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The validity of various approximations in the particle-vibration model has been studied for the particle-
vibration multiplet in ' Bi. It is shown that the Pauli exclusion principle is taken into account by this model.
Since the diagonal particle-vibration coupling, which is neglected in the particle-vibration model, has a
sizable eA'ect on the energy splittings, we have studied this interaction in detail. We show that its multipole
structure is rather complex, so that it cannot easily be represented by a phenomenological model. The
validity of certain symmetry relations in the particle-vibration model has been investigated. This study
indicates that the particle-vibration model overestimates the influence of multiphonon intermediate states.
Other multiplets in the lead region are briefly discussed, as well.

NUCLEAR STRUCTURE Interactions between vibrational and fermion degrees of '

freedom. Approximations in the particle-vibration model. Septuplet in ~91.

I. INTRODUCTION

In the past decade the particle-vibration (PV)
model has been used extensively in the description
of multiplets in odd-nuclei neighboring doubly ma-
gic nuclei. " Since various assumptions and ap-
proximations are made in this model, the effects
and adequacy of which are not completely under-
stood, we have studied some of these approxima-
tions from a microscopic point of view. We have
chosen the multiplet in '~Bi for this analysis,
since it is reasonably well understood theoretically
and experimentally, contains a relatively large
number of states, and therefore provides ample
opportunities for testing the PV model.

The approximations in the P V model arise rough-
ly speaking from two sources. First, the particle
and vibrational degrees of freedom are treated as
independent. In reality, these degrees of freedom
are not independent and one may ask whether this
treatment will lead to nonorthogonal wave func-
tions, overcompleteness of the basis, and violation
of the Pauli principle. Most of these questions
have been considered by Bes, Broglia, and oth-
ers" in the framework of nuclear field theory.
They have proposed certain diagrammatic rules'
which determine the graphs which should be inclu-
ded in the perturbation series to avoid the prob-
lems above. In some simple cases they have shown
the validity of these rules by comparing the results
of nuclear field theory with exact calculations or
Feynman-Goldstone series. ' Whether the Pauli
principle is also correctly taken into account in the
present case with many nondegenerate pa. tiCle--
hole states will be studied in the following. Apart
from these basic questions about the Pauli princi-
ple one may ask whether certain symmetry rela-

tions between different particle-vibration graphs
are generally valid, since these also originate
from the assumption of independence of particle
and vibrational degrees of freedom. We have in-
vestigated the deviations from these symmetry re-
lations and discuss the consequence for the validity
of the PV model.

A second source of approximations in the PV
model is the phenomenological description of the
vibration. In the Bohr-Mottelson model' the vibra-
tion is described as a harmonic surface oscillation
of an incompressible fluid. Because of this as-
sumption of harmonic ity, the partic le- vibration in-
teraction which arises from the variation in the
average nuclear potential is linear in the oscillator
amplitude and therefore changes the number of
phonons by one. The inclusion of phonon-conserv-
ing interactions between particle and phonon can
therefore only be accomplished if one allows for
anharmonicities in the vibrational motion. A phe-
nomenological description of these so-called dia-
gonal forces could be based on the quadrupole mo-
ment of the phonon, whose existence is also due to
anharmonicities in the vibrational motion. In order
to check this and other models for this force we
have analyzed its multipole structure and its sensi-
tivity to the basis and the residual interaction.

The phenomenological description of vibrational
states is confined to those states which possess
some degree of collectivity. In order to verify
whether omitting noncollective states is justified,
we have inc luded such s tates in our mic roscopic
calculation and have studied their importance.

In the next section we present the relevant graphs
and formulas which we will need in our analysis in
Sec. III. The conclusions are presented in Sec. IV.
In the same section we briefly discuss some other
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multiplets in the lead region. Finally, we consider
the adequacy of the PV model in describing transi-
tion rates.

