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The effects of approximating the equations of the channel-couphng-array theory by retaining only bound
internal states of the clusters in two-body channels are studied. This approximation corresponds to those used
in standard direct nuclear reaction calculations. By use of Lippmann's identity, the exact channel-coupling-

array equations may be written in two alternate forms (different ofF-shell extensions) which respond differently
to the bound-state approximation. %hen the bound state approximation is made on the equations in "folded"
form, its main effect is that the distorted-wave Born approximation occurs in only one of the two-body

channels, a modified distorted-wave Born approximation occurs in another, and no first order amplitudes of
any kind occur in the remaining channels. If Lippmann sidentity is first used to unfold the exact channel-

coupling-array equations (thereby yieldjng a dfHFerent off-shell extension) and then the bound state
approximation is applied, distorted-wave Born approximation amplitudes are found in all channels. The need
for accurate, nonperturbative solutions to the approximate equations so as to assess the effects of poesible low-

order approximations is stressed.

NUCLEAR REACTIONS Bound-state approximations, channel-coupling-array
theory, DWBA and multistep operators.

I. INTRODUCTION

The channel-coupling-array theory' is a general
scheme for treating multichannel collision pro-
cesses, in particular nuclear reactions, and soxae
discussion has already been given on its possible
use in describing elastic scattering, " direct nu-
clear re~etions, "and resonance reactions. ' Our
purpose in this paper is to extend the analyses almn

ready given for the second class of processes, fo-
cusing mainly on the role of Lippmann's identity in
the theory and the way in which distorted-wave
Born approximation (DWBA) and multistep ampli-
tudes occur in approximate (i.e., realistic) calcu-
lations. ' '

By use of Lippmann's identity, it is possible to
write the channel coupling array equations in either
"folded" or "unfolded" form." It is shoarn that the
two forms respond differently to bound state apnm

proximations (which are the commonly used ap-
proximations). In the folded form, we establish
that the standard DWBA occurs in one arrangement
channel only, a modified D%BA appears in aaother
channel, and no other arrangement channel transimn

tion operators contain the DWBA even ih modified
form. However, in the unfolded form of the chan-
nel-coupling-array equations, a DWBA amplitude
occurs in every arrangement. Some consequences

of this are discussed, in particular, the need for
coupled-chanel rather than low-order, perturba-
tion-like calculations. This is illustrated by ex-
amination of the Kunz-Host' estimate of the relaem

tive strength of the two-step amplitude for (P, f)
reactions.

II. BRIEF REVKW OF THE THEORY

Since the derivation of the equations of the chan-
nel-coupling-array method have been given in
various published works, ""we only summarize
the results we shall use in the next section. Our
emphasis will be on the equations for the prior
transition operators 1» and their associated chan-
nel component states Qg, rather than on the post
operators T~~ mainly used in previous work. They
are related to the T» by (T )» = Tyh where the
superscript T means transpose. Exact, on-shell
matrix elements of f'» and T» are equal, ' and the
proof' that the T~ obtained from solving the relemn

vant coupled equations gives the same on-shell
matrix elements as T»(+) V, + Vzt 'Vh also applies
to T»(+) and Vh+ V,G'V, where the notation used is
discussed in Refs. 1 and 3. We note here that in
the remainder of this article we shall choose chan-
nel permuting arrays for the W's appearing in the
equations below. Only two-body channels are con-
sidered, as in Ref. 3
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A. Transition operators

We assume a system of e distinguishaMe par-
ticles governed by a Hamiltonian K Correspond-
ing to the asymptotic states of the systeml, 3.e are
partitions of H into channel Hamiltonians (Hz land
channel perturbations (Yz}:

8=8, + Y, =82 + Y2 =. ~ ~ .
The Y& are assumed to go to zero sufficiently rap-
idly when the bound clusters of particles forming
each two-body channel j are well separated. We
shall also assume that Y& is the difference of the
usual" channel interaction ~~ and a one-body
channel distortion potential U„Y,= V~ —U~. This
latter potential will also appear in 8&, so that in
the eigenstates 1}t~(E ~( j))}of H, , distorted waves
rather than plane waves describe the relative mo-
tion. These states obey

where 0. denotes the internal state quantum num-
bers of the clusters and q is the asympotic relative
momentum. In an obvious notation E„~(j) =E~(j)
+Eq(j), where E~(j) =k'q'/2»~ and»& is the re-
duced mass for channel j. %'e shall use the sym-
bol a& to denote bound internal states of the clus-
ters; the (lx~(Ea, ~ j)»j are then the asymptotic
states' of the system.

