Coulomb excitation of 2⁺ and 3⁻ states in ¹⁹²Pt and ¹⁹⁴Pt

R. M. Ronningen, R. B. Piercey, A. V. Ramayya, and J. H. Hamilton Physics Department, Vanderbilt University, * Nashville, Tennessee 37235

S. Raman, P. H. Stelson, and W. K. Dagenhart Physics Division, Oak Ridge National Laboratory, [†] Oak Ridge, Tennessee 37830 (Received 12 April 1977)

Coulomb excitation of ^{192,194}Pt, by 14.9 MeV α particles was studied by the magnetic analysis of the particles scattered into 150°. For ¹⁹²Pt, $B(E2;0^+ \rightarrow 2^+)$ values to the 2⁺ states at 317 and 612 keV are 1.89 \pm 0.03 e^2 b² and 0.013 \pm 0.002 e^2 b², respectively. For ¹⁹⁴Pt, the $B(E2)^{\uparrow}$ values to the 2⁺ states at 329 and 633 keV are 1.68 \pm 0.03 e^2 b² and 0.0094 \pm 0.0015 e^2 b², respectively. States with $J^{\pi} = 3^-$ at 1378 keV in ¹⁹²Pt and 1432 in ¹⁹⁴Pt are also excited, with $B(E3)^{\uparrow}$ values of 0.17 \pm 0.03 e^2 b³ and 0.14 \pm 0.03 e^2 b³, respectively. We compare our measurements to others.

 $\begin{bmatrix} \text{NUCLEAR REACTIONS} & 1^{192,194} \text{Pt}(\alpha, \alpha'), & E = 14.9; \text{ measured Coulomb excitation.} \\ & 1^{92,194} \text{Pt levels deduced } B(E2), B(E3). & \text{Enriched targets.} \end{bmatrix}$

I. INTRODUCTION

There has always been interest in transitional nuclei and recently the Pt isotopes have become the subjects of much experimentation. For example, the high spin level spacings in $^{190-194}$ Pt have been mapped out by heavy ion reactions¹⁻³ with the rotation-alignment model⁴ invoked to explain^{1-3,5} the

anomalous level behaviors. Also, Coulomb-nuclear interferences in the excitation of ¹⁹⁴Pt have been studied⁶ to yield relative phases as well as magnitudes of transition matrix elements connecting the ground state and the first two $J^{\pi} = 2^+$ states.

The establishment of accurate B(E2) and B(E3) values is important not only for the proper interpretation of such experiments but also for the evalua-

FIG. 1. Spectrum of elastically and inelastically scattered 14.9 MeV α particles from ¹⁹²Pt and from ¹⁹⁴Pt. The peaks are labelled with level energies in keV.

tion of theories which predict these values. The preparation of a compilation⁷ of $B(E2; 0^+ \rightarrow 2_1^+)$

values has revealed a 13% discrepancy between re-ported measurements^{8,9} for ¹⁹⁴Pt. One of these was part of a systematic study of W, Os and Pt nuclei by Coulomb excitation performed earlier⁸ at the Oak Ridge National Laboratory (ORNL).

In this work, we have obtained precise values of $B(E2; 0^+ \rightarrow 2^+_1)$ for both ¹⁹²Pt and ¹⁹⁴Pt by employing the magnetic-spectrographic analysis of "He ions, scattered after Coulomb excitation from thin targets of high purity. We have recently given¹⁰ a preliminary report of this study.

II. EXPERIMENTAL PROCEDURE AND ANALYSIS

The Coulomb excitation of ^{192,194}Pt, by 14.9 MeV "He ions from the ORNL tandem Van de Graaff accelerator scattered through 150°, was studied using an Enge split-pole spectrograph and a 60 cm long, position-sensitive, gas-flow proportional counter. Our targets were $\approx 30 \ \mu g/cm^2$ separated material of >99% isotopic purity deposited on 65 $\mu\text{g}/\text{cm}^2$ carbon foil backings.