II. MICROSCOPIC DESCRIPTION OF PARTICLE-VIBRATION

COUPLING

sition of particle-hole states

Ij "') = Qx'n"C(j, j n j Im, mam)( —1)'& ~&

ab

xnt g'„- ID)

= Qx& Inf (jm)), (2.2}
In a microscopic description of the coupling be-

tween particle and vibration, this coupling is ex-
pressed in terms of matrix elements of the residu-
al interaction. In addition, the normalization of the
particle-phonon states has to be taken into account.
Since the residual force, together with the single-
particle energies and wave functions, constitute the
basic input for microscopic calculations, we will
briefly discuss our choice for this force. 'The re-
sidual interaction, which is really an effective in-
teraction, will depend on the configuration space
which is used. For example, the inclusion of
ground-state correlations in the description of the
phonon will lead to a reduction of the strength of
the residual force. ' We have used a residual inter-
action which has been well tested in the lead region
in the framework of the Tamm-Dancoff approxima-
tion. ' Since we mill only study those aspects of the
PV model which are not sensitive to the inclusion
of ground-state correlations, it is reasonable to
neglect correlations in the lead core. Treatment
of these correlations mould, anyway, require fur-
ther specific approximations like the random-phase
approximation (RPA). The residual force contains
a triplet-even and singlet-even part and has a
Gaussian radial dependence. Since most energy
levels in the lead region are rather insensitive to
small changes in the residual force, " the form and
force parameters are somemhat undetermined. On
the other hand, this insensitivity implies that the
precise form of this force is not so important, so
that our conclusions will hardly be sensitive to the
specific form of the interaction. We will explicitly
investigate this point by using different interac-
tions. True, Ma, and Pinkston' have also used a
slightly different version of this residual force by
including a P,-type force. Since this modification
does not affect the octupole state very much, we
stick to the original force which is also used by
Arita and Boric.'

The residual force is written in the following
way:

V = Vo(W+BPs +H-Ps GAMP~) exp(-r 'jro'), (2.l}
where P~, P~, and P~ are the Bartlett, Heisen-
berg, and Majorana projection operators. The co-
efficients used are S"=M=0.417, 8 =H =0.083, and
F0=1.86 fm. For protons we also include the Cou-
lomb interaction.

The vibrational states are written as a superpo-

mhere j is the spin of the vibration and i labels the
different excited states (called "phonons" in the
following) with increasing energy. The operators
a, „and (-1)~' ~a,. are creation operators for
particles and holes. The phase is necessary to as-
sure correct angular momentum transformation
properties. ' We have used harmonic oscillator
single-particle wave functions with oscillator con-
stant b =2.33 fm. The single-particle energies are
taken from experiment, where possible. The bare
i»&, single-particle energy was determined by re-
quiring that the lowest energy state in the J'=—',"
basis (described at the end of this section) coin-
cides with the experimental single-particle energy.
The resulting shift was 460 keV. The single-par-
ticle energies in the continuum are taken from Ring
and Speth" and Zawischa" (k, ,&,). Phonon energies
will be indicated by E,'.".

The particle-vibration states are defined by

lj;j(J }&=Qx!i'lnf(j)P(~)). (2.3)

In general, different particle-vibration states have
a finite overlap which is given by

A A
&(i')+(i) ~P' ~b+ Pb P'b

(N"') '=1+(2j+1)Q (x~,")' ~ ', (2.5)
b )

In Fig. 1 we have shown all imo-body matrix ele-
ments which contribute to the energy of the parti-
cle-vibration states. For each graph, the exchange
graph (a —a'} is also shown. In our calculation the
exchange graphs are automatically included by
using antisymmetrized shell-model matrix ele-
ments. The graphs have the same meaning as the
ones discussed by Brown. ' Broken lines represent
the two-body interaction, whereas the wavy lines
represent the phonon, and imply a summation
over all particle-hole states. Contrary to the PV
model, the particle-vibration vertex in these mi-

(2.4)

where j = (2j+1)'~'. The states in (2.3) can thus be
normalized by multiplying with the factor ¹,"'
which is given by
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croscopic graphs does not represent a coupling
mechanism.

Using a slightly different coupling scheme, Arita
and Horie' have given expressions for the two par-
ticle-one hole matrix elements involved in these
graphs. However, since one can perform the sum-
mation over the particle-hole states explicitly in

the graphs (a), (b), and (c), one does not have to
calculate the particle-hole matrix elements for
these cases. The summation is performed using
the fact that the amplitudes x,'," satisfy the Tamm-
Dancoff equation. ' For example, in Fig. 1(a) (a')
one performs the summation over the particle-hole
states !a'b'):

~~
r g x(c)&(s) 2P' 5 F (P I sg I i) j~ i g &(i)&(i'& ~P' ~b j (Eil i ~ ~ )"'"

~, 4)
The matrix element F;, is the particle-hole matrix element. One can perform the same reduction for the
graph in Figs. 1(b) and 1(c) and obtains after adding the single-particle terms