Corresponding to 8z is the jth channel resolvent
GI(z):

Gq(z) =(z —Hq} ',
with the full resolvent G(z) defined by

G(z) =(z —H) '.
When z -E+iO -=+, then G&(z) becomes the usual
outgoing (+) or ingoing (-) wave Green's function
in channel j, G,'.

By assumption, the one-body potential Uz cannot
cause transitions out of channel j. Hence, if the
initial state is 1)(~(E~ ~(k))), then U; can only give
rise to a transition amplitude of the form a»(Pq,
e,p)&», where P and q label the final state of the
system and we assume Es~(j) =E~ ~(k) =E-

The total, exact amplitude A»(gq, a&p) for a
transition from an initial state labeled by a,p in
channel k to a final state labeled by jQ in channel
j is given by'

A»(Aq ohP) a»(Aq &nP)&»

+&x~(E,q( j))I& (+) Ixi(E „(k))), (5)

where Es &( j}=E„,z(k) = E and f'»(+) = f'»(8 + iO) is
the transition operator obeying' '

T»(z) = Wq, F~+Q T~ (z)G (z)W, V~.

Equation (6) has been derived using Lippmann's
identity' ' which takes either of two equivalent
forms:

( Y~ —Y )G' =hi —1

or

[G,']-'G„' = &,.
Both of these are valid as operator identities only
when acting to the left on two-body states of total
energy E in channel j. Hence, T»(+) yields the
correct amplitudes in (5) only when j is a two-body
channel. In particular, as noted above, the solu-
tion T»(+) to (6), when W is chosen to be a channel
permuting array (CPA), is identical to V~+ V&G'V~

when acting to the left on two-body states of energy
E in channel j.

8. Scattering states

The scattering states to be used in conjunction
with the f'» are channel comPonent states, as dis-
cussed, e.g., by Hahn, Kouri, and Levin' and re-
cently considered in more detail and also from a
time-dependent standpoint by Kouri, Kr6ger, and
Levin. " We denote these states by lgg; they are
related to the Schr5dinger state g) by

where n runs over the two-body channels. As
shown in Ref. 9, the ltEI„) obey

(10}

When W is chosen to be a CPA, so that l is set
equal to m, then (10) reduces to the equations for
lgg given in Ref. 9:

The boundary conditions obeyed by the lgg are
made manifest if we recast (11) as a set of integral
equations"":

IC2 = IX.(E.,-,(k))& & +G„'QW„„Y.iy.).

The set of channel component states has not been
stressed in earlier work on the channel-coupling-
array method. ' ~ Instead, the channel scattering
states IX+,where k denotes the incident channel,
have been used. These states are related to lq}
byl i3 o4 slo sll

lq} =gw,.lx„g.

Various sets of coupled equations obeyed by the
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IX g have been given in these latter references,
but we need not display them here, as we shall not
use them. The reason for this is that g g do not
display any special asymptotic properties while the
[gg do. In fact, it has been shown, a" that for a
CPA choice of W, each ~X g is just the full scat-
tering state Q):

g J = Q), slim, W=CPA. (14)

C. Exact solutions

In this section we examine some properties of
the exact solution to the set (6}. As shown in Ref.

The state g) = gQ clearly contains outgoing
waves in all open channels. On the other hand, the

~gg have the remarkable property proved in Ref.
10 that only )g) yields outgoing waves in two-body
channel j. That is, [Pg, n +j, doesnot leadtoout-
goingwaves in channel j. Hence (Q) is, in effect, that
portion of jest) in channel j. This immediately shows
us that (9) is a representation of Q) in which the con-
tribution from each channel is separately distin-
guished, in contrast to Eqs. (13)and (14).

