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Backward proton production and high-momentum components of nuclei~
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The production of energetic protons at 180' by the inclusive reaction A(p, p')X is studied. A
mechanism which involves A —1 nucleon transfer and relates the inclusive cross section to the total cross
section crT(p, A —1) and realistic nuclear single-particle momentum distributions gives a qual-itative

understanding of the data.

NUCLEAR REACTIONS Backward proton production A (p,p')X, 600-800 MeV,
nuclear single proton distributions (high q) calculated.

Recently Frankel et al,.' have observed protons of
energy T,'~= 0.1 to 0.4 QeV at 180 lab angle from
the collision of Ti y 0 6 and 0 8 GeV protons with
several nuclear targets. Their data for the inclu-
sive reaction A(p, p')X yield beautiful fits (see data
in Figs. 1 and 2) of the functional form do/d'p f,~
=B exp(- n~p,"~ /2m~) where p', ,» is the lab momen-
tum of the backward proton. Similar results hold
for backward going deuterons and tritons.

In view of the high incident and recoil proton en-
ergies involved, a direct reaction mechanism is
suggested. For direct reactions the question im-
mediately arises as to whether the backward go-
ing proton is the incident proton or one of the con-
stituent protons of the target nucleus. The former
seems an unlikely possibility for it would involve
either several large angle scatterings from con-
stituent nucleons (all adding up to 180') or a single
180 scattering, possibly from a point-like quark
constituent or one of considerably larger mass than
a single nucleon. Thus, Amado and Woloshyn' pos-
tulate that the reaction proceeds by forward scat-
tering of the incident proton from a target proton
(or neutron) of momentum q which happens to be
traveling opposite to the projectile at the time of
collision. This mechanism leads to an inclusive
cross section do/d'pl„proportional to the forward
proton-nucleon scattering cross section and to the
probability n(q) of finding a nucleon of momentum q
in the nucleus A.

However, the forward proton-nucleon scattering
mechanism is merely one simple extreme of a
class of direct reaction mechanisms involving the
exchange of v nucleons where 1~ @~A—1. An
equally simple mechanism which also maintains a
strong connection with the single-particle momen-
tum distribution is the other extreme, i.e. , A —1
nucleon exchange. ' With this mechanism (see in
sert of Fig. 2) we visualize the target nucleus A
splitting into a backward going (observed) proton
and an A —1 system which then undergoes an in-

elusive reaction with the incident proton. This
mechanism (or an intermediate involving less than
A —1 nucleon transfer) represents the inclusive na
ture of the experiment more faithfully than the for-
ward proton-nucleon mechanism which effectively
restricts the final A —1 system to nuclear one-hole
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FIG. 1. Nuclear single-proton momentum distributions
for 2C. AW is the theoretical parametrization of Amado
and Woloshyn. s.c. and WS are theoretical results from
the Dirac equation for a self-consistent model (Ref. 8)
and a Woods-Saxon well (Vo—- -55.5 MeV, R=3.0 fm, d
= 0.5 fm) used as a scalar potential. The curve denoted
p.s. represents the self-consistent calculation with the
pair terms suppressed; h.o. is the nonrelativistic har-
monic oscillator result with oscillator parameter b
=1.65 fm. The experimental points, assuming our reac-
tion mechanism, are joined by a smooth dashed curve
taken from the parametrization of the data given in Ref. l.
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where P= p+P~ is the total four-momentum. In
the lab system P P = (m~+ T„«)m„and Crr = (m „

E'„«;—p{~); crr is evaluated at the kinetic energy
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FIG. 2. Nuclear single-proton momentum distribu-
tions for '9 pt. The curves denoted p.s. and s.c. result
from the self-consistent model both with and without

suppression of the pair terms. The experimental points
are obtained as in Fig. 1. The inset shows our reaction
mechanism.

states when it is taken to involve the nuclear sin-
gle-particle distribution. In contrast, the inclu-
sive cross section with the A —1 nucleon exchange
mechanism will be directly proportional to the

(p, A —1) total cross section crr which involves not
only final states with all energetically possible
combinations of nucleons but also includes meson
production or excited baryon production.