4E~ =N~'j 'Qx~~' ~ (E, —ep+e~) . (2.7)

In (2.7) we dropped the index of the phonon, since
the lowest state is understood. If one expresses

Qn 0 0
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One easily checks that this expression is symme-
tric under the transformation ip- i'p'. The super-
script of the Hamiltonian is used to indicate that
(2.8) does not include the diagonal contributions.
The energy shift of a particle-phonon state from its
unperturbed energy E,'"+a~ equals (set i =i'):

the particle-hole amplitudes x» in terms of the in-
teraction Hamiltonian of the PV model by means of

(2 IH„, I pb( j))
X» E~- Ep+6~

(2.8)

then one easily identifies the energy shift (2.7) with
the exchange graph in the PV model [Fig. 2(a)].
Obviously, the Pauli effect is taken into account in
the PV model by means of this graph. Small de-
viations from the microscopic calculation will still
occur, because the .particle-hole amplitudes x»
estimated by (2.8) will differ from those obtained
by the Tamm-Dancoff equations, and the normali-
zation factor N~' is usually neglected in the PV
model. This normalization can, however, also be
calculated in terms of particle-vibration graphs, "
so that an improvement in this direction seems to
be rather easy. The foregoing discussion has also
shown that the Pauli term is readily obtained in the
microscopic formulation and that the PV model
does not constitute a simplification in this respect.
On the other hand, the diagonal terms which are
not as easily obtained microscopically are not in-
cluded in the PV model.

The diagonal particle-phonon force shown in
Figs. 1(d) and 1(e) is given by

I

0

P

(e] Ce) (a) (b&
FIG. 1. Direct and exchange graphs (with prime)

contributing to the expectation value of the Hamiltonian
in the particle-phonon state.

FIG. 2. (a) Exchange graph in the PV-model. (b)
Quadrupole interaction between particle and phonon.
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2g

jj'Qx,',"x~'Q(2J'+1) j, J' j~,
abd

ip

G, (j', b, j,d), (2.9)

where Gz(a, b, c, d ) is the antisymmetrized shell-
model matrix element. This matrix element does
not contain the usual normalization factors 2 '~' or
2 ' for a =b and/or c =d, since these factors appear
through the normalization of the states. The first
term in (2.9) represents the attractive particle-
particle component [Fig. 1(d)), the second term the
repulsive particle-hole component [Fig. 1(e}]. This
latter term can also be expressed in terms of par-

ticle-hole matrix elements. Bohr and Mottelson'
discuss a possible phenomenological description of
such a force. In this model the interaction is ex-
pressed in terms of the quadrupole moments of
particle and phonon. Such an interaction can be
represented by the graph in Fig. 2(b}. In the next
section we will analyze the adequacy of this model.

The matrix element between a particle and a par-
ticle-phonon state [Fig. 3(a)] is given by

&f'IHIP';P(~)&=by,

zg&.'s'i (i p) '(-I)'"'Q(2j'+I) ' " G;,(b, P', p, a}.
ab p ~ ~ ~

2p~ 2p

(2.10)

The graphs in Figs. 3(a) and 3(b} are analogous to
the particle-vibration graphs in Figs. 4(a) and 4(b}.
The latter are related by a simple symmetry rela-
tion. Hence, we can check the validity of these re-
lations by comparing the graphs in Figs. 3(a) and

3(b} numerically.
The correctness of the PV model clearly depends

on the adequacy of the particle-phonon basis in de-
scribing the septuplet. This adequacy can be
checked by determining the importance of other ba-
sis states, such as higher-lying particle-phonon
states. %'e determined the importance of these
states by performing calculations in basis with and
without these states. The results are shown in
Figs. 8(d)-8(f) (see next section), where it is to be
understood that in calculating the effect of one spe-
cific state, all basis states mentioned to its left
are already taken into account. Matrix elements
between particle-phonon states are obtained from
Eqs. (2.6) and (2.7), where the first term in (2.6) is
due to the nonorthogonality of the states. Such non-
orthogonality terms drop out if one performs a Hil-

bert-Schmidt orthonormalization of the basis. For
future reference we picture the lowest order con-
tribution of the single-particle term to the energy
shift [Fig. 5(a)]. The effect of two-phonon one-par-
ticle states is treated in perturbation [cf., Fig.
8(g)]. The corresponding graph is shown in Fig.
5(b).