It is this latter property that makes the set
{]gg}interesting to use. Even if the sets (11) or
(12) are solved approximately, it will still be true
that only )iIt) will contribute outgoing waves in
channel j, although the accuracy of the resulting
approximation to A»(gq, ~p) nttt/ depend on the
approximations used through the set of coupled
equations. To the extent that an exact solution was
obtained, the amplitude would be the sapne as would
be found from solving the coupled equations obey-
ed' ' by the IX+. In some cases, we may expect
identical approximations to ~gg and jXQ to yield
identical (approximate) amplitudes, but this need
not be the case always. " However, the point we
wish to stress is that even in approximate calcu-
lations, the asymptotic property of the gg is
maintained. Hence, we may regard (9) and the
concomitant sets of Eqs. (10}and (11), as an "ex-
pansion" of Q) in a nonorthogonal set of states
((g„)gg +0, n 4m) in which the rearrangement na-
ture of the scattering system is made evident. No-
tice that the equations (10) and (ll) are not obtained
from (9) by projection; instead one must derive
them either beginning with the SchrMinger equation
(E —H) I4) =0 and subsequently introducing the W»
and Eq. (9), or else by defining the ~gg through the
Tz» equation: Both derivations have been given else-
where "'" Use of th. e {~g }}thus provides one way
of obtaining a set of coupled equations for re-
arrangement scattering states in which neither
overcounting" nor nonorthogonality terms enter. '~
We shall examine ways to approximate the ~Pg in
Sec. III.

3, the 1»(&) also obey a right hand equation of the
form

T»(s) = Wy, Ãa+QWy(Y„G„(s)T,~(s), (15)

where by assumption the labels j, n, k, l, etc. , all
refer to two-body channels. The set (15) is the
most convenient for our purposes. For example,
by multiplying both sides of Eq. (12) by W&„Y„,
summing the resulting equation on n and then using
the relation T»(+) Q~(E~ ~(k))) = „W»Y„(fg, weare
immediately led to Eq. (15) for»(+), specialized
to the case where the free subscript E in 8'z& is set
equal to the channel index of the channel perturba-
tion it multiplies. From this it immediately follows
that the asymptotic form of each [Q) yields as am-
plitudes precisely the A»(gf, ag) of Eq. (5),
where the f»(+) are the solutions to (15).

In order to examine the structure of the exact
solutions, we select W to be a CPA, choosing
WI, Y„=W,„F„; It =1(without loss of generality" );
and

W~g =1,

W~~ =&~ ~+~, 1 «m «N- j. ,

all other W'& =O.

(16)

This choice is the transpose of one introduced for
the N-arrangement problem by Tobocman' and is
a generalization of one used by us initially' ' for
the three-body problem. Also, N is the total num-
ber of two-body channels under consideration.

Use of Eq. (16) in Eq. (15) yields

T»(+) = F.Gn&~i~+)

T~,(+) = Y, + F,G,+T„(+),

Tsi(+}= Y2G:&mi(+)

Tni(+) = Ys-&n-iTn-i. ,(+)

as the set of coupled equations of interest. The
kernel of this set is such that its (N 1)st iter-ate
is connected. ' ~ Although we have used a specific
choice for W, (1V) is completely general. The rea-
son, of course, '~ is that no correspondence be-
tween channel labels (1, 2, . . .) and the actual phy-
sically observable channels of the system has yet
been established, so that assignment of channels
to labels remains arbitrary.

Not only is (1V) a connected kernel equation, it
can be decoupled. " This latter feature is partic-
ularly useful for examining the nature of the solu-
tions. Repeated substitution leads to the following
set of uncoupled, connected kernel equations for
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the Tz, (+):

T„(+}= Y„G„'F„ ,G„' , ~ ~ ~ F,G,' F,[1 + G; f'„(+)],

T2,(+) = Y,[l+(G+, F»G» Y», ~ FAGS F2)G2 1ii(+)1~

T„(+}= F,G2 F,[1+(G+, Y„~~ Y4G~ F,)G,' T„(+)],

(18)

Since we are only interested in on-shell matrix
elements of (20), we may use Lippmann's identity,
Eq. (V), j —1 times in the leading term I&, which

contains the j—1 factors Y„, 1&n &j —1. Thus
applying (7) once gives

f f-2 f-2 f-g 2 1 f f-1 f-2 2 1 t

where YOGO means Y„G„+. Continuing this reduction

j—1 times finally gives'

If = F1 + YfG+ Y1 + Yf6+ Y G+ Y,

+' "+YfGf-1 Yf-.Gf-z' ' 'G. (21)

The use of Eq. (21) in Eq. (20) above yields the un-

T»i(+) =Y» iG» i-"-Yi[1+(Gi Y»)G»&»i(+)]

We shall refer to Eqs. (18) as the folded form of
the channel coupling array equations.

