states.

In Sec. II we give a selection from the many re-
sults obtained, which is sufficient to illustrate
the qualitative trends. Qur conclusions are present-
ed in Sec. III.

II. RESULTS

The two-body matrix elements needed in the cal-
culations show a general tendency to decrease as
b„ increases. This is to be expected since the
wave functions are smeared out more as b„ in-
creases and are thus less able to take advantage of
the interaction. It is found that the decrease is
least rapid for matrix elements which have three
particles in the occupied orbitals (Os or Op) and

one in an unoccupied orbital, as would be expected.
Apart from this, however, we were not able to
identify any well defined trends.

In presenting the results we shall employ the
usual notation (a, c) for the (a' J= 0 T = 1

~
V,« ~

c'
J= 0 T = 1) component of the effective interaction
where a and c run over 4 =Od, &» 5=- 1s,~» and
6-=0d, &,. (A subscript b„illwbe added if it is ne
cessary to distinguish the oscillator parameter. )
This j -j coupling basis is useful for the purposes
of comparison with other work. However, L-S
coupling would be more appropriate for a central
force since L and S are diagonal regardless of the
order of the perturbation (provided that, as here,
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the energy denominators are independent of the
single particle j values). Thus only one of the
(4, 5) and (6, 5) effective matrix elements is inde-
pendent, since they are both proportional to
(d'"S

I
i'ar Is "S). Similarly, only two of the (4, 4)

(4, 6), and (6, 6) effective matrix elements are in-
dependent, since they are all related to the diagon-
al d 'S and d''3P matrix elements.

A. Bare interaction

The case of the bare interaction is less interest-
ing than the higher order results since all the os-
cillator parameters involved are the same namely,
b„. %e show for completeness in Fig. 2 the ratio
(a, c), /(a, c). . .on a semilogarithmic plot. Early
work' suggested a b„' dependence which is fol-
lowed quite well by the full curve labeled DD giving
the (4, 4) ratio. [Similar results are obtained for
the (6, 6) and (4, 6) cases, indicated respectively
by boxes and crosses, here and also in higher
orders where only the (4, 4) case will be shown. ]
The (5, 5) case (dashed curve labeled SS) shows a
faster falloff since it involves a larger amount of
relative d state, and the corresponding Talmi in-
tegral drops more rapidly.

The (4, 5) case (dot-dash curve labeled SD) shows
only a small change between b„= 1.7 and 2.0 fm, as
was found in the oscillator versus HF comparison
of Ellis and Mavromatis' (EM). Further compari-
son with EM in Table I shows that the present mod-
el gives a larger change in the (4, 4) results as 5„
increases from 1.7 to 2.0 fm. The reason is that
the d, &, HF orbital is closer to a b„= 1.7 fm oscil-
t, ator function than the s, &, and d, &, orbitals. 'This
I.s to be expected, since the d, &, state is the most
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FIG. 2. The bare interaction, diagram 1 of Fig. 1, as
a function of b„; the curves are normalized to unity at
b„=1.7 fm. The full curve labeled DD gives the (4, 4)
matrix element and the boxes and crosses show, respec-
tively, the (6, 6) and (4, 6) cases. The dashed curve SS
gives the (5, 5) matrix elements and the dot-dashed curve
SD gives the (4, 5) or (5, 6) matrix elements.

strongly bound and since the wave function is node-
less. For the (4, 6) case the EM results are in
close agreement with the present model.

Clearly there is a fairly wide scatter in the mod-
el results, but a reduction factor of 0.7 gives a
rough measure of the average behavior and is con-
sistent with a b„' dependence.

B. Second order diagrams

In Fig. 3 we display results for the core polariza-
tion diagram (number 2 of Fig. l).. The general
pattern observed here is fairly typical for diagrams

TABLE I. Comparison of results obtained for the first and second order diagrams of Fig. 1
in the present model and in realistic calculations.

Diagram b„=1.7

Present model

b„=2.0
b„=2.0
b„=1.7

Sussex matrix
elements EM '

Oscillator HF

Kuo-Brown
matrix

elements b

3
3I

1
2
3
3 t

—2.52
-0.94

-0.35
-0.36

-2.90
-0.22
—0.04
-0.12

-1.88
—0.45

-0.17
-0.21

—1.39
-0.05
—0.02
-0.08

(4 4)

0.75
0.48

0.48
0.59

(5, 5)

0.48
0.23
0 44
0.63

-1.38
-0.60
(-0.53)
-0.31

—2.37
0.15

—0.05

-1.22
-0.12
(-0.32) '
-0.20

-1.36
0.03

—0.01

—1.24
—0.76

-0.25
-0.22

—2.05
0.05

—0.04
-0.002

' Reference 3.
Reference 11.