III. ANALYSIS OF THE PARTICLE-VIBRATION MODEL

A. Pauli term

In the previous section we have shown that the
only difference between the Pp model and the mi-
croscopic calculation lies in the particle-hole am-
plitudes x'» and in the treatment of the normaliza-
tion. The main contribution in the Pauli term [Eq.
(2.7)] is due to the h9~, d, ~,

' particle-hole state,
which has the amplitude 0.394 in our calculation (V,
= 34.0), 0.391 in the RPA calculation of Ring and

Speth, ' and 0.365 in the PV model. ' This corre-
sponds to a 15% difference in PV-model and micro-
scopic estimates of the Pauli term. The inclusion
of the normalization factor gives another correc-

(b)

FIG. 3. Graphical representation of the matrix el-
ement (2.10). The exchange graph is omitted in this
figure.

(a)

FIG. 4. Particle-vibration graphs representing the
annihilation or creation of a phonon.
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tion which is largest for the highest spin state
(N»»' =1.13}and much smaller in the other cases
(N~'=0. 94, 1.04, 0.97, 1.02, 0.99, and 1.00 for J'
=—',", . . . , 2'). The difference between the PV mod-
el and our calculation is therefore largest (=30%}
for the highest spin state. Since the Pauli term is
very large for the high spin states it is very de-
sirable to treat the normalization of the particle-
phonon state also in the PV model. %e have used
two other residual interactions to test the model
dependence of the h, &,d, &,

' particle-hole ampli-
tude. A Soper mixture (W= 0.3, B = 0.27, H = 0, M
=0.43, and V, = 38.5) gives a value 0.397; an even
force with relatively strong triplet interaction (W
=M=0.375, H=B =0.125, and V, =37.8} gives a val-
ue 0.403. These values also underline the small
sensitivity of the Pauli term to the residual inter-
action. The sensitivity of the Pauli term to the
particle-hole basis used has been investigated as

(a) (b)

FIG. 5. Microscopic second order graphs contributing
to the energy shifts of the particle-phonon states.

well. %'e have performed calculations in particle-
hole basis with maximal excitation energy V, 7.43,
7.67, 8, 11, 13, and 15 MeV. For each of these
calculations V, is adjusted to the experimental vi-
brational energy; V, =49.8, 45.4, 38.8, 36.1, 34.5,
34.0, and 33.8. The results are presented in Fig.
6. On the left-hand side of the figure all h», p-h
states are already included, except for the

AQ/ 2 g7/ 2 state. The latter is introduced at a di-
mension of 28, and has a sizable effect on the Pauli
term. The other changes in the Pauli term, re-
flecting the modifications of the coefficients of the
h, &, p-h states with increasing dimension, are very
small. Comparison with estimates based on BPA
calculations with 90 particle-hole states" shows
that the Pauli term is not strongly affected by the
inclusion of ground-state correlations, either.
This analysis clearly shows that the magnitude of
this Pauli term is not due to the cutoff in configura-
tion space. Furthermore, the validity of the mi-
croscopic calculation is underlined by the insensi-
tivity to both residual force and basis (provided at
least 30 particle-hole states are included).

B. Diagonal particle-vibration coupling

Both the particle-particle and particle-hole com-
ponents in the diagonal interaction are large in
magnitude, as one can see in Fig. 8. The cancella-
tion between these components is, however, so
strong that they have a smaller effect on the energy

400—

I5/2

200—

0
I

25

5/2

3/2

I

35
Dimension of basis

I

45

2
2

7/2

~
5/2

382

FIG. 6. Behavior of the Pauli terms vrith increasing basis. The points on the right are based on HPA calculations of
Hing and Speth (Hef. 10).
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where a,. =(-1) a, , and p, is the creation op-
erator for the 3 phonon. The (unnormalized} ener-
gy shifts d. Ez are given by Eq. (2.9) with i =i '. Af
ter changing the coupling scheme in (3.1) one ob-
tains the multipole expansion

Z~l[(p p )l(nh
y

sh
g )~l. (3.2)

The results for v, are given in Table I. Although
the quadrupole component is the largest compo-
nent, it would give completely erroneous results if
it were to be the only multipole to be used in the
computation of the energy shift. Other multipoles,
especially the dipole and hexadecapole, contribute
substantially, too. We can compare our estimate
of v, with the estimate of Bohr and Mottelson (Ref.
5, 9. 576):

v = 0.626@phonon@h keV fmphonon h9/ &
(3.3)