Our purpose in this paper is to consider some
aspects of multistep processes in direct reactions.
These are generally assumed to be associated with
higher-order corrections to the DWBA, the ampli-
tude for which, A~,

"(Pig, a,P, is given intheprior
form by'

&',"(Pq, ~ 6 =&X Ãs, -.(j))IY,IX,. ,;(I)». (»)
That is, the DWBA amplitude is an on-shell matrix
element of Y,. There is as yet no unambiguous

way to determine the higher-order corrections cor-
responding to multistep processes as long as ap-
proximations are introduced. However, in order
to consider any form of such corrections to DWBA
from the present formulation, one must first have
an equation for T&,(+) which has a single F, as the
leading term. Inspection of (18) indicates that this
is the case only when j=2. But, as shown in Ref.
3, such a lack in the equations for the T»(+), j42,
is only apparent, since the inhomogeneous term in

each of these equations can be unfolded using Lipp-
mann's identity to yield a sum of terms, one of
whose members is just the correct Born term Yf.
This is easily demonstrated, as follows. The typi-
cal equation in (18) has the form

T&,(+) = Ys iG& i Yi 2
~ ~ ~ YBG,

+ F,

x [1 +(G,+ Y»G» ~ ~ ~ Gq+, Y~)G~ f~,(+)]

=is[& +(G,' F„G» Gy„Yy)G& Tn(+)]. (20)

III. APPROXIMATE SOLUTIONS

The work of the last subsection shows that the
exact folded equations for the Tf, can be unfolded
to display explicitly a DWBA term Y, plus higher-
order corrections, which include the effects of
multistep processes. It is to be expected that these
two (folded and unfolded} forms of the equations for
Tf, will respond differently to approximations such
as a bound-state truncation in the spectral expan-
sion of Green's functions, and we illustrate this in
detail, the essential difference being the absence
of DWBA amplitudes when the folded set of equa-
tions is approximated.

The channel Hamiltonian 8 may be decomposed
as follows:

H =(IC +U )+h (22)

where K is the kinetic energy operator for rela-
tive motion of the two clusters forming channel m,

folded form of the channel-coupling-array equa-
tions.

Equation (21) clearly establishes that the exact
If, and thus the exact Tf„contains the usual first-
order Born term. Furthermore, in (20), every
term If except for j = 2 will be of the form

If = Y, + YfG2 Y, + ~ ~ ..
Hence, for every term 1i,(+) other than T», the
leading term If can be decomposed into a Born
term (one-step} plus a two-step term Y&G2 Y,. And,
once one iteration is considered for the T»(+)
equation, it will also reduce to the form

T»(+) = Y, + Y,G,' Y, + ~ ~ ~

Clearly, every Ti,(+) of (18}can be reexpressed as
an infinite series of terms, each corresponding to
a different multistep process. This is similar to
the corresponding result one finds" from use of
Lippmann-Schwinger (L-S) equations to express
T»(+) as a series. One important difference is that
the equations of the set (17) are each connected
kernel equations, unlike the L-S equations. Since
the solutions to (I'?) are given by (20), we immed-
iately see that solving (1'I) [or (12)] will lead to
amplitudes in which multistep processes are taken
into account in a compact way. While these com-
ments are valid for the exact solutions, only approx-
imate solutions can be determined in practice. We
examine aspects of approximate solutions in the
next section. We also note here that Tobocman'
has compared the series solutions for the CRC"
and the Tf, amplitudes. His analysis also holds for
the amplitudes obtained using the Tf~. Since we

study approximations, our analysis essentially be-
gins where that of Tobocman ends.
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and h is the Hamiltonian describing their internal
states. The eigenstates I9&g and Igg obey

[Z (m) -h ]I&&)& (E (m))) =0

[K.+ V -Z-„(m)]lg.(Z-, (m)» =0.

The internal states (Iyg] are usually assumed to
be complete:

lq (E (m))}(q.(z (m)) I

8 —E~(m) +:0—K —U

Ied =gl». (»'.( )» Iv.(&'.) )». (23)

Notice that the structure of (11) or (12) allows (23)
to be used for each I&l)g without overcounting prob-
lems. This is one of the advantages of using the
channel component states.