~ Reference 4.
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FIG. 3. The core polarization diagram (No. 2 of Fig. 1)
as a function of b„. See caption to Fig. 2.

of second and third order. Except at the extremes
of the range the full curve (DD) falls off linearly,
i.e., the diagram decreases exponentially as a
function of b~ rather than as b„4. The SD results
(dot-dash curve) are comparable in magnitude to
the DD values although they show more curvature.
However, the SS results usually show a faster fall-
off than both the DD and SD cases and, as in Fig.
3, may lie on quite a different curve. This be-
havior does not arise from the Schmidt orthogon-
alization necessary for the 1s orbital and we sus-
pect that it is due to the presence of a node in the
1s wave function.

Turning to Table I we see that by changing b„
from 1.7 to 2.0 fm the (4, 4) result is reduced by
a factor of 0.5. This is comparable to the oscil-
lator versus HF comparison of Malta and Sander-
son'; the remaining difference may well be due
to the fact that in their HF calculation pure b„= 1.7
fm oscillator wave functions were used for the
Of orbitals. The EM results show a significantly
larger reduction and we need to go into more de-
tail here. Firstly we should take the HF results
of EM calculated with fixed 28 MeV energy denom-
inators for comparison with the present results.
'Then, taking the ratio to the pure oscil}.ator re-
sults and averaging over all J=0 T = 1 matrix
elements, a reduction factor of 0.27 is obtained.
Now in the HF calculation of EM the wave functions
of the occupied states in the "Q core correspond
best to oscillator functions with b =1.5 fm. The
radius of the "Q nucleus was thus too small, a

difficulty which was remedied in the later work of
Malta and Sanderson4 by modification of the Sus-
sex interaction. Thus for comparison with EM
we should calculate in our model

(~ c)~-.5 ~.=.s
(a, c4.=. ..,„=, ,

Now the first factor can be determined from Fig. 3
if we plot on the abscissa (5„—5,) rather than b„.
The point is that the ratio (a, c)„,„j(a,c),,, z con-
sidered as a function of (5„—5,) is practically the
same whether b, =1.5 or 1.7 fm. 'Thus, a typical
value for the first factor of Eq. (1) is 0.24. For
the second factor of Eq. (1) a typical value is 1.5.
The average value of Eq. (1) is found to be 0.36,
in qualitative agreement with the EM value of 0.27
quoted above. The difference is probably due to
the fact that the HF calculation indicates a some-
what larger value of 5„, =2.3 fm, for the fp orbit
als.

Note that since the core polarization diagram
involves a summation over contributions of vari-
ous sign from particle-hole pairs coupled to given
J' and T", it is possible for the model and real-
istic calculations to yield different signs. This
only occurs in the (5, 5) case shown in Table I;
we do not believe that this represents a serious
defect of the model.

Results for the four particle-two hole diagram
(number 3 of Fig. 1) are shown in Table I. About
a factor of 0.5 reduction is found between b„= 1.7
and 2.0 fm. Making the comparison between our
model and the EM results, which was described
in detail for the core polarization diagram, we
find reduction factors of 0.31 and 0.44, respective-
ly. If we omit all cases involving a d, &,

' valence
state the corresponding figures are much closer—
0.29 and 0.31, respectively. 'Thus the realistic
calculations show the feature, remarked, on pre-
viously, that for the d, &, valence state the wave
function is closer to a b„= 1.7 fm oscillator function
than for the s, &, and d, &, valence states.

Finally, we give results for the ladder diagram
(number 3' of Fig. 1) in Fig. 4 and Table I. The
dominant feature here is that this diagram falls
off somewhat less rapidly than in the previous
cases. Between b„= 1.7 and 2.0 fm a factor of
about 0.6 is obtained compared with a factor of
about 0.5 for the core polarization and four par-
ticle-two hole diagrams. Now the ladder diagram
only contains sd and fp states so that all the oscil-
lator parameters involved are the same, namely
b„. On the other hand, the core polarization and
four particle-two hole diagrams involve not only
states with parameter b„, but also at least one
hole with parameter b, which we have kept fixed.
For the purposes of comparison we have evaluated
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these diagrams with b„=b, = 2.0 fm and compared
with the b„=b, = 1.7 fm case. The appropriate ra-
tio is found to be 0.6, very close to the value found
for the ladder diagram. Thus the faster falloff
of the core polarization and four particle-two hole
diagrams exhibited in Table I is due to the pre-
sence of holes whose wave functions are fixed. We
are surprised that the effect is not larger.

These second order results for 4=0 T= 1 are
quite representative of results we have obtained
for other J and T.