Using the experimental values for the quadrupole
moment of the phonon" (-100 fm') and the h9~, par-
ticle (40 fm'), one obtains v, = —2504 keV. The dis-
crepancy with our result should probably be ex-
plained by the uncertainty in the experimental valu

TABLE I. The first two columns contain the multi-
po1e coefficients of the particle-partic1e |'p-p) and the
particle-ho1e (p-h) component of the diagona1 particle-
phonon coupling in keV. The third column contains the
full multipole coefficient. In the last bvo columns re-
sults for the Soper and the strong triplet force are given.

splittings than the Pauli term. Since the cancella-
tion will not occur for pairing phonons (which are
made up either of particles or holes), one expects
the diagonal interaction to be especially important
for these degrees of freedom. In order to study the
validity of the phenomenological model for the
quadrupole component of this interaction, we will
expand the interaction in multipoles. First we
write the corresponding interaction Hamiltonian in
second-quantized form:

of the quadrupole moment of the phonon. Theoreti-
cal estimates of this quadrupole moment (-6.1 fm~

in Ref. 7 and -10 fm' in Ref. 5) lead to values of v,
which are in much closer agreement with our value
for v, . Another possibility for deriving the diago-
nal force in a macroscopic way consists of the ex-
pansion of the particle-vibration Hamiltonian to
higher order in the oscillator amplitude. This is a
dangerous procedure, since it will also bring into
play vibrations of other multipolarity (like quadru-
poles). The resulting interaction Hamiltonian will
contain a pa, rt analogous to (3.2); however, only
even multipoles will be present. So we must con-
clude that in both phenomenological models im-
portant multipoles are neglected, which is very
dangerous in actual. calculations because of the
strong cancellations between different multipole
contributions. Once again we have studied the sen-
sitivity of the calculation to the choice for the re-
sidual interaction by using the Soper mixture and
the strong triplet force discussed before. The
multipole coefficients change only very little as one
one can see from Table I. In Table II we show
multipole coefficients for the coupling with other
particles and holes. These results and additional
results for particles and holes which are not
shown, underline the importance of the dipole,
quadrupole, and monopole components in the diag-
onal interaction (of course the monopole does not
contribute to the splitting of the levels). We have
also studied the sensitivity of the diagonal interac-
tion to the particle-hole basis (Fig. 7). Unlike the
case of the Pauli term, where the only contribu-
tions came from the h, /, p-h states, all p-h states
contribute to the diagonal interaction. The varia-
tion in the interaction with dimension, therefore,
reflects both the change in the p-h coefficients and
the inclusion of additional states. Apparently, the
25th and 26th p-h states v(i«&, h, &, ') and

w(i»~, h«&, ') have a considerable effect on the di-
agonal interaction. Increas ing the dimension above
30 hardly affects the interaction any more.

TABLE II. Multipole coefficients of the full diagonal
interaction for coupling to other particles or holes (see
table heading) .

p-p p-h
Soper

mixture
Triplet
force r2fg/ 2 &2g9/2 v2f& / p ~3P(/ p 7('3sj /2

vp -758 666
vj 213 28
v2 -518 228
v3 73
v4 -198 144
v5 60 -25
vs -173 22

-92
240

-290
72

-54
35

-151

-93
198

-297
62

-36
30

-144

-100
252

-300
82

-57
40

-150

vp

Vg

V2

Vg

V4

V5

V6

234
161

-153
35

-31
13

114
130

-211
46

-87
24

-161

-238
147
167
42
58
18

314
8

-142
-217
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25 35
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FIG 7 Behavior of the diagonal particle-phonon coupling with increasing bases.~ ~

C. Symmetry relations

The particle-vibration graphs in Fig. 4 are con-
nected by the following symmetry rela, tion (cf. Ref.
5, p. 418):

h, (P, P') =~)(P', f ),
where h&(P, P') is defined by

&,(J,P')= (-I)""'j &f IH. I&&'(&~»

In Eq. (3.5) j represents the collective phonon (vi-
bration) and H,.„, is the particle-vibration Hamil o-
nian.