Fig. 1 shows the spectra of scattered a particles for ^{192,194}Pt. A contaminant peak was observed between the elastic and $2\frac{1}{7}$ peaks. It appears most noticeably in the spectrum for 192 Pt but weakly in

=

the spectrum for $^{19\,4}\text{Pt}$. The intensity of this peak in the ^{192}Pt spectrum is about 1% of the intensity of the first 2⁴ state in ^{192}Pt . A possible candidate for it would be a state in another Pt isotope. An unresolved 211-239 keV doublet in ¹⁹⁵Pt could be responsible. However, we do not regard this as a very likely explanation since there would be only one mass unit difference for the ¹⁹⁴Pt target and this peak should appear more strongly in the spec-trum for ¹⁹⁴Pt rather than ¹⁹²Pt. A more likely candidate for this peak would be the elastic peak of a heavy isotope passing through the isotope separator as a complex ion, such as $^{181}{\rm Ta}$ + $^{12}{\rm C}$.

Experimental ratios of inelastic-to-elastic scattering differential cross sections were compared to ratios calculated with the aid of both semiclassi-cal (de Boer-Winther¹¹) and quantal (AROSA¹²) Cou-lomb excitation codes. Quantal corrections decreased the calculated ratios for 21 excitation by ≈ 0.4 % and increased the ratios for the $2\frac{1}{2}$ state by ~6.4%. Our previously reported results¹⁰ were analyzed with the semiclassical code only. Matrix elements, $M_{J_iJ_f}$,

and their signs, connecting the 0⁺, 2⁺₁, 2⁺₂ and 4⁺ were initially taken from previous studies^{5,6,6,1,13} or from oblate model predictions. However, a pre-liminary report on ¹⁹⁴Pt by Baktash *et al.*¹⁴ notes the large value of $M_{2_12_2}$ relative to M_{02_2} . To study

	$F(1eve1)^a$		Present study	Other measurements		
Nucleus	(keV)	J^{π}	$B(E\lambda) \uparrow (e^2 b^{\lambda})^b$	$B(E2)$ (e^2b^2)	Method ^C	Ref.
¹⁹² Pt	316.5	2_{1}^{+}	1.89 ± 0.03		CXI	
		-		1.70 ± 0.10	DSRD	5
				2.10 ± 0.12	CXG	8
				2.28 ± 0.27	CXG	13
				2.00 ± 0.04	CXG	19
	612.5	2^{+}_{2}	0.013 ± 0.002		CXI	
		2		0.020 ± 0.003	CXG	19
				0.025 ± 0.0025	DC	20
				0.0235 ± 0.0025	DC	21
	1378.2	31	0.17 ± 0.03		CXI	
¹⁹⁴ Pt	328.5	2^{+}_{1}	1.68 ± 0.03		CXI	
		1		1.55 ± 0.10	DSRD	5
				1.67 ± 0.13	CXI	6
				1.87 ± 0.09	CXG	8
				1.64 ± 0.04	CXI	9
	622.1	2^{+}_{2}	0.0094 ± 0.0015		CXI	
		5		0.013 ± 0.002	CXG	19
				0.0075 ± 0.0010	DC	21
angest stores and st	1432.4	31	0.14 ± 0.03		CXI	er in mennenet.

Table 1. Summary of Results

^aLevel energies are from M. R. Schmorak, A = 192, Nucl. Data Sheets 9, 195 (1973) and R. L. Auble, A = 194, Nucl. Data Sheets 7, 95 (1972). ^b λ = 2 for 2⁺ states and λ = 3 for 3⁻ states.

Coulomb excitation studied by detecting inelastically scattered particles (CXI) or γ rays (CXG). DC denotes delayed coincidence lifetime measurements, and DSRD denotes the Dopplershift recoil-distance technique.

