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We derive, within the framework of the Glauber approximation, an exact expression for the optical phase
shift function X(b) which takes into account the center-of-mass correlation function. We calculate total and
differential cross sections using the first-order term for X(b) and compare them with the usual (first-order)
optical limit results and, for the lighter nuclei, with the exact Glauber results. The nucleus-nucleus elastic
scattering amplitude does not exhibit the large-q divergence which characterizes the usual optical limit. Our
results improve the calculated total and differential cross sections dramatically for light nuclei, and

significantly for medium and heavy nuclei.

NUCLEAR REACTIONS Glauber approximation, high-energy scattering theory,
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E =2.1 GeV/nucleon; calculated o, ‘He (‘He,‘He), 12C (!2C,!%C), E=2.1 GeV/
nucleon; calculated o(6).

I. INTRODUCTION

Considerable interest in medium- and high-ener-
gy nucleus-nucleus collisions have been evoked in
recent years by experiments planned or performed
with the Berkeley bevalac.!™ Since the Glauber
approximation*® has had considerable success in
describing high-energy hadron-nucleus scat-
tering, it was natural to generalize it to nucleus-
nucleus scattering.5-® There have now been a num-
ber of applications®'® of this generalization. These
applications have been used to study such subjects
as medium- and high-energy heavy-ion elastic
scattering, high-energy total cross sections and
their relation to factorization, and fragmentation
cross sections.

There have been two principal ways in which the
Glauber approximation has been applied to nucleus-
nucleus collisions. Either the full Glauber multiple
scattering series has been evaluated or an optical
limit has been used. The former method is gen-
erally exceedingly tedious and prohibitively time
consuming and has been used only in cases for
which a projectile or target nucleus is very light
(A <4). More common is the optical limit phase
shift function approach.

The usual optical limit phase shift function ap-
proach is obtained® by considering the Glauber
multiple scattering series in the limit of large
target and projectile mass numbers. A detailed
treatment is given in Ref. 8. It is necessary to
first construct the Glauber multiple scattering

series. In practice, it is convenient to use wave
functions which do not have the center-of-mass
coordinates separated out, but which depend on

all the A, coordinates of the target nucleus and all
the A, coordinates of the incident nucleus. When
the nuclear wave functions can be written as a pro-
duct of an internal wave function and a center-of-
mass wave function, the Glauber scattering amp-
litude can be expressed as the product of a matrix
element with respect to nuclear wave functions in-
volving all A, and A, coordinates and an extra cor-
rection factor® (the center-of-mass correlation
function) which depends on the momentum trans-
fer q. This function, K(g), typically increases
rapidly with increasing ¢ and combines with the
matrix element which is rapidly decreasing to
yield elastic scattering angular distributions
which exhibit maxima and minima which general-
ly decrease with increasing q.

In constructing the optical phase shift function
from the Glauber multiple scattering series, an
approximate form for the Glauber matrix element
is employed. Now when this approximate element
is multiplied by the center-of-mass correlation
function K(q), the resulting angular distribution
formally diverges (i.e., approaches infinity) as g — .
Of course, for any fixed energy g isfinite. The prac-
tical effect of this large-g “divergence” is that the
angular distributions begin to increase very rap-
idly with ¢ beyond some (physical) value of q.

This unphysical result is a drawback of the usual
optical limit approach.
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In this work we derive an exact expression for
the optical phase shift function x(b) which takes
into account the center-of-mass correlation func-
tion. Using this result we then calculate the low-
est order expression for x(b), corresponding to
the usual optical limit. When either this new low-
est order term for X(b) or the exact expression for
X(b) is used, the resulting nucleus-nucleus elastic
scattering amplitude does not exhibit the large-¢q
divergence which characterizes the usual optical
limit result.