The standard bound-state approximation is to
limit the set [I&&» (&„(m)»}for each m to some or
all of the set of bound states (Iy (E,(m)»]. This
is the procedure we shall follow in introducing
approximations in the present case. (It has been
remarked on previously, ' though not studied in de-
tail. ) We therefore define a projection operator P
and its complement Q by

P = y E,m) cp, m

E m) y Em),

where the resolution of the identity is then given by

P~ +a~ Pm am ),
a

and now the sum and integral is over all internal
states in channel m (bound plus continuum). In-
cluding all bound states in P is presumably the
best approximation but is usually not feasible nu-
merically. Notice of course that 0+P P„P„P 0,
m n. This is due to the nonorthogonality of bound
states in different arrangements.

The appr oximations we wish to consider are ob-
tained by the replacements

where the sum over e~ in P includes at least one
but not more than all of the bound states in channel
m and Q„contains the rest of the complete set of
internal states (bound and/or continuum) in channel
m. Clearly,

P +Q =1,

(25)

If these. replacements are made in Eq. (11), we will
have new operators T»(+) and (approximate) ampli-
tudes A»(gg, aQ). Choosing (16}for W, we find

I4 = lr. ,(E.,-,(I)»&„G,Y, , ls, ,} (28)

and

T),(+) = Fi,[&&2+0~ if', i,(+}]& (2V)

where the subscript 0 (i.e., j = 1 in j- 1) is to be
replaced by the channel label K The solution to
(27) is, from (20),

Ty&(') =4 +(Gi Y» "'G~+i~~)G~ T»(+}] (28)

where

I2= Y, ,

Is = Y2G2 Y, ,

I, = Ys Gs+ Y2 G2 Y

Clearly, I, is in the desired form. Since I, will
act to the left on the on-shell state ()4 I, we use
(30) to find

(28)

The approximate amplitude A.» is given in Eg. (5)
with T»(+) replaced by Tz,(+).

Tobocman' has remarked that some of the terms
I~ of (20) are of arbitrarily high order We have
shown in Ref. 3 and outlined again in Sec. II C [Eq.
(21)] that I~, through Lippmann's identity, reduces
to a sum, the lowest-order term of which is just
the usual DWBA operator Y,. It is clearly of in-
terest to determine if this latter result holds for
the approximate leading term l~ of Eq. (29). As we
now show, the answer is no: Only when j =2 does
I~ "reduce" to Y,. For other values of j, I~ gener-
ally cannot even be reduced to E(P) Y„where E(P}
is a linear combination of the projection operators
P ., [Similarly, the various Iterated (first, se-
cond, etc. ) terms in each f»(+) will not reduce to
simple forms analogous to those obtained when P
=1, i.e., when G' is not approximated. ] The rea-
son for this is the presence of the factor P in G„",
which alters Lippmann's identity.

The effect of P is to change Eg. (I) to

(Yq- Y )G' =(5i„—l)P; (30)

in order to reduce the various E~ factors, (30) ra-
ther than ('I) must be used. To establish the non-
reducibility of the I& to the form (21}it is suffi-
cient to consider the case N=s. Then we find

104 - Ilk = P.IID- (24) Is =P2 Yi+ YsGa Yj. ~ (31}

It is obvious from (31) that the lowest-order ma-
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trix element contained in A„will not be A, y

()4 (P, Y, g,). In terms of the discussion following
Eq. (29), F(P) =P, when j =3. If one replaces P,
by 1 —Q„ then (31) can be rewritten as

~3 = Yi- &2 Yi+ Y3G2 Y~.

However, the terms Y, and Q, Y, are of the same
order in the perturbation Y, and, therefore, the
appearance of a DWBA term is only apparent since
the term Q, Y, removes that portion of Y, that is
complementary to P, Y,. Our conclusion is that a
standard DWBA leading term no longer appears,
but instead we obtain the modified interaction
P, Y,. The term Y,C; Y, is clearly a two-step op-
erator.