The equality (3.4) is no longer valid if one re-
places the particle-vibration matrix elements by

. (2.10&. For thetheir microscopic expression, Eq. ( .
case of a two-body 5-function force, "explicitsym-
metry relations of the matrm eleme nt ~2.10}can be
derived, because various summations (in particu-

lar over j') can be performed. The resulting ex-
pression contains two parts; one which satlsfses
the symmetry relations exactly, and one which only
satisfies them for unnatural parity states and gives
a symmetry relation with opposite sign for the nat-
ural parity states. The latter part is not expected
to be very large for isoscalar modes of excitation.
Since the collective 3 state is mainly isoscalar,
we expect that Eq. (3.4} is reasonably well satisfied
in the present case, although further deviations
will occur if one uses forces of finite range. On
the other hand, for isovector modes the part which
violates the symmetry relation (3.4} is large and
we do not expect (3.4} to be valid at all.

%'e have checked these symmetry relations quan-
titatively for the residual force discussed in Sec.
II. The results are given in the first row of Table
III. Note that the particle-phonon states used in

{ p') between particle states p and particle phonon statesTABLE III. Matrix elements h3 p, p e ' onon states
') one of the particles being an 1h9/2 particle. Symmetry relations can e es e y c~3p ), one o

h middle row (Soper interaction) and last row (strongaring entries in the same squares. T e ml e rowparing
triplet farce) are shown to i us a e e s'll tr t the sensitivity to the residual force used.

3d3 /2 2g7/2 2g 1Lf|/2 1k&&/2

h3(p, lh9/2)
h3 {1hs/2, p)

h3 (p, lhs/2)
h, (lh„„p)
h3(p, 1hg/2)
hs (lhe/2, p)

400
350

409
363

-139
-138

-109
—130

-145
-146

807
689

767
686

809
704

-328
-243

-292
-257

-326
-260

2438
2188

2627
2368

2491
2190

-847
-548

-881
-627

-818
-554

-2811
-2330

-2999
-2590

-2850
—2334
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TABLE 1V. Same as Table III for particles (holes) dif-
ferent from 1h9/2 The particle (hole) states p are de-
termined by the requirement that they are the single-
particle states closest to the Fermi surface with the
appropriate quantum number s.

7

2
«
2

13
2

h3(p, m2fp/2)

h, (~2f«2, p)
524 930 849
504 820 780

1957 516 2486
1650 495 1808

h3( p, v1&&5/2)

h9(vlj, 5/2, p)

h, (p ', ~»«/2 ')
h, (~1h,»,-', p-')

—1538 —587
—1898 -626

2465 898 2478
1780 595 2086

determining the matrix elements are not normal-
ized. For higher spin values the matrix elements
h, (P, k, i,) are considerably larger than the ma. trix
elements h, (h, i„P). Expressed in terms of energy
splittings this means that the contribution of the
graph in Fig. 5(b) is reduced considerably with re-
spect to the contribution of the graph in Fig. 5(a}.
By converting this argument one ean argue that the
PV model overestimates the contribution of graphs
which involve multiphonon intermediate states. In
the next two rows we show the same comparison
for the Hoper force and the strong triplet interac-
tion. For the latter force the results are practi-
cally the same, for the first the symmetry relation
seems to be satisfied slightly better. In Table IV
we give the results for another proton single-par-
ticle state (vf,i,}, a neutron state (&j„i,), and a
proton hole state (vh»i, '). From the systematics
of these and additional calculations we conclude
that the matrix elements h, (P, P') with a proton
(neutron) single-particle or hole state P' of nega-
tive parity are on the average larger (smaller) by
a factor of 1.2 than their counterparts h, (P', P).

D. Higher-lying particle-phonon states

From Table V we see that the higher-lying par-
ticle-phonon states admix very little in the main
13,a„,} state. The most important admixture, the

i3, f,i, ) configuration in the —", state, can also be
treated in the PV model. The 5 state in ' 'Pb is
not very collective and therefore does not admit a
treatment within the PV model, . The energy shifts
arising from 5 admixtures into the septuplet are
given in Fig. 8(f). Relative to the total energy shift
their effect is rather small. 'The admixtures of
other noncollective states (3,, 3„and 5,) are even
less important. It therefore seems well justified
to omit these noncollective degrees of freedom in
the PV model. The admixture of i3, h, i, ) configu-
rations (i ) 1) in the septuplet can be interpreted as
a change of the phonon structure in the presence of
the extra particle. For the —", state, where the
Pauli principle is most effective, the superposition
of three phonon states (i =1,2, 3) with the appropri-
ate coefficients leads to a reduction of x&/ Q /
from 0.394 to 0.374. The cha. nges in other coeffi-
cients are even smaller, so that we conclude that
the phonon retains its original structure very well
in the presence of the extra particle.