In Sec. II we present the expression for the op-
tical phase shift function for hadron-nucleus col-
lisions; in Sec. III we obtain it for nucleus-nucleus
collisions. In Sec. IV we derive the first (lowest)
order result for x(b). In Sec. V we apply our re-
sults to nucleus-nucleus total cross sections. In
Sec. VI we investigate nucleus-nucleus elastic
scattering angular distributions, and in the last
section we make some concluding remarks.

II. HADRON-NUCLEUS SCATTERING

To set the stage for nucleus-nucleus collisions,
let us very briefly review hadron-nucleus scat-
tering. In practice it is convenient to be able to
use a total wave function for the nuclear ground
state, containing both internal and center-of-
mass degrees of freedom. Let §, be the projec-
tion of the position vector of nucleon j of the tar-
get nucleus onto the impact parameter plane.
This wave function, zp({§,}) will be written as®

v{E,D =ek®o ({37}, (1)

when R is the center-of-mass coordinate of the
nucleus and §/ is the coordinate of nucleon j rela-
tive to the nuclear center of mass. (In all our
formulas we assume that the z integration—along
the incident direction—has been performed.) This
factorization does not describe a general type of
wave function. It is applicable, however, to har-
monic oscillator shell model wave functions and to
product Gaussian wave functions. The wave func-
tion ¢ is the internal ground state wave function.
The amplitude for elastic scattering of a hadron of
incident momentum %k by a nucleus may be written
as

F(@)=K(g) 32 [ @%b e5[1- en), (2)
where
K(q)=[fd2R|(R(§)|2e‘a'§]-1s (3)

e = p@3 | [T -r,6-3)vdED, @

§=1
74 is the momentum transfer, and b is the impact

parameter vector. The functions I ,(5) are the
hadron-nucleon profile functions related to the
hadron-nucleon elastic scattering amplitudes f;(q)
by

- 1 2 -i;.‘
r,b)= mfd qfqle ' *®, (5)

where fik; is the incident momentum of the hadron.
The function x(b) is the optical limit phase shift
function which is generally used and which we shall
call the usual optical limit phase shift function.

In the case where the ground state wave functions
are product wave functions and the hadron-nucleon
interactions are equal (I';=T'y) we obtain the result

ix(b) =A In[1 - C(b)], (6)
where
1 - -
00)= g | S@ e g ™

and S(q) is the nuclear form factor. Here A is the
mass number of the target nucleus.

We point out that it has been common practice
to approximate the optical phase shift function
x(b) given by Eq. (6) by

ix(b)= -AC(b). (8)

This approximation leads to inaccurate results for
the scattering amplitude F(q) as well as a diver-
gence in F(q) for large ¢, and should not be made.
In addition, we point out that there is no advantage
(computational or otherwise) of Eq. (8) over Eq.
(7). It is just as easy to numerically compute F(q)
via Eq. (7) as it is via Eq. (8). Infact, in certain
cases F(q) can be evaluated analytically with Eq.
(7, whereas Eq. (8) generally leads to numerical
integrations.

III. NUCLEUS-NUCLEUS SCATTERING

In this section we generalize the results of
Sec. II to nucleus-nucleus collisions. We write
the amplitude for elastic scattering of two nuclei
as

_ _ZE igeb X(b)],72
Flg)= 2"fe“‘ 1 - e%0g2p. ©)

This defines the optical phase shift function ¥(b).
Similarly, Eq. (1) becomes

¢Al({§j}) = (R'Al (§1)¢ 4 ({59}) ’
v, (8D =R, (R)o ., (31D,
and Eq. (3) becomes

(10)

K@ =[ [ 4R, |0, Ry 2R

x f dZRzla@(E)IZe""*‘zJ'l. (11)
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One then obtains for F(q) the result®
_ ik iq-b ix(6)],72
Fl@)=K(q) 5 | e* [1-e*®]a%p, (12)

where

e ®) — <¢A1({§,})¢A2({§1})‘

4 A
x 1 H[1_r,,(5_§,+§,)]

§=1  1=1

x| 4, ({8 D0, (B, (13)

in which

0= e [ e, (g% (14)