The term I, appears in the equation for T»(+),
and here we shall see that there is no F(P}, as
noted above. Applying Eq. (30) once, we have

(32)

Now, if (}(,(P, were an on-shell eigenstate of H„
then we could use Lippmann's identity in the form
of (30) to rewrite the first term of (32) as P,P, Y,
+P, Y,G2+Y„ in which case we would have F(P)
= P,P, . But (X, ~PS is not an on-shell eigenstate of
H, and hence the term P, Y,G,'Y, cannot be further
reduced within the bound-state approximation [nor,
indeed, can it be so reduced within any approxi-
mation wherein P +1]. Similar comments will
obviously hold for any number of channels greater
than three. Returning to Tobocman's comment' on
the presence of arbitrary high orders in the leading
terms of T»(+), and thus of T»(+) also, we see that
though it was not intended for this present set of
approximations, these approximations do define the
situation for which it does hold: the presence of the
projection operator P in G' not only prevents the
DWBA operator Y, from appearing as the lowest-
order term in T»(+), but it also means that (approx-
imate) high-order terms will be present as the
leading component in most of the T»(+) For ex-.
ample, the leading term in I, is a modified two-
step operator.

We thus reach the following conclusion. The
approximate 8'-array formalism in folded form
under consideration yields one pure DWBA ampli-
tude and one modified DWBA amplitude involving
P, Y„with all remaining amplitudes having as the
lowest-order transition operator a nonreducible
term of higher order than P, Y„namely, P, Y,G2 Y1 ~

This is a direct result of the off-shell transforrna-
tion represented by Lippmann's identity (7) not
being "reversible" when an approximation is made.
Alternatively we may say that if only one nonor-
thogonality overlap occurs, as in P, of (31), then a
modified DWBA results, but the presence of more
than one nonorthogonality overlap as in

P363 YQ +2G2 Y] effectively eliminates any type of
D%'BA term from occurring in any of the other
2'»(+).

In order to attempt to understand this result, it
is useful to keep in mind two distinct aims of some
recent work in direct reaction theory. One is the
desire to investigate multistep effects, as typified,
e.g. , by the work of Refs. 6 and 13 and the refer-
ences cited therein. The assumption in this case
is that the one-step DWBA amplitude provides a
good, if not very good, zeroth-order approxima-.
tion, and that one only needs a means for including
various two-step or possibly three-step amplitudes
to add to the one-step DWBA. The CRC"'" method
does this, albeit through use of an ansatz of the
form

(33)

g(Z- e)P.Q& =O, (34)

where m runs over two-body channels and approp-
riate boundary conditions are assumed. The range
of validity of (33) and (34) is not well established,
nor is it clear how to include three-, four-, etc. ,
body channels.

The other aim is to reformulate nuclear reaction
theory in terms of connected kernel equations, as
in Refs. 1, 3, 4, and 15, and then to investigate
the properties of these new equations and apply
them to specific reactions. The utility of these
latter approaches, in terms of their application
via specific approximations, can only be deter-
mined by the results they yield, exactly as with the
CRC type of theory. The dynamical effect of chan-
nel coupling as it is manifested in the W-array
equations is a subject for future investigation.
The lack of the D%BA amplitude in particular
channels in the approximated folded form of the
equations is itself no indication that the theory will
fail to predict correct amplitudes in those channels
precisely because of the presence of explicit chan-
nel coupling. " Indeed, the data on relative mag-
nitudes of cross sections leading to different final
channels in the P+"C reaction at 50 MeV, survey-
ed by Redish, "indicates the role that channel cou-
pling can play. The cross sections with largest
magnitude are (P, P) and (P, P'), with the next being
(P, d}. Below these by at least an order of magni-
tude are the (p, n}, (p, r}, (p, t), (p, o.'), and (p, 'Li)
cross sections. Since all channels are dynamically
coupled, it would seem reasonable to expect that
the major contributions to all cross sections would
come from the (P, P), (P, P'), and (P, d) channels,
with the other channels playing a smaller, more
perturbative role. In terms of the present approx-
imate folded theory [Eqs. (26) and (21)], we would



D. J. KQURI AND F. S. LEVIN

expect in first order to be able to treat the strong
elastic and inelastic channels through the U, poten-
tial and the strong (P,d) channel by identifying it
as channel 2. The other channels would then be
coupled together by the dynamical equations, with,
for example, the (P, n) channel being number 3, the

(P, t) or (P, 7} channels being next, etc.
This discussion is easily extended to other re-

actions, the general rule being to consider the in-
cident (elastic and inelastic} channel, the strongest
reaction channel, and then the other arrangement
channel (or channels if computation facilities per-
mit more than one) of interest. For example, if
(d, P) processes are being studied, the simplest
possibilities a.-e elastic and inelastic, (d, r) or
(d, f), and (d, a). Similar remarks hold for heavier
projectiles including heavy ions.