C. Third order diagrams
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In Fig. 5 we show the third order particle-par-
ticle and particle-hole vertex correction diagrams
(numbers 20 and 17, respectively, of Fig. 1) as a
function of b„. These results are fairly typical
although, as in second order, the SS results fluc-
tuate with respect to the DD and SD results, some-
times falling off at about the same rate and some-
times much more rapidly. An obvious general
point to make regarding Fig. 5 is that third order
diagrams fall off more rapidly than second order
because we are dealing with three matrix elements
rather than with two. The rate of decrease is in-
dicated in Table II for all the diagrams of Fig. 1

by giving results at b„= 1.7 and 2.0 fm and the ra-
tio thereof; the (4, 4} matrix element is tabulated.
We should first compare the b„= 1.7 fm results of
the present model with those obtained by Barrett
and Kirson and by Barrett" using the realistic
Kuo-Brown matrix elements. Clearly the agree-
ment is only qualitative, but is sufficient to make

FIG. 4. The ladder diagram (No. 3'of Fig. 1) as a
function of 5„. See caption to Fig. 2.

further discussion of the model results worthwhile.
Returning to the (4, 4). ../(4, 4)~, , ratio given
in Table II, and excluding for the moment diagrams
10, 11, 20, and 21, we see that in each of the re-
maining cases the ratio is close to the average
value of 0.33. 'The corresponding value for the
(4, 5} case is 0.37, while the (5, 5) case, as we have
remarked, shows more fluctuations. Nevertheless,
there is a definite trend for diagrams 10, 11, 20,
and 21 to show a slower falloff than the other dia-
grams. First consider diagram 10. This is in a
special category since it is the only third order
diagram with a hole-hole interaction. This is
independent of b„, so we would expect this diagram
to scale like a second order diagram and indeed
it does. 'The remaining three excluded diagrams,
11, 20, and 21, all involve a particle-particle
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The third order particle-particle (solid curve) and particle-hole (dashed curve) vertex correction diagrams
as a function of b„. The diagrams are numbered 20 and 17, respectively, in Fig. 1.
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ladder and as we have seen in second order lad-
ders fall off rather more slowly. We note that
diagram 22 of Fig. 1 does contain a ladder, but
the presence of two-hole orbitals at the upper end
is sufficient to give a reduction factor close to the
average of 0.33. As a practical matter we may
note that diagrams 11 and 22 are both small and
tend to cancel.

It is worthwhile to comment briefly on some of
the diagrams which have been of interest in the
literature. Consider first the number-conserving
set comprising diagrams 4, 5, and 6 of Fig. 1.
It has been suggested that these diagrams would
cancel to a considerable degree and numerical
calculations'" " in an oscillator basis do indeed
show this tendency. However, the accuracy of the
cancellation is not sufficient to allow these dia-
grams to be neglected. In Table III we give some
examples of the ratio (5+ 6)/4 as a function of b„
This allows us to test the degree of cancellation,
even though the magnitude of the individual dia-
grams decreases. It is seen that increasing b„
to 2 fm improves the cancellation, i.e., the
ratio is closer to -1, and this is a general
trend since diagram 4 decreases a little less
rapidly than the other two. A second number-con-
serving set has been identified, diagrams 7, 8,
and 9 of Fig. 1, and here we find no uniform trend
as is evident from the examples in Table III.
Finally, we discuss the vertex corrections for the
core polarization diagram. The particle-hole
vertex correction diagram (number 17 of Fig. 1)
falls off more rapidly than the particle-particle
vertex correction diagram (number 20), as is evi-
dent from Fig. 5. The point is also made in Table
III by giving the ratio of the two diagrams; as 5„
increases, the cancellation improves significantly.
This means that the sum of the third order dia-
gram, which starts out positive at b„= 1.7 fm, be-
comes more negative as 5„ increases. In fact,
by 5„=2.0 fm the third order total is, in most
cases quite small and negative. 'Thus the conver-
gence of the series appears improved, however,

TABLE II. Third order results for the {4,4) matrix
element of the effective interaction.

Diagram

Kuo-Brown
matrix

elements '
Present model

b„=2.0
b„=1.7 b„=2.0 b„=1.7

4
5
6
7

9
10
11
12
13
14
15
17
18
19
20
21
22

—0.48
0.38
0.22
0.20

—0.28
0.05

—0.04
0.04

—0.01
0.09

-0.16
—0.24

0.48
0.29

-0.07
—0.18
-0.01
-0.05

-0.68
0.37
0.48
0.44

-0.43
0.26

—0.07
0.13

-0.06
0.23

—0.60
—0.48

0.72
0,49

—0.09
—0.32
—0.06
—0.13

-0.23
0.11
0,16
0.14

-0.14
0.09

—0.03
0.05

—0.02
0.07

-0.21
-0.15

0.22
0.15

-0.03
—0.14
—0.03
—0.05

0.34
0.30
0.32
0.32
0.33
0.35
0.48
0.40
0.35
0.33
0.36
0.32
0.31
0.32
0.34
0.42
0.47
0.36

' Reference 11.
b With Barrett, Hewitt, and McCarthy matrix elements;

Barrett, Ref. 17.

it is unlikely that third order gives a reliable ap-
proximation for two main reasons. Firstly, Schu-
can and WeidenmQller" have shown that ultimate-
ly the order-by-order series must diverge due to
the presence of intruder states in "0 (although it
has been suggested" that low order perturbation
theory could still provide a reasonable approxi-
mation in the presence of intruder states). Second-
ly, Goode and Koltun" have shown that the average
of the fourth order diagrams is large and, further-
more, this is unrelated to the presence of intruder
states. The fourth order averages are found"
to remain large in comparison to lower order if
the simulated HF basis, discussed here, is em-
ployed.