2mik,,
is the profile function for scattering of nucleon j
by nucleon k. The function x(b) is the usual optical
phase shift function. From Egs. (9) and (10) we ob-
tain

1
2y

e = s [ aqary et D g@en ™. (15)

This, together with Eqgs. (13) and (14), is our gen-
eral expression for the nucleus-nucleus phase
shift function X(b) when the factorization given by
Eq. (10) can be obtained. The factorization does
not describe a general type of wave function. It
is applicable, however, to harmonic oscillator
shell model wave functions and product Gaussian
wave functions.!®* We point out that Eqs. (12) and
(13) are equivalent to Eqgs. (9) and (15) as far as
the scattering amplitudes are concerned, as both
pairs of equations lead to the same scattering
amplitude. However, x(b) and X(b) are different.

In order to perform practical calculations with
x(b) or X(b), approximations to Egs. (13) and (15)
need to be made. It is usual to retain for x(b)
terms that are linear in I'j,. The usual (first-
order) optical limit phase shift function is then
given by

ix(b) = ix,(b),
A Ay

7'X1(b) :_<¢)sz‘b‘42| jZ: Z 1"”(5—'§j+§,)ld),\llp,;2>,
=1 I=1

(16)

which, by means of Eq. (5), may be written as

J

Al A 1

a®)=-2 2 auik,, S e¥s,@

j=1 =1
X S&(“ﬁ)fj z(q)dzq, (17)

where S, and S, are the nuclear form factors.
Unfortunately, for Gaussian form factors and
nucleon-nucleon scattering amplitudes this result
leads to a divergence in F(q) for large ¢ 1t is
likely that for most reasonable form factors and
NN scattering amplitudes it will also lead to a
divergence in F(q) for large ¢g. Since total cross
sections depend only on the forward elastic scat-
tering amplitude F(0), Eq. (17) has often been
used in their evaluation. In addition, angular dis-
tributions at values of ¢ for which F(g) given by
Egs. (12) and (17) is still decreasing have often
been calculated using these equations.

If we perform the corresponding approximation
for x(b), we obtain the result

ix(b) = ix,(b),

— 1 P
le(b)=—wfe"‘ ® " K(q)

A A
XY ba, I;;r“l(b' =548y, 04,0

xd?b'd?q, (18)

which, by means of Egs. (16) and (17), may be
written as

1
“(2myp

A
__%ji”zﬂ: f e"a-bK(q)SA,(ﬁ)SAz(—E)
LTt (q)d?q . (20)

This result does not lead to a divergence in F(q)
for large ¢?. This is due to the translational in-
variance of the Glauber approximation scattering
amplitude obtained with Y =Y,. This translational
invariance is destroyed by the approximation X ®X, 20

In the simple case where the nuclear ground
state wave functions are given by

iX, ()

[ e @iy, o)r(@)arazq  (19)

Al -

Uy =1 04T, (21)
A -

Va, =r§ P 4,11, (22)
1=

and the nucleon-nucleon interactions are equal (I';,=T',,), we obtain

iX,(0) == A, A, (@4 F )0, (F)Tuy®-5,+3)]0, (7)o, () (23)

141 142
T 2wk,

%8s, (@) ,,(-D fn(9)d g

(24)
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and
()=~ [ e E DK 0, F)o o F) T = 5,480 0., F o o F)d% )
- i [ K@ @S, D a0’ (46)

If we assume nuclear ground state form factors

given by
Safl@)=e®REl =12, @7

and nucleon-nucleon elastic scattering amplitudes

Fon@) =52 (4 phe-e 11 28)
typical at high energies, we obtain

ix, (0) =—A,A,ye ¥ /R | (29)
where

y =0,(1 - ip)/27R?, (30)

R®*=R, ®+R,*+2a. (31)

This is the usual first-order optical limit result
often used in analyses of nucleus-nucleus scatter-
ing. The new first-order optical limit result is
then

A Ay,

ii-l (b)=- (2my

[ e EB(ge Farbatg (32)

=3A,4,9F [ J(b)e?* Kighgdq, (33)
o

which is to be compared with the usual first-order
optical limit result iy, (b) given by Eq. (29).