this effect, the $2_2 + 2_1/2_2 + 0$ branching ratios were this effect, the $2_2 \neq 2_1/2_2 \neq 0$ branching ratios we obtained from γ -ray intensities from Ir-to-Pt de-cays.¹⁵ These ratios were corrected for *M1* admix-tures by using $\delta = 5.4 \pm 0.2$ for ¹⁹²Pt (Ref. 16), and $\delta = 14.3 \pm 2.1$ for ¹⁹⁴Pt (Ref. 17). The *B(E2)* ratios thus have the values of 194.1 \pm 4.4 and 305 ± 34 for ^{192,194}Pt, respectively. The sign of the matrix element *M*. *M*. Was kent negative as matrix element $M_{02_1}M_{2_12_2}M_{02_2}$ was kept negative as experimentally found for ¹⁹⁴Pt by Baker *et al.*⁶

The negative sign for this product in the case of ¹⁹²Pt has also been recently confirmed through measurements.¹⁸

Our final B(E2) values for the 2^+_1 states are thus $\sim 3\%$ larger than values obtained from employing only M_{02} matrix elements. The B(E2) values for the $2\frac{1}{2}$

states are decreased by ${\sim}50\%$. An uncertainty in our analysis of the $^{192}{\rm Pt}$ data is that the static E2 moment of the 21 state has not been measured. value for it was estimated by scaling the static moment of ¹⁹⁴Pt, which has been measured by Grodzins et al.¹³ by the ratio $(M_{02_1})_{192}/(M_{02_1})_{194}$.

III. RESULTS AND DISCUSSION

Table 1 summarizes values from direct measurements of B(E2) to the first 2⁺ states in ^{192,194}Pt, and includes values from direct and indirect measure-ments of B(E2) to the second 2^+ states.

Besides the earlier work of Grodzins *et al.*,¹³ only Milner *et al.*⁶ have measured absolute B(E2) values for both ¹⁹²Pt and ¹⁹⁴Pt from γ -ray yields following Coulomb excitation. Bruton *et al.*¹⁹ have studied both but normalize their measurements separately to

- *Research supported in part by a grant from the U. S. Energy Research and Development Administration (ERDA).
- *Research sponsored by the U.S. ERDA under contract with the Union Carbide Corporation.
- ¹L. Funke, P. Kemnitz, G. Winter, S. S. Hjorth, A. Johnson and Th. Lindblad, Phys. Lett. 55B, 436 (1975).
- ²J. C. Cunnane, M. Piiparinen, P. J. Daly, C. L. Dors, T. L. Khoo and F. M. Bernthal, Phys. Rev.
- C 13, 2197 (1976). ³S. S. Hjorth, A. Johnson, Th. Lindblad, L. Funke, P. Kemnitz and G. Winter, Nucl. Phys. A262, 328 (1976).
- ⁴F. S. Stephens and R. S. Simon, Nucl. Phys. <u>A183</u>, 257 (1972).
- ⁵Noah R. Johnson, P. P. Hubert, E. Eichler, D. G. Sarantites, J. Urbon, S. W. Yates and Thomas Lindlad, Phys. Rev. C <u>15</u>, 1325 (1977). ⁶F. Todd Baker, Alan Scott, T. H. Kruse, W. Hart-
- wig, E. Ventura and W. Savin, Phys. Rev. Lett. 37, 193 (1976); F. Todd Baker, private communication.
- ⁷S. Raman, P. H. Stelson and W. T. Milner, Atomic
- Data and Nuclear Data Tables (unpublished). ⁸W. T. Milner, F. K. McGowan, R. L. Robinson, P. H. Stelson and R. O. Sayer, Nucl. Phys. <u>A177</u>, 1 (1971).
- ⁹J. E. Glenn, R. J. Pryor and J. X. Saladin, Phys. Rev. 188, 1905 (1969).
- ¹ R. M. Ronningen, R. B. Piercey, A. V. Ramayya, J. H. Hamilton, W. K. Dagenhart, S. Raman and P. H. Stelson, Bull. Am. Phys. Soc. 21, 976 (1976).
- ¹¹A. Winther and J. de Boer, Coulomb Excitation,

Milner et al.⁸ and also to Glenn et al.⁹ A magnetic spectrograph was employed by Glenn et al.⁹ to study scattered α particles after Coulomb excitation of ¹⁹⁴Pt. Our values for the first 2⁺ states in ^{192,194}Pt are smaller than most of the previous measurements although we are in good agreement with Glenn *et al.*⁹ and Baker *et al.*⁶ for ¹⁹⁴Pt. We also obtain the same ratio of B(E2) values for ¹⁹²Pt to ¹⁹⁴Pt as would Milner *et al.*⁸ Our lower values for 192,194Pt have been very recently supported by the mean life measurements by Johnson et al.⁵ using the recoil distance technique. They extract B(E2) values of 1.55 ± 0.10 and 1.70 ± 0.10 e²b² for ^{192,194}Pt, respectively.