In Fig. 8 we have summarized all the contribu-
tions to the energy splitting. Also shown are ex-
perimental and PV-model results. The misfit for
the &' state is usually attributed to the neglect, of
configurations arising from the coupling of pairing
phonons in '"Po to a,n s,» hole. In the present pa-
per we did not consider these degrees of freedom;
however, they may be an interesting topic for fur-
ther study. The importance of the single-particle
terms [Fig. 8(d)] depends very much on the specific
character of these states (energy, principal quan-
tum number). The two-phonon one-particle term
[Fig. 8(g)] gives a rather large contribution for all
the members of the septuplet. As stated earlier in
this section, this term is overestimated in the PV
model.

IV. DISCUSSION AND CONCLUSIONS

The analysis of various approximations in the PV
model has shown that, as far as the energies of the
particle-phonon states are concerned, only the ne-

TABLE V. Coefficients of the particle-phonon admixtures into the multiplet. The excitation
energies in the second column are given with respect to the unperturbed energy of the multi-
plet.

State Exc. energy (keV) ii
2

3i xf~
32 x f«2
3I x h9/2
32 xh9
3, xh9»
5, xf«

xf«
5i x h9/2
52 x h9/2

892
2436

0
1544
1707
4260
4665
3368
3773

0
0

1.045
—0.007
—0.031
—0.015
-0.017

0.117
0.064

-0.141
-0.005

0.942
0.003
0.007
0.025
0.025
0.051
0.019

0.025
0.001
1.004
0.011

-0.011
0.002

—0.003
0.035
0.028

—0.031
—0.002

0.982
0.007
0.004
0.004
0.007
0.032

0.995
—0.001

0.001
—0.020
—0.017

0.087
0.038

0.987
-0.001

0.012
0.028
0.018

-0.001
-0.011

0.034 -0.023 0.002
0.000
0.987
0.016
0.007
0.024

—0.011
0.013
0.010
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FIG. 8. Contributions to the energy shifts of the sep-
tuplet and comparison with experiment and particle-
vibration model: (a) Pauli term; {b) diagonal particle-
hole force; (c) di, agonal particle-particle force; (d)
single-particle contribution; (e) effect of higher-lying
~3 p) configurations; ( f) effect of [5 p} configurations;
(g) effect of the graph in Fig. 5(b); (h) experimental
spectrum; (i) particle-vibration model. The diagonal
particle-hole force brings the 23+ level down to —191 keV
in Fig. S(b).

gleet of the diagonal interaction leads to a signifi-
cant difference between the PV model and the mi-
croscopic calculations. More specifically, we ar-
rived at the following conclusions:

(a) The Pauli exclusion principle can be taken in-
to account by one simple exchange graph both in the
microscopic case and in the PV model. Although
this graph is calculated in a different way in the
PV model, the agreement with the microscopic
calculation is rather good. We have shown that for
higher spin values of the members of the multiplet,
the normalization should also be taken into account
in the PV model.

(b) The diagonal particle-phonon force is next
most important for the energy shifts. The average
diagonal contribution is 37 keV (the corresponding
number for the single-particle contribution is 36
keV), whereas the total average energy shift is 54
keV. Since most energy shifts would change by as
much as a factor of 2 if the diagonal contribution is
not included, it is essential to include this con-
tribution if one wants to compare the energy shifts
with experiment (which is the main objective of the
particle-vibration model). We showed that the di-
agonal force has a complex multipole structure, so
that it. cannot be represented by a simple quadru-
pole model, ' nor by a simple expansion of the sin-
gle-particle Hamiltonian in the vibrational parame-
ter. Since the calculation of this term is very time
consuming, it mould be of much interest to develop
other phenomenological models for this interaction.
The present analysis constitutes a good quantitative
basis for such an investigation.

(c) We have shown that there is a small but sys-

tematic deviation from the symmetry relations be-
tween different particle- vibration graphs. The
creation of particle-phonon states of positive parity
is favored (suppressed) over the creation of nega-
tive parity states in the case of proton (neutron)
single-particle states. For the application of the
PV model in '"Bi this implies that graphs with two
phonons in the intermediate state are enhanced
over graphs with no phonons in the intermediate
state. We have given a qualitative argument that
for isovector (T =1) modes the symmetry relations
mill be strongly violated.