Let us next consider nuclear ground state form
factors given by

S a (@) = (140,g2)e @R/,

This is the form obtained from harmonic oscillator
wave functions for s-shell and p-shell nuclei. For
harmonic oscillator wave functions, the function
K(q) is given by

K(q)=exp[%z-<%+%;>]. (35)

The usual first-order optical phase shift function
X,(b) is then evaluated to be

i=1,2. (34)

. oy(l -1
X, (b)=_A1A2 "E%;,—Rﬂl_p) e~t?/R?

X% ) +4(o}; 5) , 32;;!52

b [4(61 +0) 645,52] L188,800 1 o

Bl R R R® |
=g(b,R), @M

r

where Egs. (36) and (37) define g(b,R). The re-
sult for Gaussian form factors is obtained by set-
ting 8, =6, =0. The new first-order optical phase
shift function ¥,(b) is given simply by

X, (b)=g(b,7), (38)
where
r?=R*(1-1/A)+R,2(1-1/A,)+2a . (39)

Thus we see that the effect of properly including
the center-of-mass correlation function in the cal-
culation of X, (b) is, in the case of harmonic oscil-
lator wave functions, simply to replace R;? by
RA(1-A;") in the usual expression for the first-
order optical phase shift function. However, since
the approximation X = X, does notdestroy the transla-
tional invariance of the Glauber approximation
scattering amplitude, the resulting scattering am-
plitude does not diverge for large g, as it does
when iy, (b) =g(b,R) is used in Eq. (12).

IV. TOTAL CROSS SECTIONS

In this section we show how the correct inclusion
of the center-of-mass correlations in the first-
order optical phase shift function affects the cal-
culated total cross sections. The total cross sec-
tion is obtained from the forward elastic scattering
amplitude F(0) by means of the optical theorem

Oyor = (4T/R)IMF(0) . (40)

Since we have seen in Sec. III that for harmonic
oscillator wave functions the main effect of the
center-of-mass correlations is to multiply R 2 by
(1-A;"), and since total cross sections depend
roughly on R;" with 2<n<3, we would expect the
total cross sections calculated with X,(b) to be
somewhat smaller than the cross sections calcu-
lated with the usual optical phase shift function
X,(b). (We point out that various multiple scatter-
ing contributions are included via the first-order
optical phase shift functions x, and ¥, .)

In Table I we show the calculated nucleus-nu-
cleus total cross sections for an incident energy
of 2.1 GeV/nucleon for a variety of incident and
target nuclei, together with the available mea-
surements.? Since the main purpose of our calcu-
lations is to compare various theoretical results,
the precise values of the input parameters used
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TABLE I. Nucleus-nucleus total cross sections at 2.1 GeV/nucleon. Columns 2 and 3 are
calculated with the usual phase shift function x;(b). Columns 4 and 5 are calculated with the
new phase shift function ¥;(6). Column 6 is calculated via the “exact” Glauber multiple scat-
tering series. Columns 3 and 5 are calculated with harmonic oscillator wave functions for «,

2¢, and 0.