For higher lying 2⁺ states we are in good agree-ment with Berkes *et al.*²¹ for ¹⁹⁴Pt only. States with $J^{\pi} = 3^-$ at 1378 keV in ¹⁹²Pt (Ref. 22) and 1432 keV in ¹⁹⁴Pt (Ref. 23) were observed in our study to have B(E3) values of 0.17 ± 0.03 and 0.14 $\pm 0.03 e^2b^3$, respectively. Their collective strengths, 11 ± 2 and 8 ± 2 single particle units, suggest an octupole vibrational nature.

In conclusion, our study indicates smaller B(E2) values to the 2⁺ states than most previous measurements for both ¹⁹²,¹⁹⁴Pt. Such data should be of interest not only to experimentalists needing precise values to interpret their experiments but to theo-rists as well. Our B(E2) values for 192,194 Pt are in good agreement with Kumar's²⁴ pairing plus-quadrupole model calculations, these being $1.82 e^2b^2$ and $1.71 e^2b^2$ for 192,194 Pt, respectively.

We acknowledge helpful discussions with Noah R. Johnson, S. W. Yates and F. Todd Baker.

edited by K. Alder and A. Winther (Academic Press, New York, 1966) p. 303.

- ¹²F. Roesel, J. X. Saladin and K. Alder, Comput. Phys. Commun. 8, 35 (1974). ¹³L. Grodzins, R. R. Borchers and G. B. Hageman, Nucl.
- Phys. 88, 474 (1966). L. Grodzins, B. Herskind, D. R. S. Somayajulu and B. Skaali, Phys. Rev. Lett.
- 30, 453 (1973). ¹⁴C. Baktash, J. X. Saladin, J. G. Alessi, J. J. O'Brien and F. D. Snyder, Bull. Am. Phys. Soc. <u>21</u>, 976 (1976).
- ¹⁵R. L. Heath, Ge(Li) and Si(Li) Spectrometry, Gammaray Spectrum Catalogue, 3rd Edition, USAEC Report ANCR-1000-2 (1974).
- ¹⁶N. A. Voinova, D. M. Kaminker and Yu. V. Sergeen-kov, Nucl. Phys. <u>A235</u>, 123 (1974).
 ¹⁷K. S. Krane and R. M. Steffen, Phys. Rev. C <u>3</u>,
- 240 (1971).
- ¹⁸F. Todd Baker, Alan Scott, T. H. Kruse, R. M. Ronningen and J. H. Hamilton (unpublished).
- ¹⁹E. J. Bruton, J. A. Cameron, A. W. Gibb, D. B. Kenyon and L. Keszthelyi, Nucl. Phys. A152, 495 (1970).
- ² R. Béraud, I. Berkes, R. Chéry, R. Haroutunian, Michèle Lévy, G. Marguier, G. Marest and R. Rougny, Phys. Rev. C 1, 303 (1970).
 ²¹ I. Berkes, R. Rougny, Michèle Meyer-Lévy, R. Chéry, C. Derière, G. Ubergengegund A. Trangy, Phys.
- J. Danière, G. Lhersonneau and A. Troncy, Phys. Rev. C 6, 1098 (1972).
- Rev. C 6, 1098 (1972).
 ²²S. W. Yates, J. C. Cunnane, R. Hochel and P. J. Daly, Nucl. Phys. A222, 301 (1974).
 ²³G. D. Benson, A. V. Ramayya, R. G. Albridge and G. D. O'Kelley, Nucl. Phys. A150, 311 (1970).
 ²⁴K. Kumar, Phys. Lett. <u>29B</u>, 25 (1969).