TABLE III. Ratios of third order diagrams for the (4, 4) and (5, 5) matrix elements of the
effective interaction.

Kuo-Brown
Matrix Ratio of Present model matrix
element diagrams b„=1.44 b„=1.7 b„=1.85 b„=2.0 b„=2.5 elements ~

(4 4)
(4 5)
(4,4)
(4, 5)
(4,4)
(4, 5)

(5+ 6)/4
(5+ 6)/4
(7+ 9)/8
(7+ 9)/8

17/2O
17/2O

-1.22
-1.56
—1~ 79
-4.25
—2.20
—1.00

—1.26
—1.23
—1.63
—4.28
-2.22
—1.27

—1.21
—1.04
—1.62
—4.62
—1.94
—1.24

-1.15
—0.90
—1.66
—5.19
—1.65
—1.15

-0.96
-0.67
—2.00

—10.7
—1.13
-0.82

-1.24
-0.86
—0.90
—l.14
-2.58
-1.15

' Reference 11.
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III. DISCUSSION AND CONCLUSIONS

%e have examined a simple model for the effec-
tive interaction in "0where we take one oscilla-
tor parameter b, = 1.7 fm for the occupied orbitals
of the "0 core and another oscillator parameter
b„ for the unoccupied orbitals. By taking 5„=1.V fm
we obtain the usual oscil.lator basis, but by choos-
ing b„= 2.0 fm we hoped to simulate the main quali-
tative features of using a HF basis. This hope was
fulfilled in the rather reasonable agreement be-
tween our model results with a simple central in-
teraction and the more difficult realistic calcula-
tions.

Our model shows dominantly a scaling behavior
with the various diagrams dropping off exponential-
ly as b„ increases. Comparing b„of 1.7 and 2.0
fm, a reduction factor of roughly 0.7, 0.7', and
O. V' is obtained for first, second, and third order,
respectively. A closer inspection reveals the fol-
lowing four points.

(i) The (5, 5) matrix element of the effective in-
teraction and, to some extent, the bare interac-
tion show fluctuations from the average behavior
and are more difficult to characterize. Further,
it is much easier to identify trends by calculating
the various diagrams rather than by studying tables
of the relevant matrix elements.

(ii) The reduction found here in second order is
quantitatively less marked than in the EM work, '
where rather small radii for the occupied orbitals
were obtained. This difficulty was removed in the
work of Malta' and the few results available are
similar to ours.

(iii) A hole-hole interaction is independent of
b„. Such an interaction first enters in third order
and means that the diagram scales like a second
order one. Thus, although hole-hole interactions

usually give fairly small effects, " their importance
could be enhanced in a HF basis.

(iv} Diagrams containing a particle-particle
ladder drop off less rapidly than the others in most
cases. This is clearly seen in second order where
all the wave functions involved in the ladder dia-
gram depend on 6„, whereas in the other diagrams
we have hole orbitals whose wave functions are
held fixed, independent of b„, which tends to de-
crease the overlap. This ladder effect is par-
ticularly important in third order for the pair of
diagrams which correct the vertex of the core po-
larization diagram. It means that by going to b„
= 2.0 fm the diagram with a particle-particle lad-
der (number 20 of Fig. 1) cancels a much larger
part of the corresponding diagram (number 17)
with a particle-hole interaction than is normally
the case at b„= 1.7 fm. This argues in favor of
excluding from the G matrix in realistic calcula-
tions low-lying two-particle states so that the cor-
responding ladder diagrams can be included on the
same footing as the other diagrams, ideally in a
HF basis. This is the double-partition approach
which has been advocated by Barrett. "

If the degenerate schematic model" is used,
it is straightforward to combine the present work
with previous oscillator results" in order to es-
timate the renormalization of the effective interac-
tion in the Tamm-Dancoff (TDA) and random phase
(RPA) approximations using a HF basis. We find
that, averaging over the (sd)' d= 0 T = 1 renor-
malizations, the HFTDA gives about —,

' of the usual
second order core polarization result for an oscil-
lator basis. ' The HFRPA gives a renormalization
about equal to the second order oscillator value.
This, together with the greater degree of cancel-
lation amongst the vertex correction processes in
a HF basis, might be interpreted as encouraging.
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