Tiot(X1) Teot (X1) Oyot(“exact”) Tyt (expt.)
Nuclei (mb) (mb) (mb)

d-d 162 154 160 158+ 0.8
272+ 1.5

d-o 294 267 263 0621 1.8

d-’c 729 643 621 644+ 3.5
617+ 3.0

d-'¢%o 910 801 776

d-*Mg 1208 1057 1021

d-*Cca 1724 1523 1481

a-a 429 429 386 386 386 408+ 2.5

a-12c 902 895 834 834 835+ 5
826+ 5.9

a-1%0 1097 1087 1023 1020

a-%Mg 1387 1307

a-4%a 1939 1851

o t2¢ 1605 1564 1518 1502 1347 + 39

2¢c_t6o 1880 1825 1789 1761

2c AUpg 2272 2180

2c_40cy 3010 2914

16g_16p 2180 2109 2087 2043

6o Mg 2607 2512

160_10Cq 3402 3305

UMg-2Mg 3077 2983

YMg-4ca 3949 3854

40ca-40ca 4940 4845

are not critical. Nevertheless, we have tried to

use realistic values. The nucleon-nucleon input

parameters are obtained from nucleon-nucleon

scattering measurements®?? and are 0=42.7 mb,
=-0.28, and a=6.2 (GeV/c)™2.

In column 1 we indicate the nuclei involved in the
collisions. In columns 2 and 3 we present the total
cross sections calculated using the usual first-
order optical phase shift function x,(b). In columns
4 and 5 the cross sections are calculated using the
new first-order optical phase shift function ¥, (b).
Although the exact Glauber result for deuteron-
nucleus and a-a cross sections can be calculated
with relative ease, we show the optical limit for

TABLE II. Root-mean-squared radii.

<7A2>“2
A (fm)
2 2.17
4 1.71

12 2.453
16 2.71
24 2.98
40 3.50

these cross sections for the sake of completeness.
In columns 2 and 4 we use Gaussian form factors,
and in columns 3 and 5 we use harmonic oscillator
wave functions for *He, '2C, and 0. The values
of R; were obtained from electron scattering mea-
surements?®*-25 with center-of-mass and finite pro-
ton size corrections taken into account.?® (The rms
values used are shown in Table II.) The quantities
presented in column 6 correspond to those in col-
umns 2 and 4, except that here the cross sections
are calculated using the exact Glauber multiple
scattering series. The computer time required to
calculate these “exact” cross sections was too
prohibitive to obtain the results for other than
deuteron-nucleus and a-a collisions. In column 7
we show the available data.

We observe from columns 2 and 4 or 3 and 5 that
the new first-order phase shift function X,(b) pro-
duces a reduction in o, of the order of ~10% for
deuteron-nucleus and a-a collisions. The effect
decreases with the size of the systems involved in
the collision, being only ~2% for *°Ca-%°Ca colli-
sions. We also note that for deuteron-nucleus and
a-a collisions, where the exact (Glauber) results
have been calculated, the cross sections obtained
using ¥,(b) (column 4) differ from these exact re-
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sults (column 6) by between 0 and 4%. On the other s " 1 ' T j T ' T
hand, when these cross sections are calculated ey
using x,(b), the results (column 2) differ from \ ¢ "¢ 1
these exact results by between 1 and 18%. Thus, \ 21 GeV/nucleon
by means of the very simple modification of the
usual optical phase shift function we obtain signi-
ficantly improved results.

If we compare the cross sections presented in Vi
columns 5 and 6 with the data shown in column 7, Vi \ 1
we note that the results are in good qualitative |
agreement, but that there is room for improve- L e
ment. We also note that the large discrepancy be- \ 7 NS )
tween theory and experiment for the 2C-'2C cross N n
section®''* is reduced considerably by use of a har- \-
monic oscillator wave function and by use of the \; P
new first-order optical phase shift function ¥, (b). - ]

-
o
>~
T
-

[mbr(Gevic)?]

do
ditl

0 ) 1 n | .
10 005 010

-t (GeV/t:)2

| L 1
015 0.20

FIG. 2. Differential cross sections for 2C-!2C elastic
scattering at an incident energy of 2.1 GeV/nucleon as a
function of £. The dashed (dotted) curve is obtained using
the new (usual) first order optical phase shift function.