The A —1 exchange mechanism leads to the am-
plitude
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in terms of the nuclear single-particle distribu-
tion rf(Pri «) in the A rest frame (lab system),
where it is normalized to Z protons;

~
T, ~' is to be

evaluated in the Q rest frame and leads to the
total P —(A —1) cross section err(P, A —1). Thus
the inclusive cross section takes the form

in the lab upon neglecting small off- shell effects
for the (A —1) nucleon intermediate state of four-
momentum Q. A signer-Nick rotation allows us to
to write the invariant

of the projectile in the Q rest frame. For T„„
= 0.6 GeV and target mass of 12, T = 0.65 GeV, and
for Ty b 0 8 GeV and target mass of 200, T = 0.8
GeV. T is nearly independent of T,',b. The cross
section crr(p, A —1) should, in general depend upon
the excitation of the A —1 system but this depen-
dence is probably weak for the high incident pro-
ton energies of this experiment. It is thus a rea-
sonable approximation to use the empirical total
cross section for scattering of protons off nuclear
ground states which yields crr(p, A —1, T)
= 8.6(A —1}2r' fm' (almost independent of 7 over
our range). ' The A-1 system is so near to being
on shell that off-shell corrections are unnecessary.

There are two effects inherent in the (A —1) nu-
cleon- exchange mechanism which will enhance the
cross section (3) over that of the single-nucleon
exchange model: (i} Equation (3) is proportional
to crr(P, A —1) instead of dcr(P, N)/dQ at 8=0', and

(ii) the momentum distribution rr in Eq. (3) is
evaluated at a lower momentum, viz. pf, b instead
of at q=P„»+P(,»- (2m~cd+ cd2)'r' where cd =E(P„»)
—E(p', ,»). For example, at abeam momentum

p„» = 6.18 fm ' (i.e. , T„«=0.6 GeV) and a recoil
momentum pri, »=2. 53 fm ' (i.e. , T(,»=0.1 GeV),
the effective q is approximately 3.34 fm '. This
is important because, at moderately high q, any
realistic single-particle momentum distr ibution
will fall off rapidly. Furthermore, as the recoil
kinetic energy T',» increases from 0 to =&m~,
which is well within the kinematic limits (e.g. ,
for "C at T„b=0.8 GeV, the maximal Tf y

—0 51
GeV and P', «» =O. f6 p„«), the square of the four-
momentum (q') of the exchanged nucleon decreases
from -rn~' to negative values. As this happens, the
nucleon-exchange model gradually loses its mean-
ing because, for such a highly virtual nucleon, the
concept of a single-particle wave function becomes
problematical and on-shel1, estimates for PN for-
ward cross sections also are rather unreliable.

The R'(Pri„) of Eq. (3) is related to the usual
single-particle momentum distribution but differs
from it in the following aspects. %hereas the
single- nucleon momentum distribution n(q) repre-
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sents the probability that a (heavy) nucleus A at
rest will virtually split into an off-shell nucleon
of momentum q and a practically on-shell A —1
nucleon system of momentum -q, our distribution
8 represents a virtual splitting for which the sin-
gle nucleon (recoil proton) is on shell and the
A —1 system is off shell. %e have no compelling
theory which distinguishes between these two dis-
tributions, but propose two phenomenological
modifications of n(q) which seem reasonable.
Since our theoretical n(q),

n (q) = 2 v P (2Z+ 1)[F,'(q) + G, , (q) ],E(q)
D

(5)

with f =g+-,'&u, l =8 —,'ur, &@=+1, and large (F,)
and small (G, , ) radial wave functions

F,(q) = rF, (r)j, (qr)dr,

G, .(q)= rG, ,(r)j, ,(qr)dr,

is obtained by summing the squares of momentum-
space wave functions from a Dirac shell model, it
includes pair terms' which here must be inter-
preted as the virtual splitting of the A system into
a proton and a (further off-shell) A —1 nucleon
system with a nucleon-antinucleon component.
This pair contribution is quite small at low mo-
menta but can account for as much as 90% (50Vp on

average) of n(q) at the momenta that we are con-
sidering (see Fig. 1). We may also multiply n(q)
by a kinematic factor