The preceding argument is based on the need for
the DWBA in only one reaction channel, on the as-
sumption that only one such channel appears to be
strong; the explicit dynamical coupling inherent in
the theory, along with the weaker (projected) cou-
pling matrix elements, should then produce ampli-
tudes of the desired shape and magnitude. How-
ever, because of computing restrictions, an inter-
esting situation does arise which tends to restore
some of the role played by the DWBA in convention-
al one-step-only calculations. It is not likely that
numerically exact calculations will soon be done in
which more than three arrangement channels will
be present, i.e., channels 1, 2, and 8. In addition
to the incident channel (number 1), only two reac-
tion channels would be taken into account. For the
P+"C case, these would presumably be (P, d} as
channel 2, and then the other channel of interest,
e.g. , (P, r). In channel 2 the lowest-order operator
is the DWBA term Y„ in channel 3 it is the modified
DWBA operator P, F,. Ttohe e txe tnthta& J)tPF, is a
good approximation to &y,, ~F„ then &}I,p', F, )y.,& is a
DWBA amplitude, in the present case for the (p, T)

reaction. Hence, when &X, P', F, )X,&=—&X, (F& IX&&

there is, in effect, a DWBA amplitude on both re-
action channels. This remark is limited to the
case of M=3 and requires that the states in I'2 have
extremely good overlap with the states in &}I,~.

To evaluate &y, (P, we need to know two overlap
functions: one for the final nuclear state relative to
the nuclear state in P„and a similar overlap func-
tion for the ejectile and its channel 2 counterpart,
normally differing from it by one or two nucleons.
While both are nuclear structure problems, the
latter has been examined for a variety of light nu-
clear projectiles or ejectiles by Rinat, Kok, and
Ringl. " Their results give the probability ampli-

tude Z'~' that an n-particle system (n ~ 6) looks
like an n-1 or n —2 particle system in its ground
state, plus a single nucleon(or deuteron inthe case of
'Li). Ingeneral, theyfind0. 6 ~Z ' &1.0fortheam-
plitude Z' '. Thus, for light ion projectiles, the light
ion part of &p, ~PI may be a reasonable approximation
to the light ion internal wave function in &Xsj, depending
on the projectile and the chosen form of its internal
wave function. The nuclear overlap will depend on the
target and the residual nuclei in question and, in
the case of good single particle states for example,
can also provide large overlaps, thereby helping to
guarantee that a reasonable approximation to a
D%BA amplitude is also present in channel 3. We
thus find the not-so-paradoxical situation in which
an approximate many-channel calculation will yield
no DWBA in most amplitudes, while an approximate
three- (or even two-) channel calculation (the most
feasible ones in the near future) can have DWBA
amplitudes. Their occurrence or nonoccurrence
is not, in our opinion, a crucial factor as long as
channel 2 is chosen as the reaction channel for
which the observed cross sections are largest: The
DWBA in this channel along with the dynamical
coupling of the TV-array equations should be the key
to the theory being able to fit the data.

We also stress, as have other authors, ""'"that
one should not rely on a low order perturbation-
like calculation to determine the approximate am-
plitude, as this may not give a reliable estimate:
The (approximate) set of coupled-channel calcula-
tions should be performed first. Afterwards, an
examination of the validity of further approxima-
tions, e.g., low-order perturbation terms, could be
investigated. The work of Kunz and Host' is a per-
tinent instance of this. They estimated, in the
zero-range approximation (ZRA), the one-step am-
plitude arising from the matrix element of the first
term of I, of Eq. (31), viz. , P, F„ for a (P, t) re-
action. The magnitude was found to be about one-
half of the "usual" DWBA term, which is the ma-
trix element of f2 = F„appearing below Eg. (30).
The effect of the projection is to give (in ZRA) an
amplitude similar to DWBA but not as large. (Us-
ing the estimates of Ref. 17, we have redetermined
the ratio of the &2 Yy and Y, matrix elements and
found it to lie in the range 0.55-0.S5, in rough
agreement with the Kunz-Rost value. ) However, it
is now generally accepted that this estimate of
either the full amplitude or a portionof itwould not
remain unchanged when the set of coupled equations
for the approximate )g) is solved. Calculations
designed to examine this are currently being under-
taken" and results will be reported subsequently.
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