V. ELASTIC SCATTERING ANGULAR DISTRIBUTIONS

In Fig. 1 we show the differential cross section
do/d|t| as a function of ¢, the squared four-mo-
mentum transfer, for a-a elastic scattering at an

incident energy of 2.1 GeV/nucleon. The solid up through the second maximum [-#~0.14 (Gev/
curve is the exact Glauber result. The dashed ¢)?] the results obtained with the new optical phase
curve is obtained using the new first-order optical shift function X,(b) are very close to the exact
phase shift function )_(1(”) in Eq. (9). The dotted Glauber results, whereas the results obtained with
curve is obtained with the usual first-order optical the usual optical phase shift function x,(b) differ
phase shift function x, (b) in Eq. (12). We note that from the exact Glauber results by as much as a

factor of 5. At large momentum transfers (not
shown) the cross section obtained with x, (b) in-
104 T T T T T T T T creases, whereas the exact cross section and that
obtained withX;, (b) continue to decrease. The cross
. section obtained with x,(b) attains an absolute mini-
mum of ~0.1 mb/(GeV/c)? at —-t=1.2 (GeV/c)®. Be-
yond this value of ¢ the cross section rises and,
after a very shallow relative minimum of ~0.4 mb/
(GeV/c) at -t=1.8 (GeV/c)?, it rises monotonical-
ly.

In Fig. 2 we show the differential cross section
for 2C-12C elastic scattering at 2.1 GeV/nucleon.
The dashed curve is obtained using the new first-
order optical phase shift function ¥, (b) in Eq. (9).
The dotted curve is obtained with the usual first-
order optical phase shift function x, (b) in Eq. (12).
Harmonic oscillator wave functions were used. As
_ expected, the center-of-mass effects are smaller
. | ) | ) | ] | h for this heavier system than they were for a-a

0 01 02 03 04 scattering. Nevertheless, one still observes dif-
-t (Gev/e)? ferences of a factor of ~2 near the first minimum

FIG. 1. Differential cross sections for ‘He-‘He elastic [-£=0.026 (GeV/c)?], and beyond the second mini-
scattering at an incident energy of 2.1 GeV/nucleon as a mum [-# 2 0.085 (GeV/c)?], and a factor of ~3 be-
function of ¢, the squared four-momentum transfer. The yond the third minimum [—t >0.18 (GeV/c)z] . The

solid curve is the exact Glauber multiple scattering . .
rkedly at larger momen-
result. The dashed curve is obtained using the new first difference increases markedly g

order optical phase shift function ¥;(b). The dotted tum transfers (not shown). At very large momentum
curve is obtained using the usual first order optical transfers the cross section obtained with the usual
phase shift function x(b). optical phase shift function ¥, increases.

L\ a-a
\ 2.1 GeV/nucleon

3 3
L) w
T 7 T

|

-
c_.
=

[mh/(GeV/c )2]

do
dltl
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VI. CONCLUSIONS

We have investigated collisions between nuclei
within the framework of the Glauber approxima-
tion. The usual optical limit result for the phase
shift function leads to a nucleus-nucleus elastic
scattering amplitude whose modulus formally in-
creases without bound as g -«. This tendency to
increase exhibits itself in the physical region of
momentum transfers by the appearance of scatter-
ing intensities and cross sections which are too
large. This drawback of the usual first-order op-
tical limit result is avoided by introducing the
center-of-mass correlations in each order of the
optical phase shift function. The use of the first-
order term of this modified phase shift function

leads to significant improvement in the results for
total cross sections and elastic scattering differ-
ential cross sections.

Using the methods of this paper, the effects of
higher-order terms in the optical phase shift func-
tion may be calculated. These terms will contain
certain classes of multiple scattering not contained
in the first-order optical phase shift function ¥, .
Furthermore, for second- and higher-order opti-
cal phase shift functions, correlation effects may
be significant. Investigations of these aspects of
nucleus-nucleus collisions are in progress.

We wish to thank Dr. G. K. Varma for the exact
Glauber calculations of deuteron-nucleus total
cross sections in Table I.
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