(d) Noncollective states in the lead core hardly
play a role in the multiplet of '"Bi. The impossi-
bility of treating these states in the PV model,
therefore, does not seriously affect the validity of
the PV model.

The sensitivity of the microscopic calculations to
the residual force has been estimated by using
three different forces. We found an average varia-
tion in the particle particle-phonon matrix elements
of 5/p, which is quite small considering the signifi-
cant changes in the residual force. The correspon-
ding change in the Pauli term is roughly 10%,
which preserves the qualitative agreement between
the microscopic and macroscopic Pauli term. The
average variation of the diagonal force is about 8%.
The multipole distribution of this force is hardly
affected by these changes. Since the sensitivity of
the diagonal force to the dimension of the particle-
hole basis is even smalier (provided the number of
states is ~30), the present calculations give a good
quantitative determination of the diagonal interac-
tion.

Other multiplets in the lead region do not lend
themselves so well to analysis of this type. The 5

multiplet in '~Bi, starting at 2.987 MeV (—',") a.nd

going up to 3.212 MeV (
—",
' or 2'+ —', ') in excitation,

can not be described very well in the PV model
since the 5 state is hardly collective (the dominant
state is v2g»23p», '}. Since the diagonal and the
single-particle term are, respectively, first and
second order in the residual interaction, the diag-
onal interaction will be even more important in the
present case (in the collective case, where the re-
s idual interaction s trength is not the appropriate
expansion parameter, ' the previous argument does
not hold true). There is not much experimental in-
formation about the

~
3,2g, &,} septuplet in '"Pb.

Pairing modes in ''Pb coupled to hole states may
well destroy the weak-coupling nature of such a
multiplet. ' Again, members of this multiplet would
be strongly affected by the Pauli effect, through the
large 2g»23/»2 ' particle-hole amplitude in the
octupole phonon. The distribution of the multipole
strength of the diagonal interaction is similar to
the one in "'Bi, as can be verified in Table II. The
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average strength of the diagonal interaction (S5
keV) is also similar. The only significant single-
particle term is due to the low-lying single-parti-
cle state 1j»~,. The doublets in "'Pb and ' 'Tl,
which are formed by coupling the octupole phonon
to a 3Pg/2 and a 3s», hole, respectively, will not
be shifted as strongly by the Pauli effect as the A
=209 states. The multipole distribution of the di-
agonal force for these doublets is shown in Table

For both doublets, the diagonal force diminish-
es the gap between experiment and PV calcula-
tions', however, the remaining gap is still of the
order of 40 keV.

Experimental data on transition rates can also be
used for comparing the PV model with the micro-
scopic description. In the extreme weak-coupling
case, E3 matrix elements for the transition be-
tween septuplet and h», ground state are identical
to the octupole phonon matrix elements. Deviations
from this behavior are due —and therefore sensi-
tive —to the particle-phonon coupling. A rigorous
comparison between PV-model and microscopic
calculation is not possible here, since in our mi-
croscopic description ground-state correlations
are neglected. A comparison with experiment is
also ambiguous, because of the uncertainty in the
effective proton and neutron charge. Nevertheless,
we can look at the relative importance of the dif-
ferent contributions to the change in the transition
matrix element. One would expect that the PV
model gives slightly better results for the transi-
tion rates than for the energies, since it takes into
account certain ground-state correlations, whereas
the diagonal interaction does not give direct con-

tribution to the transition matrix element. This
expectation is not borne out by the results. ' The
calculated B(ES) values are on the average 20Vp too
high. The main corrections to the PV-model cal-
culations come from the renormalization of the
main particle-phonon state and the inclusion of
higher-lying particle-phonon states. We found that
these two effects contribute on the average 28/q to
the total shift in the transition matrix element,
The Pauli exchange graph [see Fig. 8(d) in Ref. l]
contributes SV%, whereas two other particle-vi-
bration graphs [Fig. 8(a) and 8(c) in Ref. l] con-
tribute 15 and 12'. The HPA-type graph which oc-
curs in the PV model contributes about ~0, if
averaged over all states. We conclude that for a
good description of the transition rates, the PV
model should also account for the normalization of
the particle-phonon state and for particle-phonon
states at higher excitation energy. The first could
be done along the lines of nuclear field theory, " the
latter can only be accomplished if these states can
be approximated by (other) collective states (vi-
brations, pairing phonons) and single-particle
states.
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