~ ~
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(7)

which ranges from 1 to 0.3 over our momentum
range. %e regard this factor N as equally uncer-
tain, though, as it comes from studying the dif-
ference between the three-dimensional integral
equations which are obtained by reducing the
Bethe-Salpeter equation to three-dimensional
form in two different ways: first placing the
heavy particle on its mass shell while allowing
the light particle to propagate off shell, and then
doing the opposite. The differences in the effec-
tive interaction vertex (P', A —1

~
T, ~A) were ig-

nored in this process.
The authors of Ref. 2 use a single-particle mo-

mentum distribution n(q) which is motivated by a
soluble one-dimensional many-body model. ' Al.-
though their parameters were chosen to fit the low
momentum data of quasielastic electron scatter-
ing experiments, ' it is useful to find an independent
test of the momentum distribution at the high mo-
menta of interest for this experiment.

In the absence of any other experimental or
theoretical information regarding the nuclear sin-
gle-particle distributions at these high momenta,
we have attempted to calculate realistic n(q) 's
using relativistic self-consistent field methods in

a model' which leads to nuclear charge form fac-
tors in agreement with experiment out to momenta
which overlap the lower range probed by back-
ward proton production. As can be seen from Fig.
1, our distribution for protons in "C falls below
that of Ref. 2 by from two to three orders of mag-
nitude over the interesting range of momenta.
This is not just an effect of the self-consistent
shell model potential, as one can see from the
rather similar momentum distribution generated
by states in a weak Woods-Saxon shell model (used
as a scalar potential in the Dirac equation) which
is also shown in Fig. 1. For comparison we show
in Fig. 1 the prediction of the nonrelativistic har-
monic oscillator shell model which, not surpris-
ingly, falls off even more rapidly than our two
relativistic shell models. Clearly the nucleon-
exchange mechanism will significantly underesti-
mate the backward proton production cross sec-
tion if used with our more realistic momentum
distributions. Considering the close relationships
between nuclear charge form factors and single-
particle momentum distributions, it is hard to be-
lieve that our results could be wrong by several
orders of magnitude over this momentum range.

Our self-consistent model yields charge form
factors which are accurate out to 2.3 fm"' for "Ca
and 2 8 fm- for 2osPb. For "C the model param-
eters must be corrected for the nonnegligible cen-
ter of mass motion. This is done in the present
work by merely scaling the coordinate space
wave functions so that the experimentally observed
root mean square charge radius is obtained. We
thus obtain a fit to the experimental "C charge
form factor' out to 2 fm '. From 2 to 4 fm ' our
charge form factor underestimates the "C data by
approximately 5. One sees from Fig. 1 that the
"experimental" momentum distribution obtained
by solving Eq. (2) for 8(p(,b) and using the experi-
mental "C backward proton cross section is also
somewhat larger than our theoretical models for
R' which leaves room for either the exchange of
fewer than A —1 nucleons, or a slightly larger
momentum distribution. As expected, the har-
monic oscillator result falls far below the data
while the scalar Woods-Saxon results are quite
comparable to our self-consistent models. The
wiggles present in the relativistic models are due
to the fact that R' depends on only two single-parti-
cle wave functions for "C which have nodes in the
momentum range of interest. One would expect
the results to be smoothed by the inclusion of
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some final state interaction between the backward

proton and products of the p, A —1 reaction. The
inclusion of the P components (see Fig. 1) alone
tends to fill in the minima. For the Woods-Saxon
well in Fig. 1, the pair terms are not so impor-
tant; indeed a separate calculation shows that a
momentum distribution generated by the Schro-
dinger equation (with the same well) is almost
equivalent to that in Fig. 1 ~

For heavy nuclei such as '"Pt, shown in Fig. 2,
the self-consistent distribution lies about a factor
of 10 below the data. Again, this may indicate
that fewer nucleons are transferred. The self-

consistent model for '"Pt was obtained by summing
the appropriate proton shells which resulted from
the calculation of "'Pb.

In summary, we have shown that realistic nu-

clear high momentum distributions in conjunction
with a reaction mechanism involving the exchange
of up to A —1 nucleons for the inclusive backward
proton production experiments of Frankel et al.
lead to a qualitative explanation of the data. We
should also add that our mechanism is sufficiently
general to apply to the backward production of
deuterons and tritons as well. Further work is in
progress in this area.
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